1426

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 8, DECEMBER 2011

Efficient Soft-Output Demodulation of MIMO
QPSK via Semidefinite Relaxation

Mehran Nekuii, Member, IEEE, Mikalai Kisialiou, Timothy N. Davidson, Member, IEEE, and
Zhi-Quan Luo, Fellow, IEEE

Abstract—Two efficient list-based “‘soft”’-output demodu-
lators are developed for iterative receivers in multiple-input
multiple-output (MIMO) communication systems with QPSK sig-
naling. The proposed demodulators are based on the semidefinite
relaxation (SDR) technique, and hence their computational costs
are bounded by a low-order polynomial of the number of bits
transmitted per channel use. The first demodulator applies the
SDR technique once per demodulation-decoding iteration, and
generates list members via the randomization procedure that is
inherent in the SDR technique. The second demodulator is based
on an approximation of that randomization procedure by a set
of independent Bernoulli trials, and this approximation reduces
the number of semidefinite programs that need to be solved to
just one per channel use. List-free implementations that reduce
the memory requirements of list demodulators with moderate to
long lists are also developed. Analysis suggests that the proposed
“Single-SDR” demodulator should offer good performance at
moderate computational cost, especially for larger systems. This
is quantified using simulations of a richly scattered environment,
in which the performance of the Single-SDR demodulator is
similar to that of the list sphere decoder with moderate sized
lists and better than that of the minimum mean square error
soft interference canceler. The average computational cost of a
straightforward implementation of the Single-SDR demodulator
is competitive with that of the list sphere decoder with moderate
sized lists, and the distribution of its computational cost is quite
concentrated around the average.

Index Terms—Iterative demodulation and decoding (IDD), mul-
tiple-input multiple-output (MIMO) communication, multiuser
detection, semidefinite relaxation, soft-output demodulation.
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Fig. 1. MIMO BICM-IDD transceiver.

1. INTRODUCTION

HE provision of multiple antennas at both the transmitter
T and receiver of a wireless communication system offers
the potential for reliable communication at data rates that are
substantially higher than those of single antenna systems [1].
One of the core challenges in the design of such multiple-input
multiple-output (MIMO) systems is to obtain good performance
at high data rates without incurring unreasonable computational
cost. A popular transceiver architecture for moving toward that
goal is that of MIMO bit-interleaved coded modulation (BICM)
with iterative “soft” demodulation and decoding (IDD), e.g., [2];
see also Fig. 1. Although the IDD receiver architecture has many
desirable features, the computational cost of the (exact) soft de-
modulator increases exponentially with the number of encoded
bits transmitted per channel use, and hence there has been con-
siderable interest in the development of approximate soft de-

modulation schemes with lower complexity; e.g., [2]-[20].
One approach to lower-complexity soft-output demodulation
is to apply the so-called “max-log” approximation [21], under
which the posterior log likelihood ratio (LLR) of each bit is
approximated by the difference between the optimal values of
a pair of “hard”-output demodulation problems; e.g., [8]-[10],
[17]. However, each of these hard-output demodulation prob-
lems is also hard in the NP sense. Tree search methods (e.g.,
[22]), such as sphere decoding (e.g., [23], [24]), can be used
to find optimal solutions to these problems (e.g., [8], [9], and
[17]), but both the average and worst-case computational costs
of searching for the optimal solution remain exponential in the
problem size [25], and the “tail” of the distribution of the com-
putational cost can be quite significant at low SNRs or for large
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problem sizes; e.g., [26]. In order to reduce the computational
cost of tree search methods, a variety of reduced tree search
strategies have been proposed for generating good suboptimal
solutions to the hard-output demodulation problems; e.g., [12],
[17], [27], [28]. An alternative approach [10] to addressing the
computational cost of the hard-output demodulation problems
is to employ the semidefinite relaxation (SDR) technique (e.g.,
[29]), which has also been considered in a variety of other hard-
output demodulation contexts; e.g., [30]-[33]. The growth of the
computational cost of the SDR technique is (upper) bounded by
a low-order polynomial in the problem size, and this technique
has the advantage that (upper) bounds on the approximation
error are available [34]-[36]. However, when the demodulator
in [10] is used in an IDD receiver, the number of semidefinite
programs that must be solved in each demodulation-decoding it-
eration grows linearly in the number of encoded bits transmitted
per channel use.

A different approach to approximate soft(-output) demodu-
lation is to apply the principles of list decoding, in which one
seeks to efficiently identify a list of bit-vectors that dominate
the LLRs; e.g., [2]. The LLRs can then be approximated by
marginalizing over the list, or by applying the “max-log” ap-
proximation over the list. Most of the existing techniques are
based on the use of modified tree search algorithms to identify
members of the list; e.g., [2], [4]-[7], [12]-[14], [16]. In some
list demodulation schemes for iterative receivers (e.g., [2], [12],
and [13]) the list is generated once per channel use, in the first
demodulation-decoding iteration, and is stored for use in the
subsequent iterations. In other schemes (e.g., [4]-[7], and [16]),
the list is regenerated in each demodulation-decoding iteration,
which enables the information available from the decoder output
at the previous iteration to be used in the construction of the list.

In this paper, we develop an alternative approach to list-based
soft demodulation of MIMO QPSK that is based on semidef-
inite relaxation. We propose two new demodulators, both of
which regenerate the list in each demodulation-decoding iter-
ation, using the information available from the previous itera-
tion of the decoder. The first demodulator applies the semidefi-
nite relaxation technique once per demodulation-decoding iter-
ation, and generates list members via the randomization proce-
dure [34], [35] that is inherent in SDR techniques. The second
demodulator is based on an approximation of this randomiza-
tion procedure by a set of independent Bernoulli trials. This ap-
proximation allows us to reduce the number of semidefinite pro-
grams to be solved to just one per channel use. We also develop
a list-free implementation of a broad class of list demodulators
that includes the proposed demodulators, and we show that this
implementation reduces the memory requirements of demodu-
lators with moderate to long lists. Insight from the analysis of
the approximation accuracy of SDR-based hard demodulation
of MIMO QPSK [35], [36] and from the bound on its computa-
tional cost (e.g., [29], [37]) suggests that the proposed demodu-
lators should offer a tradeoff between performance and compu-
tational cost with some desirable characteristics, especially for
larger systems. Our simulations show that this is indeed the case.
In particular, in a richly scattered environment the proposed de-
modulators provide performance similar to that of the list sphere
decoder with moderate sized lists, and better than that of the
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minimum mean square error soft interference canceler. The av-
erage computational cost of a straightforward implementation
of the second of the proposed demodulators is competitive with
that of the list sphere decoder with moderate sized lists, and the
distribution of that cost is quite concentrated.

The proposed approach to list generation is substantially dif-
ferent from existing approaches, and in order to effectively es-
tablish the principles of the proposed demodulators, in this paper
we will focus on the case of QPSK signalling. Extensions to
systems that employ higher order QAM constellations will be
discussed in the Conclusion.

The paper is organized as follows. In Section II, we provide an
overview of the MIMO-BICM-IDD system, and in Section III
we review the SDR approach to hard demodulation of MIMO
QPSK. In Sections IV and V, we develop the proposed demod-
ulators, which we will call the List-SDR and Single-SDR de-
modulators, respectively. In Section VI, we describe a list-free
implementation of list demodulation that can be applied to the
proposed methods, and in Section VII the computational cost
of the proposed demodulators is analyzed. The results of simu-
lation experiments that compare the performance and computa-
tional cost of the proposed demodulators against those of several
existing demodulators will be presented in Section VIII.

