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Abstract—We consider joint transceiver design for point-to-
point Multiple-Input Multiple-Output communication systems
that implement interference (pre-)subtraction; i.e., Decision Feed-
back Equalization (DFE) or Tomlinson-Harashima precoding
(THP). We develop a unified framework for joint transceiver
design of these two dual systems by considering design criteria
that are expressed as functions of the (logarithm of the) Mean
Square Error (MSE) of the individual data streams. By deriving
two inequalities that involve the logarithms of the individual
MSEs, we obtain optimal designs for two broad classes of
communication objectives, namely those that are Schur-convex
and Schur-concave functions of these logarithms. These two
classes embrace several design criteria for which the optimal
transceiver design has remained an open problem. For Schur-
convex objectives, the optimal design results in data streams with
equal MSEs. In addition to other desirable properties, this design
simultaneously minimizes the total MSE and the average bit error
rate, and maximizes the Gaussian mutual information; a property
that is not achieved by a linear transceiver. Moreover, we show
that the optimal design yields objective values that are superior to
the corresponding optimal objective value for a linear transceiver.
For Schur-concave objectives, the optimal DFE design results in
linear equalization and the optimal THP design results in linear
precoding. The proposed design framework can be regarded as
a counterpart of the existing framework for linear transceiver
design.

Index Terms—Non-linear MIMO transceiver design; unified
design framework; majorization; Schur-convexity; convex op-
timization; Decision Feedback Equalization (DFE); Tomlinson-
Harashima precoding (THP);

I. INTRODUCTION

ONE OF THE key advantages of Multiple-Input Multiple-
Output (MIMO) communications schemes is that they

facilitate the simultaneous transmission of multiple data
streams. In point-to-point applications, such schemes typically
involve processing of the data streams at the transmitter
(precoding) to “match” the transmission to the channel and
processing of the received signals (equalization) to mitigate
the interference between the received streams at reasonable
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computational cost. One approach to the design of such a
scheme is to focus on linear precoding and linear equalization;
e.g., [1], [2]. An alternative approach that offers the potential
for performance improvements over the linear approach is to
allow interference (pre-)subtraction at either the transmitter
or the receiver. This approach includes schemes with linear
precoding and Decision Feedback Equalization (DFE), and
schemes with Tomlinson-Harashima (TH) precoding and lin-
ear equalization, and will be the focus of this paper.

A large number of joint design strategies have been pro-
posed for the class of linear MIMO transceivers (e.g., [1]),
and a unified framework that encompasses many of these
designs was proposed in [2]. That framework is based on the
classes of communication objectives that are Schur-convex or
Schur-concave functions of the mean square error (MSE) of
each data stream, and encompasses a broad range of design
objectives. For DFE-based systems, joint transceiver designs
based on a minimum MSE criterion were considered in [3]–
[6], and designs subject to a zero-forcing constraint were
considered in [7], [8]. However, for many of the design criteria
for which (jointly) optimal linear transceivers are known, the
jointly optimal DFE-based transceiver has remained an open
problem. Furthermore, the development of a unifying design
framework for DFE-based transceivers that encompasses these
designs has appeared to be a challenging problem. For TH
precoding schemes, designs based on minimum MSE criteria
were considered in [5], [9], and designs subject to a zero-
forcing constraint were considered in [9], [10]. However,
the approach in [5] considers a lower bound on the MSE,
and the approaches in [9], [10] do not use all the degrees
of design freedom available in a single-user system. Hence,
the approaches in [5], [9], [10] yield suboptimal designs. In
addition to the absence of a minimum MSE transceiver, the
design of (jointly) optimal TH-based transceivers for other
design criteria, and the development of a unifying framework
have remained open problems.

In this paper, we develop a broadly applicable framework
for joint transmitter and receiver design for MIMO systems
with DFE or TH precoding. (A related DFE-centric framework
was developed, independently, in [11], [12].) We consider the
broad range of design criteria that can be expressed as either
Schur-convex or Schur-concave functions of the logarithm
of the MSE of each data stream, and we provide optimal
transceiver designs for these two classes. In addition to pro-
viding a generalization of existing DFE designs based on the
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overall MSE, these classes of functions embrace other design
criteria, such as minimizing the maximum of the individual
MSEs, minimizing a general p-norm of the MSEs, and mini-
mizing the product of the individual MSEs, which is equivalent
to maximizing the Gaussian mutual information. Moreover,
design criteria expressed in terms of the signal-to-interference-
plus-noise ratio (SINR) and bit error rate (BER) of each
stream are included in the set of objectives covered by these
classes; e.g., maximizing the harmonic mean of the SINRs,
maximizing a general p-norm of the SINRs, and minimizing
the the total BER of all streams. Interestingly, the optimal
design for both Schur-convex and Schur-convex objectives
yields a diagonal MSE matrix. Hence, communication over the
MIMO channel is decomposed into a number of uncorrelated
subchannels. For Schur-convex objectives the optimal design
results in data streams with equal MSEs. This property is not
achieved by the previously proposed (suboptimal) designs for
TH precoding systems (e.g., [5], [9]), and hence ordering the
symbols prior to interference subtraction is necessary for those
designs, as it is in multi-user schemes [13]. This ordering
is unnecessary for the optimal transceiver designs derived
herein. Another property of our optimal design for Schur-
convex objectives is that it simultaneously minimizes the total
MSE, minimizes the average bit error rate, and maximizes the
Gaussian mutual information. This property is not achieved by
the optimal linear transceiver. For any Schur-convex objective,
our optimal design yields an objective value that is superior
to the corresponding optimal objective value for a linear
transceiver. For Schur-concave objectives, the optimal DFE
design results in linear equalization and optimal TH precoding
design results in linear precoding. From a broader prospective,
the proposed framework can be viewed as a counterpart for
the design of DFE-based and TH-precoding-based transceivers
of the unified framework for the design of linear transceivers
in [2].