II. SYSTEM MODEL AND ITERATIVE RECEIVER

We consider a narrowband system with NV, transmit antennas
and N, receive antennas. The signal vector transmitted at the
nth channel use is denoted by s,,, and the corresponding re-
ceived vector is

Yo =Hg,s, +v, (D

where the channel matrix H,, is assumed to be known at the
receiver, and v,, is a vector of additive white circular com-
plex Gaussian noise samples with variance o per real dimen-
sion. We will consider a MIMO-BICM-IDD transceiver for this
system, e.g., [2]; see Fig. 1. For simplicity, we will focus on the
spatial multiplexing transmission scheme [38], but the extension
to systems that employ a space-time code from the linear dis-
persion class [39] is direct. We will let b,, denote the sub-block
of the interleaved outer codeword that is to be transmitted in
the nth channel use, and we will let M(b) denote the mapping
used by the MIMO modulator; i.e., s, = M(b,,). In this paper,
we will focus on systems in which this mapping is to QPSK
symbols.

The role of the (coherent) soft demodulator in Fig. 1 is to
estimate the posterior log likelihood ratio of each interleaved
encoded bit; e.g., [2] and [40]. Since the channel in (1) is mem-
oryless, this can be done on a per-channel-use basis, and for no-
tational simplicity we will consider a generic channel use and
will drop the subscript n. The LLR of b;, the ith bit in b, can be
written as

; = p(y[b)p(b
log P(b; = +1ly) ~ log > bec, ., P(¥[b)p(b) @
P(bi = —1ly) Ybec, , Ply[b)p(b)
where £; 11 = {b € L|b; = £1},and L = {b €

{—=1,4+1}?Nt} denotes the (complete) list of possible
transmitted bit-vectors. (The conditioning on H,, has been
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left implicit in (2).) From the model in (1) we have that
p(y|b) o exp(—|ly —HM(b)||*/(20?)), and the conventional
estimate of p(b) (e.g., [40]) is proportional to exp(A};b/2),
where A4q is the vector of extrinsic LLRs provided by the
previous iteration of the decoder. Hence, the demodulator
computes or approximates (e.g., [2])

Yr.., exp (=D(b)/(207))
2oc,_, exp(=D(b)/(20?))

/\Dl,i = log (3)

where
A 2 o2\T
D(b) = [ly — HM(b)||3 — 0"A4;b. 4)

The cardinalities of £; +1 in (3) grow exponentially in the
number of encoded bits transmitted per channel use, and hence
so does the computational cost of the exact soft demodulator. As
a result there has been considerable interest in approximations
of (3) that can be computed (or themselves approximated) with
less effort. The resulting soft demodulators can be classified ac-
cording to the nature of the approximations they employ. To help
place the proposed demodulators in context, we will draw atten-
tion to the classes based on the following two approximations:

Zﬁi,+1 exp (=D(b)/(20?))
>z, _, exp(=D(b)/(20?))

7

1
R ( min D(b) — min D(b)) (6)
20— beﬁi,,l bez;i,+1

&)

Api,; = log

where £ C L. (The approximation of (5) by (6) is often referred
to as the “max-log” approximation.) Although many existing
soft demodulators employ one of these approximations, there
are several that do not, including the minimum mean square
error soft (parallel) interference cancellation (MMSE-SIC) de-
modulator [3], [41]-[43], and its approximations [44], [45], and
the partial marginalization demodulators [15], [20].

One class of soft demodulators is based on selecting L=1"C
and solving the two binary quadratic optimization problems in
(6) for each encoded bit. As mentioned in the Introduction, op-
timal solutions to these “hard” demodulation problems can be
obtained using tree-search algorithms, as they are in [8], [9],
[17], and suboptimal solutions can be found at lower computa-
tional cost using reduced tree search algorithms (e.g., [12], [17],
[27], [28]), or by employing semidefinite relaxation [10].

A second class of soft demodulators is based on efficiently se-
lecting a list £ of bit-vectors that generate small values for D(b)
and then approximating the LLR either by marginalizing over
LA,L-¢1, asin (5), e.g., [5], or by performing an exhaustive search
over ﬁi7i1 to solve the minimization problems in (6); e.g., [2].
The key challenge in this class of methods is the efficient se-
lection of the members of £, and most existing approaches are
based on tree-search ideas; e.g., [2], [4]-[7], [12]-[14], and [16].

The two demodulators proposed in this paper fall into the
second class of approximate soft demodulators, but they are
based on semidefinite relaxation rather than a tree search. (The
SDR-based demodulator in [10] falls into the first class.) A key
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step in the development of these soft demodulators is to exploit
the properties of the randomization step that is inherent in the
semidefinite relaxation technique [34], [35], and before we in-
troduce them we will provide a brief overview of the application
of the semidefinite relaxation to hard demodulation [30], [31].

III. HARD DEMODULATION USING SDR

Consider the real-valued equivalent representation for (1)
with QPSK signaling:

y=Hb+v @)

where y, b and v are the concatenations of the real and imagi-
nary parts of y, s and v, respectively, and we have considered an
arbitrary channel use. Given prior information on the bit proba-
bilities in the form of A 41 in (4), the bit-vector b that maximizes
the a posteriori probability is the solution to the following bi-
nary optimization problem:

i D(b) = i y — Hb||2 — 62A%,b.
b€{+1{171_n1}2m (b) be{+1{171—nl}2N1 ly I — 0" A4
(3
Using the definitions [10], [30]
- A [b A [HTH a
[ et e
b2cb, a2 -H'y - 0504 (9b)

in which ¢ € {+1,—1}, the problem in (8) can be stated as
the following (NP-hard) binary quadratic programming (BQP)
problem:
~ min b"Qb. (10)
b€{+1_’—1}2Nt+1
Using the substitution X = bb7, the problem in (10) can be
reformulated as

i T X 11
Xersnglzrvlﬁl race(XQ) (11a)
st. X =0, rank(X)=1 (11b)
[X]iizl, i=1,...,2N; +1 (11c)

where S,,, C R™*™ denotes the set of symmetric matrices of
size m x m, and X > 0 denotes that X is positive semidef-
inite. In (11), the computational difficulties of (10) manifest
themselves in the rank-1 constraint. The semidefinite relaxation
approach to approximating the solution to (10) is to relax the
rank-1 constraint and solve the following semidefinite program
(SDP):

i T X 12
XE%EI\I},:+1 race( Q) ( a)
st. X =0 (12b)
Xli=1, i=1,....,2N,+1. (I120)

This problem is convex and can be efficiently solved (in
O(N}-5) operations) using the interior point method in [37];
see Section VIL. (See also [33] for some recent developments.)
When the optimal solution to (12), denoted X,pt, is rank 1,
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its factorization generates an optimal solution to (10). In the
more common event that the solution to (12) is not rank 1,
a randomization procedure [34], [35] can be used to extract
an approximation of the solution to (10) from X,¢. That
procedure involves the construction of a Cholesky factorization
Xopt = VTV, and the generation of a sequence of random
vectors u from the uniform distribution on the unit hypersphere.
For each vector u we compute X = sign(V7u), construct the
vector X = don, 411 X [T1,...,72n,]T, and compute D(x)
using (4). If this value of D(x) is smaller than the smallest
encountered in the previous steps, then x is retained as bgq,,
the current approximation of the optimal solution to (10). A
key feature of the SDR approach to hard demodulation of
MIMO QPSK is that there are several theoretical bounds on the
approximation accuracy [29], [35], [36] that reinforce the good
performance that is seen in practice; e.g., [10], [19], [26], [30],
[31], [33].

In [10], Steingrimsson et al. developed a soft MIMO de-
modulator from the first class in Section II that was based on
the semidefinite relaxation technique described above. For each
channel use, that demodulator solves 2N; 4+ 1 SDPs per demod-
ulation-decoding iteration, and hence we will call that scheme
the “multi-SDR” method. In the next section, we will propose
a soft demodulation scheme from the second class (i.e., a list-
based demodulator) that requires the solution to just one SDP in
each demodulation-decoding iteration for each channel use. In
Section V, we will propose a list-based scheme that requires the
solution of only one SDP per channel use.