Our notation is as follows: Boldface type is used to denote
vectors and matrices ; ai denotes the ith element of the vector
a, Aij denotes the element at the intersection of the ith row
and jth column of the matrix A; and AH denotes the conjugate
transpose of A. The terms tr(A), det(A), and ‖A‖F denote
the trace, determinant and Frobenius norm of A, respectively.
The notation Diag(x) denotes the diagonal matrix whose
elements are the elements of x.

II. TWO SYSTEM MODELS

We consider a generic MIMO communication system de-
scribed by the channel matrix H ∈ C

nr×nt , e.g., [14], and
we denote by K the number of data streams transmitted
simultaneously over the channel. We will consider the de-
sign of two communication architectures: systems with linear
precoding (pre-equalization) at the transmitter and DFE at the
receiver; and systems with Tomlinson-Harashima precoding at
the transmitter and linear equalization at the receiver. We will
assume that full channel state information (CSI) is available at
both the transmitter and the receiver. However, the framework
developed herein has recently been extended to scenarios with
limited CSI at the transmitter; see [15].

A. Decision Feedback Equalization

As shown in the DFE model in Fig. 1, the vector s ∈ C
K

that contains the current data symbol of each stream is
linearly precoded by the matrix P ∈ Cnt×K to generate the
transmitted vector

x = Ps, (1)

where we assume, without loss of generality, that E{ssH} = I.
Hence, the average transmitted power constraint can be written
as Es{xHx} = tr(PHP) ≤ Ptotal. The received vector y is

y = HPs + n, (2)

where n is the vector of additive noise samples which is as-
sumed to have zero-mean and a covariance matrix E{nnH} =
Rn. As shown in Fig. 1, the DFE is implemented using a
feedforward matrix G ∈ CK×nr and a feedback matrix filter
B ∈ CK×K . In this scenario, the detection of the kth symbol
is preceded by subtracting the effect of previously decoded
symbols. Assuming correct previous decisions, the input to
the quantizer, ŝ, can be written as (e.g., [6])

ŝDFE = (GHP− B)s + Gn, (3)

where B is a strictly lower triangular matrix.1 Using the error
signal e = ŝDFE − s, we can define the Mean Square Error
matrix,

E = Es{eeH} = CCH − CPHHHGH − GHPCH

+ GHPPHHHGH + GRnGH , (4)

where C = I + B is a unit diagonal lower triangular matrix.

B. Tomlinson-Harashima Precoding

As shown in Fig. 2(a), in a TH precoding system the
transmitter performs successive interference pre-subtraction
and precoding using the strictly lower triangular matrix B
and the precoding matrix P, respectively. We assume that the
elements of s are chosen from a square QAM constellation
S with cardinality M and that Es{ssH} = I. The Voronoi
region, V , of this constellation is a square whose side length
is D. Following pre-subtraction of the effect of previously
precoded symbols, the transmitter uses the modulo operation
so that the symbols of v lie within the boundaries of V . The
effect of the modulo operation is equivalent to the addition of
ik = ire

k D + j iimag
k D to sk, where ire

k , iimag
k ∈ Z. Using this

observation, we obtain the linearized model of the transmitter
shown in Fig. 2(b), e.g., [9], in which

v = (I + B)−1u = C−1u, (5)

where u = i+s is the modified data symbol and C = I+B. As
a result of the modulo operation, the elements of v are almost
uncorrelated and uniformly distributed over the Voronoi region
V [9, Th. 3.1]. Therefore, the symbols of v will have slightly
higher average energy than the input symbols s. This slight
increase in the average energy is termed precoding loss [9]. For
example, for square M -ary QAM we have σ2

v = E{|vk|2} =

1In general, the estimator in (3) is biased, but the effect of this bias can be
mitigated by scaling the decision regions of the quantizer [16]. At operating
points at which one can reasonably assume correct previous decisions, the
effect of the bias is typically small [16].
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Fig. 1. MIMO transceiver using Decision Feedback Equalization.
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Fig. 2. (a) MIMO transceiver with Tomlinson-Harashima precoding (b) Equivalent linear transmitter model for Tomlinson-Harashima precoding system

M
M−1E{|sk|2} for all k except the first one [9]. For moderate
to large values of M this power increase can be neglected and
the approximation E{vvH} = I is often used; e.g., [5], [10]. If
we assume negligible precoding loss, the average transmitted
power constraint can be written as Ev{xHx} = tr(PHP) ≤
Ptotal.

The vector of received signals in a TH precoded system can
be written as

y = HPC−1u + n, (6)

where n is the vector of additive noise which is assumed to
have zero-mean and a covariance matrix E{nnH} = Rn. At
the receiver, the feedforward processing matrix G is used to
obtain an estimate û = GHPC−1u + Gn of the modified
data symbols u. Following this linear receive processing step,
the modulo operation is used to obtain ŝTHP by eliminating
the effect of the periodic extension of the constellation caused
by the integer vector i. In terms of the modified data symbols,
the error signal

e = û − u = GHPv + GHn− Cv (7)

can be used to define a Mean Square Error matrix

E = Ev{eeH} = CCH − CPHHHGH − GHPCH

+ GHPPHHHGH + GRnGH . (8)

Assuming negligible precoding loss and that the vector i is
eliminated by the receiver modulo operation (which occurs
with high probability, even at reasonably low SNRs), the error
signal in (7) is equivalent to ŝTHP−s. Hence, the mean square
error matrix, E, of the estimate ŝTHP of the TH precoding
model is the same as that of the estimate ŝDFE of the DFE

model under the assumption of correct previous decisions in
the DFE.

C. General Model

From (4) and (8), we observe that the MSE matrix of both
systems can be rewritten as:

E = CCH − CPHHHGH − GHPCH + GRyGH , (9)

where Ry = HPPHHH + Rn. It can also be observed that
linear transceivers are a special subclass of both system models
with the feedback matrix B = 0 (or, equivalently, C = I); see
Figs 1 and 2. Our objective is to jointly design the matrices
G,C and P according to criteria that are functions of E,
subject to a constraint on the average transmitted power.

III. OPTIMAL FEEDFORWARD AND FEEDBACK MATRICES

We will consider the joint design of the transceiver matrices
G,C and P so as to optimize system design criteria that
are expressed as (increasing) functions of the (logarithm of
the) MSE of each individual data stream, Eii, subject to
the transmitted power constraint tr(PHP) ≤ Ptotal. We will
adopt a three-step design approach. First, an expression for
the optimal feedforward matrix G will be found as a function
of C and P. Second, using the expression for the optimal G,
an expression for the optimal C will be found as a function
of P. Finally, using the obtained expressions for the optimal
G and C, we will design the optimal precoder P.
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A. Optimal feedforward matrix G

For given C and P, the MSE of the ith data stream, Eii,
is a convex quadratic function of the ith row of G, and is
independent of other rows. Therefore, the rows of G can be
independently optimized to minimize the individual MSEs,
and the resulting G is optimal for any transceiver objective
that is an increasing function of the individual MSEs. (A
similar property was observed in [2] for linear transceivers.)
Since G is unconstrained and the MSE of the ith data stream is
a smooth convex function of the ith row of G, we can obtain
an expression for optimal G by setting the gradient of Eii

with respect to the ith row of G to zero. Hence, the optimal
G can be written as

G = CPHHHR−1
y . (10)

Using this expression, the MSE matrix for a system with the
optimal G can be written as:

E = C(I + PHHHR−1
n HP)−1CH = CMCH , (11)

where the matrix inversion lemma has been used, and M =
(I + PHHHR−1

n HP)−1.

B. Optimal feedback matrix B

From (11) we observe that the MSE of each data stream,
Eii, is a convex quadratic function of the ith row of C = I+B
and is independent of the other rows. Using a similar argument
to that for G above, the matrix C whose rows independently
minimize the individual MSEs is optimal for the transceiver
objectives that we will consider. However, C is constrained to
be a unit diagonal lower triangular matrix and these constraints
must be incorporated in the design. To do so, we observe
that the matrix C that minimizes the individual MSEs can
be obtained by minimizing any convex combination of Eii.
By choosing that convex combination to be the sum, our
goal reduces to minimizing tr(CMCH) subject to C being
unit diagonal lower triangular matrix. Using the Cholesky
decomposition

M = LLH , (12)

where L is a lower triangular matrix with positive real diagonal
elements, we can rewrite the objective as tr(CMCH) =
‖CL‖2

F , where the product CL is a positive definite lower
triangular matrix [17]. Let λ1(CL) ≥ . . . ≥ λK(CL) and
σ1(CL) ≥ . . . ≥ σK(CL) denote the ordered eigenvalues
and singular values, respectively, of the matrix CL. Then the
unit diagonal lower triangular C that minimizes tr(CMCH)
can be obtained using the following lower bound,

‖CL‖2
F =

K∑
i=1

σ2
i (CL) ≥

K∑
i=1

λ2
i (CL) (13)

=
K∑

i=1

[CL]2ii =
K∑

i=1

L2
ii, (14)

where the bound in (13) is obtained by applying Weyl’s
inequality [18], and (14) follows from the fact that CL is
lower triangular and C is unit diagonal. The expression on
the right hand side of (14) is a lower bound on ‖CL‖2

F that
is independent of C. Furthermore, the inequality in (13) is

satisfied with equality when the matrix is normal [18]. Since
our matrix CL is a triangular matrix, it can only be normal
if it is diagonal [17, pp 103]. Therefore, the matrix C that
attains the lower bound in (14), and hence is optimal, is

C = Diag (L11, . . . ,LKK)L−1. (15)

Using this optimal C, the MSE matrix can be rewritten as

E = Diag
(
L2

11, . . . ,L
2
KK

)
. (16)

We observe that for any given precoding matrix P, the optimal
feedforward and feedback matrices will yield a diagonal MSE
matrix, with the individual MSEs being Eii = L2

ii.