IV. LIST-SDR METHOD FOR SOFT DEMODULATION

One of the properties of the SDR approach to hard demodu-
lation is that, on average, the bit-vectors generated by the ran-
domization procedure yield small values for the objective in (8).
This suggests that, on average, those bit-vectors are good can-
didates for membership of the list in a list-based approach to
soft MIMO demodulation, and this is the insight behind the pro-
posed approach: the List-SDR demodulator uses the randomiza-
tion procedure to construct a list L, and then approximates the
LLRs using either (5) or (6).

The procedure for constructing the list used by the List-SDR
demodulator is summarized in Table I. The first phase of that
procedure is to construct a preliminary list, L, by storing each
(unique) bit-vector generated by the randomization procedure
(Lines 1-8). The randomization procedure is repeated until the
number of members of the preliminary list, |ﬁ’ |, reaches K or
the number of randomizations reaches M, where K and M are
pre-specified constants, with K < M. The second phase of the
list construction procedure is to enrich the list by identifying the
elements in £ with the .J smallest metrics, and adding to the list
all those bit vectors that are at a Hamming distance of one from
(at least) one of these .J “best” bit vectors (and are not already
members of the list; see Lines 9 and 10). This enrichment is
based on ideas in [11] and can be implemented by “flipping”
individual bits of each element of the .J best bit vectors. Since
|£'| < K, the size of the enriched list satisfies |£| < |£] +
2JN, < K +2JN;,.
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TABLE 1
LIST GENERATION COMPONENT OF THE LIST-SDR ALGORITHM

Data: X, the solution to (12), or an approximation thereof.
Parameters: )/, the number of randomization iterations; K, the
maximum size of the preliminary list; .J, the number of list members
to be used in the enrichment phase.

Output: £, the enriched list.

: Initialize £’ and £ empty, m = 0, and k = 0.

: Compute a (Cholesky) factor V of Xy such that X = VIV,

: while £ < K and m < M do

Choose a random vector u from the uniform distribution

on the unit sphere.

Compute % = sign(V 7 u) and increment m.

Construct X = Zan,+1 X [E1,... ,ith]T.

If x ¢ £, then update £/, £' — {£’,x}, and increment k.

: end while )

: Compute (and store) D(b) in (4) for each element of £’ and
select those vectors with the J smallest metrics.

10: Construct £ as the union of £’ and all the single bit-flippings of

those J “best” bit-vectors.

.J.kwl\J'—‘

R AR

Once the enriched list has been constructed, the LLRs can be
approximated using either (5) or (6), where advantage can be
taken of the prior computation of the metrics, D(b), for the ele-
ments of £’ on Line 9 of the list construction procedure. These
approximate LLRs can then be “clipped” in the conventional
manner (e.g., [6]), if desired. If we are to use the approximation
in (5) we must ensure that the list members are unique. This is
done on Line 7 in Table I, and is done implicitly on Line 10, as
well. To facilitate that operation, we store the list members in
a binary heap (e.g., [46]), and we choose the heap metric to be
wT(x + 1), where [w], = 2¥=2 and 1 is a conformally sized
vector of ones, so that only binary comparisons are needed. (One
need not explicitly compute w” (x + 1).) To determine the .J
best bit vectors, we use a second binary heap in which the heap
metric is D(b).! In the case of the “max-log” approximation of
the LLRs in (6), uniqueness of the list members is not required,
and hence Lines 7 and 10 can be simplified, but ensuring unique-
ness in the manner described above does avoid redundant evalu-
ations of the metric D(b) when the maxima in (6) are calculated
by enumeration over the list.

V. SINGLE-SDR METHOD FOR SOFT DEMODULATION

An interesting property of the SDR approach to approxi-
mating the solution to a binary quadratic problem is that an
analytic expression can be obtained for the mean value of each
element of the candidate bit-vectors x that are generated by the
randomization procedure described in Section III. The mean
value of the ¢th element can be computed by using the fact that
if the inner products of the random vector u with columns v;
and vap, 41 of the Cholesky factor V have the same sign then
x; = +1, otherwise z; = —1; cf. [34], [35]. Since the random
vector u is uniformly distributed on the unit sphere, the mean
value for z; over the randomization iterations depends on the
angle, 0; 2,41, between v; and van, 41 and can be written as

T —20; 2N, 41
—

Wi = 13)

Tnstead of using two heaps, one could manage the list using a single heap
with the heap metric D(b), but doing so would require real-valued comparisons
throughout, and may involve redundant computation of D(b).
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Add (unique) x

Fig. 2. List generation scheme using the Single-SDR algorithm.

Using the fact that v von,+1 = ||vill|[Van,+1]| cos(fi 2w, +1),
and the fact that the constraint [X];; = 1 in (12) ensures that all
|[vi|| = 1, the mean value can be expressed directly in terms of

the columns of V:

i = %arcsin (v?v2Nt+1) . (14)
The first observation in the development of the proposed
Single-SDR demodulator is that the expression in (14) suggests
that for the purposes of soft demodulation, one could consider
generating a sequence of bit vectors with properties similar to
those generated by the formal randomization process by making
the approximation that the elements of x are independent, and
generating each element of x via a scalar (antipodal) Bernoulli
trial. Such an approach would avoid the cost of computing
VTu in each instance of the formal randomization procedure.

The second observation is that this Bernoulli trial approach
provides an opportunity to separate the processing of the infor-
mation provided by the channel output from the processing of
the extrinsic information fed back from the previous iteration
of the decoder. At each iteration, the decoder updates the ex-
trinsic information that it provides to the demodulator (which
we have denoted by A 41). The expression for D(b) in (4) sug-
gests that the demodulation procedure needs to be repeated at
each iteration (as it is in [4], [5], [7] and in the List-SDR algo-
rithm proposed in Section IV). However, as we will show below,
the Bernoulli trial approach to randomization allows us to ex-
tract the SDP from the iterative demodulation and decoding loop
so that we need only solve one SDP per channel use.

The architecture of the proposed list generation technique is
illustrated in Fig. 2. It consists of an SDR demodulator (which
is invoked only in the first iteration), and a randomized list gen-
erator. The randomized list generator takes two inputs: 1) the
vector A = [Aq, ..., A\an,]? containing the mean values in (14)

in LLR form, i.e.,
T+
Ai = log < th >
L —pi

and 2) the vector A 41 containing the extrinsic information (in
LLR form) from the previous iteration of the decoder. The
randomized demodulator then computes Bernoulli distributions
that reflect these inputs [see (17)], and generates a sequence of
random binary vectors according to those distributions.

By construction, the extrinsic information provided by the
decoder is independent of the soft information from the channel
[40]. Therefore, if the randomized demodulator is to generate
candidate bit-vectors via Bernoulli trials that reflect both the

15)

TABLE II
LIST GENERATION COMPONENT OF THE SINGLE-SDR ALGORITHM

Data: X in (15); A a1, the vector of extrinsic LLRs from the previous
iteration of the decoder.

Parameters: M, the number of randomization iterations; K, the
maximum size of the preliminary list; J, the number of list members
to be used in the enrichment phase.

Output: L, the enriched list.

- Initialize £’ and £ empty, m = 0, and k = 0.

: Compute Ap in (16) and subsequently w5 using (17).

: while £ < K and m < M do

Generate each element of x, x;, independently according to

the (antipodal) Bernoulli distribution with mean pp ;.

Increment m. o .

If x & L', then update L', L «— {L',x}, and increment k.

: end while .

: Compute (and store) D(b) in (4) for each element of £’ and
select those vectors with the J smallest metrics.

9: Construct £ as the union of £’ and all the single bit-flippings of

those J “best” bit-vectors.