C. Optimality in the sense of maximizing individual SINRs

For any given channel and precoder, the minimum MSE de-
sign of the matrices G and B for a DFE system, is also optimal
in sense of maximizing the signal-to-interference-plus-noise
(SINR) of each stream [19]–[21]. Using this optimal minimum
MSE design of the feedforward and feedback matrices, the
SINR of the ith stream is given by [19], [22]

SINRi =
(
1/Eii

) − 1. (17)

Under the assumptions stated in Section II, the estimate vector
ŝTHP has the same covariance matrix as the vector ŝDFE at the
input to the quantizer in the DFE system. Hence, the individual
SINRs for both systems are the same for any given input
covariance matrix, E{ssH}, and noise covariance matrix, Rn.
An analogous relation between SINRi and Eii holds under a
zero-forcing constraint for both the DFE model (e.g., [22]),
and the TH precoding model under similar assumptions to
those stated in Section II; e.g., [10]. (Similar relations also
hold in the multiuser case; e.g., [23].) Since linear precoding
is a special subclass of both models when B = 0, the same
relation between SINRi and Ei holds for minimum MSE
design of the receiver matrix G; e.g., [2]. Using the expression
for the individually minimized MSEs in (16), the individually
maximized SINR of each data stream is given by

SINRi =
(
1/L2

ii

) − 1. (18)

IV. DESIGN OF THE PRECODING MATRIX: PRELIMINARIES

Given the expressions for the optimal G and C, the re-
maining step is to design a precoding matrix P to optimize
design criteria that are expressed as functions of the individual
MSE of each stream, L2

ii. We will first derive two inequalities
involving Lii that will enable us to characterize the optimal
precoder. These inequalities will depend on the concepts of
multiplicative and additive majorization [24].

A. A Multiplicative Majorization Inequality

The first inequality is derived using the concept of multi-
plicative majorization [18], [21], [24].

Definition 1 (Multiplicative Majorization): For a vector
a ∈ R

K , let a[1], . . . , a[K] denote the re-ordering of the el-
ements of a in a non-decreasing order; i.e., a[1] ≥ . . . ≥ a[K].
Let R+ denote the set of positive real numbers, and let
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a,b ∈ RK
+ . The vector b is said to multiplicatively majorize

a, a ≺× b, if

j∏
i=1

a[i] ≤
j∏

i=1

b[i] for j = 1, . . . , K − 1, (19a)

K∏
i=1

a[i] =
K∏

i=1

b[i]. (19b)

�
An important example of the multiplicative majorization is

the relation between the eigenvalues and singular values of a
square matrix, and is given by the following lemma.

Lemma 1 (Weyl [18]): Let A ∈ CK×K and let λi(A)
and σi(A) denote the eigenvalues and singular values of A,
respectively. Then we have

[|λ1(A)|2, . . . , |λK(A)|2] ≺×[
σ2

1(A), . . . , σ2
K(A)

]
. If A is normal, then |λi(A)| =

σi(A). �
Applying the above lemma to the positive definite lower

triangular matrix L, we obtain
[
L2

11, . . . ,L
2
KK

] ≺×
[
σ2

1(L), . . . , σ2
K(L)

]
. (20)

B. An Additive Majorization Inequality

The second inequality involves the more common notion of
additive majorization [24].

Definition 2 (Additive Majorization): Let a, b ∈ RK . The
vector b is said to majorize a, a ≺ b, if

j∑
i=1

a[i] ≤
j∑

i=1

b[i] for j = 1, . . . , K − 1, (21a)

K∑
i=1

a[i] =
K∑

i=1

b[i]. (21b)

�
We observe that if elements of a and b are positive, then

a ≺× b ⇔ log(a) ≺ log(b). Consequently, (20) can be
written as:

l ≺ m, (22)

where l = [logL2
11, . . . , logL2

KK ] and m =
[log σ2

1(L), . . . , log σ2
K(L)].

To derive the second inequality, we will use the following
consequence of additive majorization: Any vector a ∈ RK

majorizes its mean vector a, whose elements are all equal to
the mean; i.e., ai = 1

K

∑K
i=1 ai. That is, a ≺ a. Now, since

M = LLH , we know that
∏K

i=1 L2
ii = det(LLH) = det(M).

As a result, we have
∑K

i=1 li = log det(M) and hence

l ≺ l, (23)

where li = 1
K log det(M).

C. Schur-convex and Schur-concave functions

The proposed designs will be based on the following classes
of functions [24].

Definition 3 (Schur-convex and Schur-concave functions):
A real-valued function f(x) defined on a subset A of RK is
said to be Schur-convex if a ≺ b on A ⇒ f(a) ≤ f(b), and

is said to be Schur-concave if a ≺ b on A ⇒ f(a) ≥ f(b).
�

In particular, we will consider communication objectives
that can be expressed as the minimization of increasing func-
tions of the MSEs of each data stream, g(L2

11, . . . ,L
2
KK) =

g(el1 , . . . , elK ) = g(el), that are either Schur-convex or
Schur-concave functions of l.

V. OPTIMAL PRECODING MATRIX: SCHUR-CONVEX

OBJECTIVES

In this section, we will present a closed-form expression for
the optimal precoding matrix P for the class of Schur-convex
objectives. We will also study the properties of the optimal
solution and compare it to optimal linear transceiver designs.
Finally, we will present examples of design objectives g(el)
that are Schur-convex functions of l.

A. Optimal Precoding Matrix

If g(el) is a Schur-convex function of l, then from (23)
we have that g(el) ≤ g(el), and that equality is obtained
if the elements of l are equal. Our approach to finding the
optimal precoder is to characterize the family of procoders
that minimize the lower bound g(el) subject to the power
constraint, and then to show that within this family there is a
precoder that results in all of the elements of l being equal,
and hence attains the minimized lower bound.

Since the objective is an increasing function of the indi-
vidual MSEs, and since li = 1

K log det(M), where M was
defined following (11), the problem of minimizing the lower
bound subject to the power constraint can be formulated as:

max
P

log det(I + σ2PHHHR−1
n HP) (24a)

subject to tr(PHP) ≤ Ptotal. (24b)

This formulation is equivalent to maximizing the Gaussian
mutual information, and hence the family of optimal precoders
is obtained using a standard water-filling algorithm [25]. To
state this family, we use the eigenvalue decomposition

RH = HHR−1
n H = UHΛHUH

H, (25)

where ΛH = Diag(λH,1, . . .), and λH,i are eigenvalues of
RH in descending order. In the water-filling algorithm, power
is allocated to Kwf eigenvalues of RH, where Kwf is the
maximum integer j satisfying (Ptotal +

∑j
i=1 λ−1

H,i) ≥ j/λH,j ,
[25]. If we define K̂ = min(Kwf, K), the family of optimal
precoders can be written as

P = UH,1Φ̂V = UH,1[Φ 0]V, (26)

where UH,1 ∈ CNt×K̂ contains the eigenvectors of RH

corresponding to the largest K̂ eigenvalues, V ∈ C
K×K is

a unitary matrix degree of freedom, and the diagonal matrix
Φ is

Φii = µ − 1/λH,i, (27)

where the “water” level µ is given by 1
K̂

(P +
∑K̂

i=1 λ−1
H,i).
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To complete the design of P, we need to select the unitary
matrix V in (26) so that the minimized lower bound is at-
tained; i.e., so that the Cholesky decomposition of M = LLH

yields an L factor with equal diagonal elements. Using (26),

M =
(
VH(I + Φ̂T ΛH,1Φ̂)−1/2

) (
(I + Φ̂T ΛH,1Φ̂)−1/2V

)

= LLH = RHR = (QR)H(QR), (28)

where ΛH,1 is the diagonal matrix containing the largest
K̂ eigenvalues of RH, and Q is a matrix with orthonormal
columns. Hence, finding V is equivalent to finding a V such
that QR decomposition of (I + Φ̂T ΛH,1Φ̂)−1/2V has an R-
factor with equal diagonal. This problem was solved in [7]
and V can be obtained by applying the algorithm in [7] to the
matrix (I + Φ̂T ΛH,1Φ̂)−1/2; see also [6], [26], [27].

B. Properties of the optimal design

In this section we describe some interesting properties of
the optimal transceiver design for Schur-convex objectives.

1) Independence of the optimal transceiver design from the
design objective g(eli): We observe that the above derivation
of the optimal precoder design is independent of the actual
design objective, g(el). (A similar property holds for linear
transceiver design, but with objectives that are Schur-convex
functions of the individual MSEs themselves.) Therefore, the
desirable properties of the DFE transceiver that minimizes the
total MSE generalize to other Schur-convex objectives for both
DFE and TH models. For example, the DFE transceiver that
minimizes the total MSE has asymptotically the same symbol
error rate as the transceiver that employs the optimal precoder
with maximum likelihood detection [27]. This property is now
applicable to all DFE and TH transceivers with Schur-convex
objectives.

2) For any Schur-convex objective g(eli), the optimal
transceiver is information lossless: Since maximizing the
Gaussian mutual information is a Schur-convex objective, it
follows that the optimal design for any Schur-convex objective
is information lossless, in the sense that optimizing the chosen
objective does not incur any reduction of the Gaussian mutual
information. This result generalizes the information lossless
property of MMSE-DFE receivers (e.g., [3], [20]), and that
of minimum MSE DFE-based transceivers [6], to designs
for DFE and TH transceivers with an arbitrary Schur-convex
objective, g(el). This property does not hold in general for the
linear transceiver designs because the precoder that maximizes
the Gaussian mutual information does not necessarily optimize
other criteria.

3) Relation to linear transceiver designs: Using the ma-
jorization results in (22) and (23), we can show the following
interesting result for any Schur-convex objective g(el).

Proposition 1: For design criteria with a Schur-convex
objective g(el), the optimal THP or DFE design yields a
lower bound on the objective value obtained by any linear
transceiver. �

Proof: For any linear transceiver, C = I. It follows from
(15) that L is diagonal and hence L2

ii = σ2
i (L), or equivalently

l = m. Since the optimal THP or DFE transceiver corresponds
to l = l and we have l ≺ m, it follows that g(l) ≤ g(m), for
any Schur-convex objective g(·).