BN =

information from the channel and the extrinsic information
from the decoder, the LLR representation of the mean of that
Bernoulli distribution should be

A=A+ A4 (16)
The <th entry of the corresponding mean vector pup is
UB,i = 1 - 2/ (1 + exp()\&i)) . (17)

Having computed p 5, the demodulator randomly generates the
bit-vectors that will form the preliminary list, L' 2 The ith bit
of each of these vectors is generated by running an independent
(antipodal) Bernoulli trial with mean p1p ;. An enriched list Lis
then constructed by adding to the list all the single bit-flippings
of the J “best” bit vectors in £’. A statement of list generation
using this algorithm is provided in Table II. After construction
of the list £, the soft information from demodulator can be ap-
proximated using (5) or (6). As mentioned in Section IV, if the
max-log approximation in (6) is used, the list is allowed to con-
tain repeated entries, and Lines 6 and 9 in Table II can be sim-
plified, if desired.

VI. LIST-FREE IMPLEMENTATION

One of the bottlenecks in the implementation of list-based
soft demodulators is the memory required to store the list. In

2Since the randomization procedures of the List-SDR and Single-SDR de-
modulators are different, they may produce different preliminary lists. However,
for simplicity we will retain the notation from Sections II and IV and we will
use the context to distinguish between the lists.
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this section, we will develop a “list-free” implementation of a
large class of list demodulators that employ the “max-log” ap-
proximation; cf. (6). The list-free approach reduces the memory
required to implement demodulators with moderate to long lists,
and is immediately applicable to the List-SDR and Single-SDR
demodulators.

We consider the broad class of list demodulators in which the
candidate list members are generated one at a time. When such
demodulators approximate the LLRs by employing the “max-
log” approximation over the list (cf. (6)), one need not wait for
the whole list to be constructed before solving the 4/V; opti-
mization problems in (6). Instead, the optimal values of these
problems can be updated as each list member is generated. The
list member can then be discarded, because all we need to store
are the 4N, real values that are the current optimal values for
the problems in (6). If each of these real values is approxi-
mated using a B-bit (possibly floating-point) representation, the
memory required for this “list-free” implementation is 4N; B
bits. In contrast, the regular implementation requires 2Nt|/3|
bits, where |ﬁ| is the size of the list. Therefore, the memory
required by the list-free implementation is less than that re-
quired for the regular implementation whenever |£| > 2B. An-
other advantage of the list-free implementation is that the size
of the list can be adapted dynamically, without the need for ad-
ditional memory management. This offers the potential for the
demodulator to dynamically adjust its operating point on its per-
formance-complexity tradeoff curve in response to changes in
the characteristics of the channel or in the requirements of the
application.

An algorithm for a list-free Single-SDR demodulator is pro-
vided in Table III. That algorithm includes an enrichment step
(Lines 7—15) that ensures that all the bit vectors that would have
been in the list generated by the regular Single-SDR demodu-
lator in Table II are generated by the list-free implementation. In
the form in Table III, the list-free demodulator does not attempt
to avoid repeated computation of the metric D(b) for the same
bit vector b, and hence some additional computational cost may
be incurred. This is quantified in the following section.

VII. COMPUTATIONAL COST

In this section, we analyze the computational costs of the
proposed List-SDR and Single-SDR demodulators, and com-
pare these costs with those of the Multi-SDR demodulator in
[10] and the MMSE-SIC demodulator in [3]. These comparisons
provide some insight into the relative costs of implementing
these demodulators on a general purpose sequential machine, as
various parameters of the system grow. For compatibility with
the list-free implementation, we will consider List-SDR and
Single-SDR demodulators that employ the “max-log” approx-
imation in (6) and invest in list management in order to avoid
redundant computation of the metric D(b); see Sections IV and
V.

We begin our analysis by stating the computational cost of
each of the components of the algorithms. If we let € denote the
accuracy to which the SDP is solved, the worst case computa-
tional cost of solving the SDP in (12) using the interior point
method in [37] is O((2N; + 1)3® log e~1) floating-point oper-
ations. The cost of the subsequent Cholesky decomposition is
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TABLE III
LIST-FREE IMPLEMENTATION OF THE SINGLE-SDR ALGORITHM

Data: X in (15); A a1, the vector of extrinsic LLRs from the previous
iteration of the decoder.

Parameters: M, the number of randomization iterations; .J, the
number of list members to be used in the enrichment scheme.
Output: Ap1, the vector of log likelihood-ratios

function UPDATE_FS(x, D(x), fi1, f-1)
fori=1,2,...,2N; do
if z; = +1 then [f1]; — min{[f11];, D(x)}
else [f_1]; < min{[f_1];, D(x)}.
end if
end for
return [f,1,f 4]
end function

1: Compute Ap in (16) and subsequently pp using (17).
2: Initialize f11 = {+00}?™, 1 = {+00}*™, m = 0, and a
binary (max) heap J with J elements equal to +o0.
3: while m < M do
4: Generate each element of x, z;, independently according
to the (antipodal) Bernoulli distribution with mean up ;.
5 Compute D(x) in (4) and increment m.
6: [f+1, £-1] = UPDATE_Fs(x, D(x), i1, f-1).
7: if D(x) is less than the maximal element of 7 then
8 Remove the maximum element from the heap.

9: Insert D(x) into the heap.

10: for i =1,2,...,2N; do, )

11: Set %Y = x and then set 531@ = —x;.

12: Compute D(x™) in (4).

13: [fi1, £-1] = UPDATE_Fs(x, D(x¥), f11, f_1).
14: end for

15: end if

16: end while

17: Compute Ap1 = (Fr1 — £-1)/(207).

O((2N; + 1)3). The cost of generating each bit-vector in the
conventional randomization procedure used in the Multi-SDR
[10] and List-SDR methods is O((2N; + 1)2). In contrast, the
cost of the simplified randomization step in the Single-SDR
method is O(2N;). In order to evaluate the cost of the man-
agement aspects of the algorithms, we observe that sequentially
constructing a binary heap of size n requires at most O(n log n)
operations, whereas if the data is already available, the heap can
be constructed in O(n) operations [46]. We also observe that
after deleting the root of a heap, the heap can be reconstructed
in O(logn) operations. Finally, we evaluate the cost of com-
puting the “max-log” approximation of the LLRs; cf. (6). Since
b is binary, computing the metric D(b) requires 2N;(2N; + 1)
(signed) real additions. In any given iteration of the List-SDR
or Single-SDR demodulators, the number of metrics that needs
to be evaluated is the number of elements of the enriched list
L. Although |£]| is a random number, for both of those demod-
ulators it is bounded by P = K + 2JN,. In any given itera-
tion of the list-free implementation of the Single-SDR demod-
ulator, if we let Q denote the number of times the condition on
Line 7 of Table III is satisfied, then the number of metrics to be
computed is Q@ = M + ZQNt. Since Q < M, we have that
Q < M(2N; +1).

By evaluating how many times each of the above opera-
tions must be performed in each of T' demodulation-decoding
iterations, we obtain the expressions in Table IV for the com-
putational cost per channel use of each component of the
SDR-based demodulators. To verify some of the entries of
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TABLE 1V
COMPUTATIONAL COST PER CHANNEL USE OF THE COMPONENTS OF VARIOUS SDR-BASED MIMO SOFT DEMODULATORS
FOR A SYSTEM WITH /N, TRANSMIT ANTENNAS AND 7" DEMODULATION-DECODING ITERATIONS

Demodulator

Computational Cost™*

Sppt Cholesky”  Randomization' List Management? Metric Computation®
Multi-SDR [10] O(TN}®)  O(TN}) O(TMNP) — O(TMN})
List-SDR (Table I) O(TN2®)  O(TNP) O(TMNZ) O(TPlog P); O(TPN?)
O(TK) 4+ O(TJ log K)¥
Single-SDR (Table II) O(N3-2) O(NP) O(TMNy) O(TPlog P); O(TPN?)
O(TK) + O(TJlog K)¥
List-free Single-SDR (Table I1I) O(N}-5) O(N}) O(TMNy) 0; O(TMlog J)T O(TMN3)

* Notation. M : pre-specified limit on number of randomization steps; /{': pre-specified bound on size of preliminary list ([ < M); J: size of set selected
for enrichment (J < K'); P: maximum size of enriched list (P = K + 2JN,). For reference, the cost of the corresponding MMSE-SIC demodulator

[31is O(T'N}).

f Floating-point operations

¥ Binary vector comparisons; floating-point scalar comparisons
§ Signed floating-point additions.

qIf J = K these operations are not required.

Table IV we recall that in each demodulation-decoding iter-
ation, the Multi-SDR method in [10] requires the solution of
one SDP of size 2N; + 1 and 2N, SDPs of size 2N;. After
solving each SDP it performs M randomization iterations and
computes D(b) for all the generated bit-vectors. The List-SDR
approach proposed in Section IV requires the solution of only
one SDP of size 2/N; + 1 per demodulation-decoding iteration,
and the total number of evaluations of D(b) required in T
iterations is Y., [£()| < TP, where |£(®)] is the size of
the enriched list at iteration ¢, and P K + 2JN;. The
Single-SDR demodulator requires only one SDP to be solved
per channel use and uses a simplified randomization scheme,
and hence the computational cost per channel use of the SDP,
Cholesky and randomization steps is significantly reduced.
The list-free implementation of the Single-SDR demodulator
does not require storage of the list, but it may require some
additional evaluations of the metric function.

In most practical implementations, the cost of solving
the SDPs will be the dominant component of the computa-
tional cost of the SDR-based demodulators. As shown in the
second column of Table IV, for the multi-SDR, List-SDR
and Single-SDR demodulators, the computational costs per
channel use of solving the SDPs are O(TN;*%), O(TN}?),
and O(N;}*-%), respectively. To help place those costs in context,
the computational cost per channel use of the direct form
of the (conditional [45]) MMSE-SIC demodulator in [3] is
O(TN}). The development of an efficient implementation of
that demodulator that has a computational cost per channel use
of O(TN}?) was recently reported in [43].

VIII. SIMULATIONS

Insight from the approximation accuracy [35], [36] of the
SDR approach to hard demodulation and the analysis of the
computational cost in the previous section suggest that the pro-
posed list-based SDR soft demodulators should offer good per-
formance at a moderate computational cost, especially for larger
systems. In this section, we seek to quantify that insight by com-
paring the performance and computational cost of the proposed

demodulators with those of several existing demodulators. Since
the proposed list-based demodulators employ SDR, a natural
comparison is with the Multi-SDR demodulator [10], which in-
vokes the “max log” approximation of the LLRs in (6) and uses
SDR to approximate the solutions to the hard decision problems
therein. We also make comparisons with two demodulators that
have often been used as benchmarks, the list sphere decoder in
[2], and the (conditional [45]) MMSE-SIC demodulator in [3].
For the MMSE-SIC demodulator, we employ the efficient im-
plementation in [43].

We consider MIMO BICM systems that employ spatial multi-
plexing transmission of Gray-labeled QPSK symbols over a nar-
rowband spatially uncorrelated Rayleigh fading channel; e.g.,
[2]. The outer codes are conventional punctured parallel con-
catenated turbo codes of rates 1/2 and 2/3. The rate-1/2 turbo
code is that used in [2], whose constituent codes are the rate-1/2
recursive systematic convolutional code of constraint length 2
that has feedforward and feedback generator polynomials with
octal representations 5 and 7, respectively. The rate-2/3 code
is derived from the rate-1/2 code by further puncturing of the
non-systematic bits. The input block length for the turbo codes
is 8192 information bits, and the (different) interleavers in the
turbo code and in the BICM transmitter are generated randomly
in each Monte-Carlo iteration. The conventional BCJR algo-
rithm [47] is used to decode the constituent codes, and eight
turbo decoding iterations are performed before the extrinsic in-
formation is passed back to the demodulator. For the list-based
demodulators (i.e., those proposed herein and the list sphere de-
coder), we adopt the common “clipping” approach to mitigating
LLR estimation errors incurred by insufficiently rich lists, e.g.,
[6]. Based on the analysis in [6] and our own experiments, we
clip the estimated LLRs to the interval [—5, +5].

A. 8 x 8 MIMO System

In this section, we consider a MIMO system with N, = 8 an-
tennas at the transmitter, /N, = 8 antennas at the receiver, and a
spatially uncorrelated Rayleigh fading channel model. We con-
sider both an “ergodic” model, in which the channel realization
changes independently at each channel use, and a quasi-static
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Fig. 3. Comparison of the BER performance of various demodulators for the
8 % 8 ergodic Rayleigh fading channel model and the rate-1/2 outer code.

model in which each outer codeword “sees” only one channel re-
alization. (Although these models are somewhat idealized, they
constitute useful limiting cases in the evaluation of demodu-
lator performance.) We compare the BER performance of: 1)
the Single-SDR demodulator; 2) the List-SDR demodulator; 3)
the Multi-SDR demodulator in [10]; 4) three instances of the list
sphere decoder in [2], one with the list size L = 512 that was
considered in [2] and the others with L = 256 and L = 128,
respectively; and 5) the MMSE-SIC demodulator in [3] with
intrinsic information exchange [48]. Based on experiments re-
ported in [49], the SDPs in the SDR-based demodulators were
solved to an accuracy of ¢ = 10~2 and M = 50 randomizations
were performed. For the List-SDR and Single-SDR demodula-
tors we set K = M and in the list enrichment step “bit-flip-
ping” was performed on the best J = 10 members of the pre-
liminary list. For all the list-based demodulators (the two pro-
posed demodulators and the list sphere decoders) the LLRs were
estimated using the “max-log” approximation in (6). If the ap-
proximation in (5) is used instead, the performance of these list
demodulators improves a little, but their relative performance is
similar.

First, we consider the case of the rate-1/2 outer code. The
BERs of the considered demodulators under the ergodic channel
model are shown in Fig. 3, from which it is apparent that after
four iterations the BER of the Single-SDR demodulator is better
than that of the list sphere decoder with L = 128, is slightly
better than that of the list sphere decoder with L. = 256 and
the MMSE-SIC demodulator, and is close to that of the other
demodulators. As shown in Fig. 4, the relative performance of
the proposed demodulators under the quasi-static channel model
is qualitatively similar.

For the case of the rate-2/3 outer code, the performance
comparisons between the proposed demodulators and the list
sphere decoder show similar trends, as illustrated by the results
in Fig. 5 for the case of the ergodic channel model. However,
with the higher rate outer code the relative performance of the
MMSE-SIC is somewhat degraded. In particular, the other de-
modulators provide better performance after two iterations than
the MMSE-SIC demodulator provides after four. In fact, ten
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Fig. 4. Comparison of the BER performance of various demodulators for the
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Fig. 5. Comparison of the BER performance of various demodulators for the
8 x 8 ergodic Rayleigh fading channel model and the rate-2/3 outer code.

iterations of the MMSE-SIC demodulator are required to obtain
the performance of two iterations of the other demodulators.

An interesting feature of Figs. 3-5 is the degradation in the
relative performance of the list sphere decoders with short lists
as the number of demodulate-decode iterations increases. This
is due in large part to the fact that the list sphere decoder in [2]
generates its list once per channel use. In contrast, at each itera-
tion the List-SDR and Single-SDR demodulators generate new
lists that are adapted to the output of the decoder in the pre-
vious iteration. A key feature of the Single-SDR demodulator is
that the new list is generated without the need to solve another
SDP. Although there are a number of list-based tree-search de-
modulators that update their lists in each iteration (e.g., [4], [5],
[7], and [16]), they must perform a tree search at each itera-
tion, rather than at each channel use, and hence they may incur
a larger computational cost than the benchmark list sphere de-
coder in [2]; see, e.g., [16].