This result shows that the optimal DFE or THP transceiver
for any Schur-convex objective g(el) will yield an objective
value that is less than or equal to the objective value achieved
by the optimal linear transceiver for the same objective.
Furthermore, a stronger results can be obtained by considering
the subclass of strictly Schur-convex objectives. For this class
of objectives, f(a) < f(b), whenever a ≺ b and a is not a
permutation of b. Since the optimal transceiver corresponds
to l = l, and any linear transceiver corresponds to l = m, it
follows from l ≺ m that g(el) < g(em), for every strictly
Schur-convex function g(·) whenever m is not equal to a
permutation of l. Since all elements of l are equal, it follows
that g(el) < g(em) whenever l �= m. The case l = m
corresponds to the optimal design of L being a diagonal matrix
with equal diagonal elements; i.e., a scaled identity matrix.
This case can arise from water-filling over K ≤ Kwf equal
eigenvalues of the matrix RH.

C. Examples of Schur-convex objectives

In this section we present examples of design objectives
that are Schur-convex functions of l, the vector of logarithms
of the individual MSEs. (Sketches of the proofs are provided
in Appendix A.) Before we do so, we point out that by using
the composition properties of Schur-convex functions [24] one
can prove the following result.

Lemma 2: Let y = el. If g(y) is Schur-convex in y, then
g(el) is Schur-convex in l.
Using this lemma and the results in [2], functions such as the
total MSE and the average BER can be shown to be to Schur-
convex functions of l. However, by analyzing g(el) directly,
we will obtain stronger results. For example, we will show
that the total MSE is strictly Schur-convex in l. (It is not
strictly Schur-convex in the MSEs themselves.) We will also
show that the average BER of certain constellations, including
16-QAM, is a Schur-convex function of l for the entire range
of the MSE, whereas it is a Schur-convex function of the
MSEs only for limited ranges of the MSE [2]. In addition, by
taking the direct approach we will be able to show that several
objectives that are not Schur-convex functions of the MSEs are
Schur-convex functions of the logarithm of the MSEs; e.g., the
Gaussian mutual information and the geometric mean of the
SINRs.

1) Minimization of the total MSE: Minimization of total
MSE (or the arithmetic mean of the MSEs) corresponds to
minimization of

g(el) =
K∑

i=1

eli , (29)

which is a strictly Schur-convex function of l. Hence, the
optimal precoder is given by the closed-form expression
derived in Section V-A. For the DFE model, transceiver design
based on minimization of the total MSE was considered in [6],
and the solution therein is, as expected, the same as that in
Section V-A. For the TH precoding model, a design approach
based on a bound on the total MSE was presented in [5], but
that approach does not necessarily minimize the total MSE.
Furthermore, the TH designs in [9], [10] do not exploit all
the available degrees of design freedom. Using the approach
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presented in this section, we obtain a jointly optimal design
for TH precoding model for the total MSE objective.

2) Minimization of product of MSEs and maximization of
Gaussian mutual information: Given the diagonal structure
of the matrix E in (16), minimization of the product of the
MSEs (or the geometric mean of the MSEs) is equivalent
to minimization of the determinant of E. Furthermore, max-
imization of the Gaussian mutual information is equivalent
to minimization of log det(E), [3]. Therefore, these three
objectives are equivalent and correspond to minimization of

g(el) = log
K∏

i=1

eli =
K∑

i=1

li. (30)

In Appendix A, we show that g(el) is both a Schur-convex
and a Schur-concave function of l. Hence, the optimal design
in (26) is information lossless for both the DFE and TH
precoding models. (Examples of existing designs that apply
these criteria to DFE-based transceivers appear in [3], [4], [6].)
Since the expression in (30) is also Schur-concave, a design
that maximizes the Gaussian mutual information can also be
obtained using the Schur-concave approach in Section VI,
below. That approach results in a linear transceiver with
a standard water-filling power allocation [25]. (Of course,
both approaches yield the same maximized Gaussian mutual
information.)

3) Minimization of maximum MSE (Maximization of mini-
mum SINR): Minimization of the maximum MSE corresponds
to minimization of the following Schur-convex function of l

g(el) = max
1≤i≤K

(eli). (31)

According to (17), the stream with the maximum MSE is
the one with the minimum SINR. Hence, this objective is
equivalent to maximization of the minimum SINR.

4) Minimization of p-norm of MSEs: In this case, the
objective is to minimize

g(el) =
( K∑

i=1

(eli)p
)1/p

, p ≥ 1. (32)

This design criteria includes the minimization of total MSE,
p = 1, and the minimization of the maximum MSE, p = ∞,
among several other norms of the vector of MSEs of each data
stream.

5) Maximization of the harmonic mean of SINRs: In this
case, the objective is to minimize

g(el) =
K∑

i=1

1
SINRi

=
K∑

i=1

1
e−li − 1

, li < 0. (33)

6) Maximization of product of SINRs: Maximization of the
product of the SINRs (or the geometric mean of the SINRs)
can be expressed as the minimization of

g(el) = − log
K∏

i=1

(
e−li − 1

)
= −

K∑
i=1

log
(
e−li − 1

)
. (34)

7) Minimization of average BER: Assuming that each each
data stream employs the same constellation, the average BER
is given by

g(el) =
1
K

K∑
i=1

BER(SINRi) =
1
K

K∑
i=1

BER(e−li − 1), (35)

where BER(·) is the bit error rate of the chosen constellation
as function of the SINR. For many constellations, such as
M -ary QAM, the bit error rate function BER(SINR) can be
closely approximated by [28, eq. 18], [29, eq. 13]:

BER(SINR) = c2 Q(
√

c1 SINR), (36)

where c1 and c2 are constants that depend on the size of
constellation M , and Q(x) = 1√

2π

∫ ∞
x e−z2/2 dz. For BPSK

and QPSK, we have c1 = c2 = 1 and the approximation
becomes exact. In Appendix A we show that the objective
in (36) is a Schur-convex function of l for BPSK and M -
ary QAM up to M = 16, and that for higher-order QAM it
is Schur-convex under the mild constraint that the SINR is
above a small threshold. (The design of DFE-based systems
with an average BER objective was considered in [6].)

VI. OPTIMAL PRECODING MATRIX: SCHUR-CONCAVE

OBJECTIVES

A. Optimal Precoding Matrix

If g(el) is a Schur-concave function of l, then from (22) we
have g(em) ≤ g(el), and the optimal value is obtained when

Lii = σi(L). (37)

According to Lemma 1, this equality holds when L is normal
matrix. Since L is a lower triangular matrix, in order to be
normal it must be a diagonal matrix [17]. The optimal C in
that case is I, and hence the optimal feedback matrix is B =
0. That is, in the case of Schur-concave functions of l, the
optimal DFE design results in linear equalization and optimal
TH precoding design results in linear precoding.

This result shows that for Schur-concave objectives the
design problem reduces to that for the special subclass of
linear transceivers; e.g., [1], [2]. What remains is to compare
the direct linear designs with those that we have derived from
the optimization of DFE and TH transceivers with Schur-
concave objectives of the logarithm of the individual MSEs,
g(el). Using the composition properties of Schur-concave
functions [24] the following counterpart to Lemma 2 can be
established.

Lemma 3: Let y = el. If g(el) is Schur-concave in l, then
g(y) is Schur-concave in y.
A consequence of this result is that the optimal DFE or TH
transceiver design for an objective that is Schur-concave in
the logarithm of the individual MSEs is the optimal linear
transceiver for the corresponding Schur-concave function of
the individual MSEs themselves. As shown in [2], that optimal
precoder will depend on the objective. This is in contrast to the
Schur-convex designs, which are independent of the objective;
see Section V.
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B. Examples of Schur-concave objectives

We now briefly present some examples of design objectives
that are Schur-concave functions of l. (Sketches of the proofs
are provided in Appendix B.)

1) Minimization of harmonic mean of MSEs: This objective
corresponds to the minimization of

g(el) =
1∑K

i=1 e−li

. (38)

2) Maximization of p-norm of SINRs: In this case, the
objective is to minimize

g(el) = −
( K∑

i=1

(e−li − 1)p
)1/p

, p ≥ 1. (39)

3) Minimization of a subclass of weighted products of MSEs
(weighted geometric mean of MSEs): The minimization of the
weighted product of MSEs is equivalent to minimization of

g(el) = log
K∏

i=1

(
eli

)ai =
K∑

i=1

aili, (40)

where, without loss of generality, we may assume that the
MSEs are arranged in a decreasing order; i.e. l1 ≥ · · · ,≥ lK .
For this ordering, g(el) is Schur-concave whenever the weights
are in ascending order.

VII. SIMULATION STUDIES

In this section, we provide some simulation results for
systems designed using the proposed framework. We consider
systems that transmit vectors of 16-QAM symbols over an
independent Rayleigh fading channel (with perfect channel
state information at both the receiver and transmitter). The
coefficients of the Nr ×Nt channel matrix H are modelled as
being independent rotationally-symmetric complex Gaussian
random variables with zero mean and unit variance, and the
elements of the additive noise vector n are modelled as being
independent rotationally-symmetric complex Gaussian random
variables with zero mean and equal variance. For each design
we will plot the average bit error rate (BER) of the K
data streams against the signal-to-noise ratio (SNR), which
is defined as the ratio of the total average transmitted power,
E{xHx}, to the total receiver noise power, E{nHn}.

A. Validation of the design assumptions

In this section, we validate the assumptions that we made
in the development of the proposed designs. For DFE systems
we made the standard assumption that the previously detected
symbols were correctly detected, and for TH precoding sys-
tems we made the assumption of no precoding loss; see Sec-
tion II. To validate these assumptions, we consider the case of
systems optimized for Schur-convex objectives. These designs
minimize the total MSE, as well as minimizing the average
BER and maximizing the Gaussian mutual information. In
Fig. 3 we compare the actual performance of the proposed
designs to the performance that would have been achieved if
the assumptions held precisely, in the case of a system with
Nt = Nr = K = 4. In Fig. 3 the practical performance
of the proposed jointly optimal TH transceiver is very close
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Fig. 3. BERs of the optimal Schur-convex design of a DFE transceiver (DFE-
SConvex), and a TH transceiver (THP-SConvex) for a system with Nt =
Nr = K = 4. Also plotted is the BER of the optimal Schur-Convex DFE
design in the absence of error propagation (DFE-SConvex-No Error Propag.),
and the BER of the optimal Schur-Convex TH design with no precoding loss
(THP-SConvex-No Precoding Loss).

to that of a system that assumes no precoding loss, and the
impact of the standard assumption of correct decisions in a
DFE system is quite mild, especially at high SNRs. Indeed,
the four curves coalesce at high SNRs. The slight advantage
of the TH transceiver in Fig. 3 over the DFE transceiver can
be attributed to the fact that interference subtraction at the
transmitter is, inherently, free from error propagation.