Since the considered demodulators operate in substantially
different manners, direct comparison of their computational
costs can be rather awkward, but in order to provide one such
comparison, we explicitly counted the number of floating point
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operations (FLOPs)3 required by each demodulator to perform
each component of its algorithm at each demodulation iteration
in each channel use. For the SDR-based demodulators we
used the straightforward primal-dual interior point algorithm
in [37] to solve the SDPs, and we have included the FLOPs
required to solve the SDPs and the FLOPs required to perform
the Cholesky decompositions and the randomization steps, to
manage the list, to compute the metrics D(b), and to compute
the max-log approximation on the list; cf. (6). For the list sphere
decoder in [2] we have included the FLOPs required to con-
struct the list (which is only performed once per channel use),
including those required to perform the QR decomposition of
the channel, and the FLOPs required to compute the metrics and
the max-log approximation in each demodulation iteration. The
list sphere decoder that we have considered is “genie-aided” in
the sense that it is provided with an appropriate radius for the
sphere (cf. [2]) at no computational cost. As such, the depicted
results for the list sphere decoder may be somewhat optimistic.
For the MMSE-SIC demodulator [3], we have used the efficient
implementation in [43], and we count the FLOPs required to
compute and subtract the mean of the interfering symbols, and
those required to compute and implement the unbiased linear
MMSE estimator of the resulting zero-mean signal.

In Fig. 6, we have plotted the average computational cost per
channel use for T' = 4 demodulation-decoding iterations of
each of the considered demodulators against the SNR under the
ergodic channel model for the case of the rate-2/3 outer code.
As would be expected from the structure of the demodulators,
the corresponding costs for the system with the rate-1/2 outer
code over the SNRs of interest in that case are similar; cf. [49].
Fig. 6 shows that the average computational cost of our straight-
forward implementation of the Single SDR demodulator lies be-
tween that of the list sphere decoders of list sizes L = 512 and
L = 128 and lies just below that of the list sphere decoders of
list sizes L = 256, but is greater than that of the efficient imple-
mentation of the MMSE-SIC demodulator. (Recall that we have
provided the list sphere decoders with an appropriate radius at
no computational cost.) Furthermore, unlike the list sphere de-
coder, the distribution of the computational cost of the SDR de-
modulation methods is concentrated around the mean. To illus-
trate that fact, we have plotted in Fig. 7 the empirical comple-
mentary cumulative distribution of the computational cost per
channel use of the considered demodulators at an SNR of 5 dB,
which is in the “waterfall” region of the BER curves in Fig. 5.

The structure of the MMSE-SIC demodulator means that the
computational cost of each iteration is the same. In contrast, for
a list sphere decoder with typical list sizes the second and subse-
quent iterations each incur only a marginal computational cost
because they use the list that was generated in the first itera-
tion. Our explicit counting of the number of required operations
verifies the earlier insight that the dominant component of the
computational cost of the SDR-based demodulators is the cost

3That is, each real-valued arithmetic operation. (For each demodulator, the
number of additions and multiplications is quite similar.) Although the number
of FLOPs is a reasonable metric for demodulators that are implemented on a
general purpose sequential machine, this metric overlooks any structure in the
algorithm that might facilitate efficient implementation in application-specific
hardware.
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the rate-2/3 outer code, and 7' = 4 demodulation and decoding iterations at an
SNR of 5 dB.

of solving the SDP or SDPs. As a result, the cost of each sub-
sequent iteration of the List-SDR and Multi-SDR demodulators
is similar to that of the first, whereas the second and subsequent
iterations of the Single-SDR demodulator each incur only a mar-
ginal computational cost.

B. 4 x 4 MIMO System

In this section, we illustrate that the tradeoffs between per-
formance and computational cost achieved by the proposed de-
modulators remain competitive in smaller systems. We consider
a MIMO-BICM system with N, = N,. = 4 and the rate-1/2
outer code operating over the ergodic Rayleigh fading channel
model. In this case, the full demodulation list has only 256 el-
ements, and hence full-list demodulation can also be used as a
benchmark. In the SDR demodulators we solved the SDPs to
an accuracy of ¢ = 1072, employed M = 25 randomizations
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(with K = M), and chose J = 5 in the enrichment procedure.
The average BERs of the various demodulators are plotted in
Fig. 8. Asin the 8 x 8 case, the performance of the Single-SDR
demodulator is close to that of the best of the considered de-
modulators. However, we observe that in this 4 x 4 case, the
relative performance of the MMSE-SIC demodulator is weaker
than in the corresponding 8 x 8 case (cf. Fig. 3), due to the fact
that there are fewer interfering symbols, and hence the inherent
approximation that the residual interference is Gaussian is less
accurate in this case.

A comparison of the average computational cost of the
considered demodulators over a range of SNRs reveals similar
trends to those depicted in Fig. 6 for the 8 x 8 case. This is
apparent from Fig. 9, where we have plotted the empirical com-
plementary cumulative distribution of the computational costs
at an SNR of 2.75 dB. (Once again, we have provided the list
sphere decoder with an appropriate radius at no computational
cost.)
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IX. CONCLUSION

In this paper, we have proposed two computationally efficient
soft MIMO demodulators based on an adaptation of the SDR
method for hard demodulation to list-based soft demodulation.
These demodulators are designed for iterative receivers and at
each iteration they regenerate the list, incorporating informa-
tion from the previous iteration of the decoder. We have also
presented a list-free implementation of the proposed demodu-
lators that reduces the memory requirements of demodulators
with moderate-to-long lists.

In contrast to the list sphere decoder, the (worst case) com-
putational cost of the proposed demodulators is bounded by a
(low-order) polynomial of the number of bits to be demodulated,
and in contrast to the SDR-based demodulator in [10], one of the
proposed demodulators requires the solution of one semidefinite
program (SDP) per demodulation-decoding iteration for each
channel use and the other requires the solution of only one SDP
per channel use. Along with insight from the approximation ac-
curacy of SDR [35], [36], these properties suggest that the pro-
posed demodulators should offer good performance at moderate
computational cost, especially for large systems. This was quan-
tified by simulations of straightforward implementations of the
demodulators in a richly scattered environment. In particular,
the performance of the Single-SDR demodulator is similar to
that of the list sphere decoder in [2] with moderate sized lists
and better than that of the minimum mean square error soft in-
terference canceler [3], [43]. Its average computational cost is
competitive with that of the list sphere decoder with moderate
sized lists, and the distribution of its computational cost is quite
concentrated around the average. These results demonstrate the
potential of the proposed demodulators and suggest that they
are worthy of further algorithmic development and performance
analysis.

The proposed SDR approach to list-based soft MIMO demod-
ulation of QPSK symbols exploits the randomization step that
is employed in the SDR approach to hard MIMO demodula-
tion and multiuser detection; e.g., [30]. There are several ways
in which the SDR approach to hard MIMO demodulation of
QPSK symbols can be extended to hard demodulation of higher
order QAM symbols [50]-[52]. By applying the principles dis-
cussed herein to those different extensions, a rich family of SDR
approaches to list-based soft demodulation for MIMO-BICM
systems with higher-order QAM signalling can be obtained;
e.g., [49] and [53]. In the case of hard demodulation, several
prominent SDR extensions have been shown to be equivalent
[49], [52], and hence they are also equivalent in the context
of a Single-SDR soft demodulator. However, in the context of
a List-SDR soft demodulator these extensions enable different
approximations of the prior information, and hence they pro-
vide different performance [53]. The evaluation of the perfor-
mance-complexity tradeoffs within the family of SDR-based de-
modulators for higher order QAM is on going, and will be re-
ported in due course.

ACKNOWLEDGMENT

The authors would like to thank J. Veloce of McMaster
University for his assistance with some of the simulation
experiments.



1436

REFERENCES

[1] 1. E. Telatar, “Capacity of multiple antenna Gaussian channels,” Eur.
Trans. Telecomm., vol. 10, pp. 585-595, Nov. 1999.

[2] B. M. Hochwald and S. ten Brink, “Achieving near capacity on a
multiple-antenna channel,” IEEE Trans. Commun., vol. 51, no. 3, pp.
389-399, Mar. 2003.

[3] X. Wang and H. V. Poor, “Iterative (turbo) soft interference cancella-

tion and decoding for coded CDMA,” IEEE Trans. Commun., vol. 47,

no. 7, pp. 1046-1061, Jul. 1999.

S. Béro, J. Hagenauer, and M. Witzke, “Iterative detection of

MIMO transmission using a list-sequential (LISS) detector,” in Proc.

IEEE Int. Conf. Commun., Anchorage, AK, May 2003, vol. 4, pp.

2653-2657.

[5] H. Vikalo, B. Hassibi, and T. Kailath, “Iterative decoding for MIMO
channels via modified sphere decoding,” IEEE Trans. Wireless
Commun., vol. 3, no. 6, pp. 2299-2311, Nov. 2004.

[6] Y.L.C.deJong and T. J. Willink, “Iterative tree search detection for
MIMO wireless systems,” IEEE Trans. Commun., vol. 53, no. 6, pp.
930-935, Jun. 2005.

[7] J. Hagenauer and C. Kuhn, “The list-sequential (LISS) algorithm and
its application,” IEEE Trans. Commun., vol. 55, no. 5, pp. 918-928,
May 2007.

[8] J. Jaldén and B. Ottersten, “Parallel implementation of a soft output
sphere decoder,” in Proc. Asilomar Conf. Signal Syst. Comput., Mon-
terey, CA, Oct. 2005, pp. 581-585.

[9] R. Wang and G. B. Giannakis, “Approaching MIMO channel capacity
with soft detection based on hard sphere decoding,” IEEE Trans.
Commun., vol. 54, no. 4, pp. 587-590, Apr. 2006.

[10] B. Steingrimsson, Z.-Q. Luo, and K. M. Wong, “Soft quasi-max-
imum-likelihood detection for multiple-antenna channels,” IEEE
Trans. Signal Process., vol. 51, no. 11, pp. 2710-2719, Nov. 2003.

[11] D. J. Love, S. Hosur, A. Batra, and R. W. Heath, Jr., “Space-time
Chase decoding,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp.
2035-2039, Sep. 2005.

[12] Z. Guo and P. Nilsson, “Algorithm and implementation of the K -best
sphere decoding for MIMO detection,” IEEE J. Sel. Areas Commun.,
vol. 24, no. 3, pp. 491-503, Mar. 2006.

[13] L. G. Barbero and J. S. Thompson, “Extending a fixed-complexity
sphere decoder to obtain likelihood information for turbo-MIMO sys-
tems,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 2804-2814, Sep.
2008.

[14] D. L. Milliner, E. Zimmermann, J. R. Barry, and G. Fettweis, “A
fixed-complexity smart candidate adding algorithm for soft-output
MIMO detection,” IEEE J. Sel. Topics Signal Process., vol. 3, no. 6,
pp. 1016-1025, Dec. 2009.

[15] E. G. Larsson and J. Jaldén, “Fixed-complexity soft MIMO detection
via partial marginalization,” IEEE Trans. Signal Process., vol. 56, no.
8, pp. 3397-3407, Aug. 2008.

[16] M. Nekuii and T. N. Davidson, “A multistack algorithm for soft
MIMO demodulation,” IEEE Trans. Veh. Technol., vol. 58, no. 5, pp.
2592-2597, Jun. 2009.

[17] C. Studer and H. Bolcskei, “Soft-input soft-output single tree-search
sphere decoding,” IEEE Trans. Inf. Theory, vol. 56, no. 10, pp.
48274842, Oct. 2010.

[18] W.Zhang and X. Ma, “Low-complexity soft-output decoding with lat-
tice-reduction-aided detectors,” IEEE Trans. Commun., vol. 58, no. 9,
pp- 2621-2629, Sep. 2010.

[19] P. Fertl, J. Jaldén, and G. Matz, “Capacity-based performance com-
parison of MIMO-BICM demodulators,” in Proc. IEEE Workshop
Signal Process. Adv. Wireless Commun., Recife, Brazil, Jul. 2008, pp.
166-170, see also http://arxiv.org/abs/0903.2711.

[20] D. Persson and E. G. Larsson, “Partial marginalization soft MIMO de-
tection with higher order constellations,” IEEE Trans. Signal Process.,
vol. 59, no. 1, pp. 453-458, Jan. 2011.

[21] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal
and suboptimal map decoding algorithms operating in the log domain,”
in Proc. IEEE Int. Conf. Commun., Seattle, WA, Jun. 1995, vol. 2, pp.
1009-1013.

[22] A. D. Murugan, H. El Gamal, M. O. Damen, and G. Caire, “A uni-
fied framework for tree search decoding: Rediscovering the sequential
decoder,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 933-953, Mar.
2006.

[23] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in
lattices,” IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201-2214, Aug.
2002.

[4

=

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 8, DECEMBER 2011

[24] M. O. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood
detection and the search for the closest lattice point,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2389-2402, Oct. 2003.

[25] J. Jaldén and B. Ottersten, “On the complexity of sphere decoding in
digital communications,” IEEE Trans. Signal Process., vol. 53, no. 4,
pp. 1474-1484, Apr. 2005.

[26] W. K. Ma, B. N. Vo, T. N. Davidson, and P. C. Ching, “Blind ML
detection of orthogonal space-time block codes: Efficient high-perfor-
mance implementations,” IEEE Trans. Signal Process., vol. 54, no. 2,
pp. 738-751, Feb. 2006.

[27] R. Gowaikar and B. Hassibi, “Statistical pruning for near-maximum
likelihood decoding,” IEEE Trans. Signal Process., vol. 55, no. 6, pp.
2661-2675, Jun. 2007.

[28] L. G.BarberoandJ. S. Thompson, “Fixing the complexity of the sphere
decoder for MIMO detection,” IEEE Trans. Wireless Commun., vol. 7,
no. 6, pp. 2131-2142, Jun. 2008.

[29] Z.-Q.Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20-34, May 2010.

[30] W. K. Ma, T. N. Davidson, K. M. Wong, Z.-Q. Luo, and P. C. Ching,
“Quasi-maximum-likelihood multiuser detection using semi-definite
relaxation with application to synchronous CDMA,” IEEE Trans.
Signal Process., vol. 50, no. 4, pp. 912-922, Apr. 2002.

[31] P. H. Tan and L. K. Rasmussen, “The application of semidefinite pro-
gramming for detection in CDMA,” IEEE J. Sel. Areas Commun., vol.
19, no. 8, pp. 1442-1449, Aug. 2001.

[32] J. Jaldén and B. Ottersten, “The diversity order of the semidefinite
relaxation detector,” IEEE Trans. Inf. Theory, vol. 54, no. 4, pp.
1406-1422, Apr. 2008.

[33] M. Kisialiou, X. Luo, and Z.-Q. Luo, “Efficient implementation of
quasi-maximum-likelihood detection based on semidefinite relax-
ation,” IEEE Trans. Signal Process., vol. 57, no. 12, pp. 4811-4822,
Dec. 2009.

[34] M. X. Goemans and D. P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problem using semidefinite
programming,” J. ACM, vol. 42, pp. 1115-1145, 1995.

[35] Y. E. Nesterov, “Semidefinite relaxation and nonconvex quadratic op-
timization,” Optim. Methods Softw., vol. 9, pp. 141-160, 1998.

[36] M. Kisialiou and Z.-Q. Luo, “Probabilistic analysis of semidefinite re-
laxation for binary quadratic minimization,” SIAM J. Optim., vol. 20,
no. 4, pp. 1906-1922, 2010.

[37] C.Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz, “An interior
point method for semidefinite programming,” SIAM J. Optim., vol. 6,
no. 2, pp. 342-361, 1996.

[38] G. J. Foschini, G. Golden, R. Valenzuela, and P. Wolniansky, “Sim-
plified processing for high spectral efficiency wireless communication
employing multi-element arrays,” IEEE J. Sel. Areas Commun., vol.
17, no. 11, pp. 1841-1852, Nov. 1999.

[39] B. Hassibi and B. Hochwald, “High-rate codes that are linear in space
and time,” IEEE Trans. Inf. Theory, vol. 48, no. 7, pp. 1804—1824, Jul.
2002.

[40] J. Hagenauer, “The turbo principle: Tutorial introduction and state of
the art,” in Proc. Int. Symp. Turbo Codes Rel. Topics, Brest, France,
Sep. 1997, pp. 1-11.

[41] H.El-Gamal and E. Geraniotis, “Iterative multiuser detection for coded
CDMA signals in AWGN and fading channels,” IEEE J. Sel. Areas
Commun., vol. 18, no. 1, pp. 3041, Jan. 2000.

[42] J. Boutros and G. Caire, “Iterative multiuser joint decoding: Unified
framework and asymptotic analysis,” IEEE Trans. Inf. Theory, vol. 48,
no. 7, pp. 1772-1793, Jul. 2002.

[43] C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of
soft-input soft-output MIMO detection using MMSE parallel inter-
ference cancellation,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp.
1754-1765, Jul. 2011.

[44] M. Tiichler, A. C. Singer, and R. Koetter, “Minimum mean squared
error equalization using a priori information,” IEEE Trans. Signal
Process., vol. 50, no. 3, pp. 673-683, Mar. 2002.

[45] G. Caire, R. R. Miiller, and T. Tanaka, “Iterative multiuser joint
decoding: Optimal power allocation and low-complexity implemen-
tation,” IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 1950-1973, Sep.
2004.

[46] T.H. Cormen, C. F. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.

[47] L. Bahl, J. Coke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol.
IT-20, no. 3, pp. 284-287, Mar. 1974.



NEKUII et al.: EFFICIENT SOFT-OUTPUT DEMODULATION OF MIMO QPSK VIA SEMIDEFINITE RELAXATION

[48] M. Witzke, S. Biro, F. Schreckenbach, and J. Hagenauer, “Iterative
detection of MIMO signals with linear detectors,” in Proc. Conf. Rec.
36th Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, Nov.
2002, pp. 289-293.

[49] M. Nekuii, “Soft demodulation schemes for MIMO communication
systems,” Ph.D. dissertation, McMaster Univ., Montreal, QC, Canada,
Aug. 2008.

[50] A. Wiesel, Y. C. Eldar, and S. Shamai, “Semidefinite relaxation for
detection of 16-QAM signaling in MIMO channels,” IEEE Signal
Process. Lett., vol. 12, no. 9, pp. 653-656, Sep. 2005.

[51] N.D. Sidiropoulos and Z.-Q. Luo, “A semidefinite relaxation approach
to MIMO detection for high-order QAM constellations,” IEEE Signal
Process. Lett., vol. 13, no. 9, pp. 525-528, Sep. 2006.

[52] W.-K.Ma, C.-C. Su, J. Jaldén, T.-H. Chang, and C.-Y. Chi, “The equiv-
alence of semidefinite relaxation MIMO detectors for higher-order
QAM,” IEEE J. Sel. Topics Signal Process., vol. 3, no. 6, pp.
1038-1052, Dec. 2009.

[53] M. Nekuii and T. N. Davidson, “A semidefinite relaxation approach
to efficient soft demodulation of MIMO 16-QAM,” in Proc. IEEE Int.
Conf. Commun., Dresden, Jun. 2009, pp. 1-6.

Mehran Nekuii (S’04-M’09) received the B.Sc.
and M.Sc. degrees in electrical engineering from
Sharif University of Technology, Tehran, Iran,
in 2000 and 2003, respectively, and the Ph.D.
degree in electrical and computer engineering from
McMaster University, Hamilton, ON, Canada, in
2008.

He is now working as a Scientist in the Wireless
Broadband Group, Cavium, Inc., Montreal. His re-
search interests are signal processing in communi-
cations systems, optimization techniques in MIMO
systems, and physical layer in OFDM-based communication systems.

Mikalai Kisialiou received the B.Sc. and M.Sc. de-
grees (with distinction) in applied mathematics and
physics from the Moscow Institute of Physics and
Technology, Moscow, Russia, in 2001 and the Ph.D.
degree in electrical engineering from the Department
of Electrical and Computer Engineering, University
of Minnesota, Minneapolis MN, in 2007.

In 2001, he started his Ph.D. program in the De-
partment of Electrical and Computer Engineering,
McMaster University, Hamilton ON, Canada. After
graduation, he joined the Circuit Simulation Group
in the Department of Design and Technology Solutions at Intel Corporation,
Hillsboro OR, United States. His research interests include optimization theory,
signal processing, wireless communications, advanced numerical methods,
algorithm analysis and efficient software implementation.

Dr. Kisialiou received the ICASSP’05 Best Student Paper Award for his work
on theoretical analysis of semidefinite relaxation applied to maximum-likeli-
hood detection.

1437

Timothy N. Davidson (M’96) received the B.Eng.
(Hons. I) degree in electronic engineering from the
University of Western Australia (UWA), Perth, in
1991 and the D.Phil. degree in engineering science
from the University of Oxford, Oxford, U.K., in
1995.

He is currently a Professor in the Department of
Electrical and Computer Engineering, McMaster
University, Hamilton, ON, Canada, where he holds
the (Tier II) Canada Research Chair in Communica-
tion Systems and is currently serving as Associate
Director of the School of Computational Engineering and Science. His research
interests lie in the general areas of communications, signal processing, and
control.

Dr. Davidson received the 1991 J. A. Wood Memorial Prize from UWA, and
the 1991 Rhodes Scholarship for Western Australia. He has served as an As-
sociate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING, the IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, and the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS II. He has also served as a Guest Co-Editor of issues
of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS and the IEEE
JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING. Dr. Davidson is cur-
rently serving as Vice-Chair of the IEEE Signal Processing Society’s Technical
Committee on Signal Processing for Communications and Networking. He is a
Registered Professional Engineer in the Province of Ontario.

Zhi-Quan Luo (F’07) received the B.Sc. degree
in applied mathematics from Peking University,
Beijing, China, in 1984 and the Ph.D. degree in
operations research from the Massachusetts Institute
of Technology, Cambridge, in 1989.

He is a Professor in the Department of Electrical
and Computer Engineering, University of Min-
nesota, Minneapolis, where he holds an endowed
ADC Chair in digital technology. From 1989 to
2003, he was with the Department of Electrical
and Computer Engineering, McMaster University,
Montreal, QC, Canada, where he later served as the Department Head and
held a senior Canada Research Chair in Information Processing. His research
interests lie in the union of optimization algorithms, data communication, and
signal processing.

Dr. Luo is a fellow of STAM. He is a recipient of the IEEE Signal Processing
Society’s Best Paper Award in 2004 and 2009, the EURASIP Best Paper Award
and the ICC’s Best Paper Award in 2011. He was awarded the 2010 Farkas Prize
from the INFORMS Optimization Society. He currently chairs the IEEE Signal
Processing Society’s Technical Committee on Signal Processing for Commu-
nications and Networking (SPCOM). He has held editorial positions for sev-
eral international journals including the Journal of Optimization Theory and
Applications, Mathematics of Computation, IEEE TRANSACTIONS ON SIGNAL
PROCESSING, SIAM Journal on Optimization, Management Sciences and Math-
ematics of Operations Research.