B. Comparisons with linear transceivers

In this section, we compare the performance of the pro-
posed (jointly optimal) DFE and TH transceiver designs to
that of (jointly-optimized) linear transceivers. We compare
the performance of the optimal Schur-convex design for the
DFE and TH transceivers, which simultaneously minimizes
the total MSE, minimizes the average BER and maximizes
the Gaussian mutual information, with that of the (different)
optimal linear transceivers that: minimize the total MSE, e.g.,
[1]; minimize the average BER [2], [30]; and maximize the
Gaussian mutual information, e.g., [2], [25]. We compare the
performance of these five methods in an Nt = Nr = K = 4
scenario in Fig. 4. By comparing the curves for the DFE
and TH transceivers with that of the minimum BER linear
transceiver, one can quantify the statement in Proposition 1
that for Schur-convex design objectives, the DFE and TH
transceivers provide provably better performance than the
corresponding linear transceiver.

C. Comparisons with other designs for interference (pre-
)subtraction transceivers

In this section, we compare the performance of the proposed
jointly optimal DFE and TH transceiver designs to that of
some existing suboptimal designs for systems that employ
MMSE interference (pre-)subtraction. In particular, we will
provide comparisons to systems with an identity precoder
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Fig. 4. BERs of the optimal Schur-convex designs of DFE (DFE-SConvex)
and TH (THP-SConvex) and the optimal linear transceivers: minimum MSE
(Linear-MMSE) e.g., [1], minimum average BER (Linear-Minimum BER)
[2], [30], and maximum mutual information (Linear-Det(E)) e.g., [2], [25],
for a system with Nt = Nr = K = 4.

at the transmitter and an MMSE-DFE receiver with the
‘BLAST’ [31] detection ordering [9], [32], or an unordered
MMSE-DFE receiver. We will also provide comparisons with
the performance of the MMSE-TH transceiver design in
[9], with both BLAST ordering and the natural ordering.
We compare the performance of these six methods in an
Nt = Nr = K = 4 scenario in Fig. 5, and in an Nt = K = 4,
Nr = 5 scenario in Fig. 6. These comparisons are appropriate
because the MMSE-DFE approach in [9], [32] and the MMSE-
TH design in [9] can be represented by special cases of our
system model in which the precoder P is restricted to be
a permutation matrix. The significantly lower BERs of the
proposed designs demonstrate that the exploitation of all the
available degrees of design freedom in the proposed approach
can have a substantial impact on performance. Moreover,
the permutation-based approaches in [9], [32] result in data
streams with different MSEs (and SINRs), and hence different
ordering algorithms are required for different performance
objectives. For example, for error performance criteria the
BLAST ordering [31] is appropriate, as it attempts to max-
imize the SINR of the weakest data stream, but maximizing
the Gaussian mutual information requires a different ordering
[33]. In contrast to these permutation-based approaches, the
proposed approach exploits all the degrees of design freedom
in the system and results in data streams with equal SINRs,
and hence no ordering algorithm is necessary. It is worth
pointing out that while precoding generalizes ordering for
point-to-point DFE or TH models, in the corresponding multi-
user models ordering must be considered in conjunction with
precoder design because on the uplink the transmitters cannot
cooperate, and on the downlink the receivers cannot cooperate;
cf. [13].

VIII. CONCLUSION

We have developed a unified framework for joint transceiver
design for interference (pre-)subtraction schemes for com-
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Fig. 5. BERs of the optimal Schur-convex designs for DFE (DFE-SConvex)
and TH (THP-SConvex) transceivers and other interference (pre-)subtraction
approaches: MMSE DFE with BLAST ordering [9], [32], and MMSE DFE
with no ordering, TH transceiver MMSE design in [9] with BLAST ordering
and with no ordering, for a system with Nt = Nr = K = 4.

munication over generic point-to-point MIMO channels, and
we have obtained optimal designs for two broad classes of
communication objectives, namely those that are Schur-convex
and Schur-concave functions of the logarithms of the (individ-
ual) MSEs of each data stream. For Schur-convex objectives,
the optimal transceiver results in equal individual MSEs,
and simultaneously minimizes the total MSE, minimizes the
average bit error rate, and maximizes the Gaussian mutual
information. Furthermore, that design yields objective values
that are superior to the corresponding optimal objective value
for a linear transceiver. For the class Schur-concave objectives,
the optimal DFE design results in linear equalization and the
optimal TH precoding design results in linear precoding.

APPENDIX A
PROOFS OF SCHUR-CONVEX OBJECTIVES

a) Minimization of total MSE: The objective here is to
minimize g(el) =

∑K
i=1 eli , which has the form of g(el) =∑K

i=1 f(li) for the strictly convex function f(xi) = exi .
Hence, g(el) is a strictly Schur-convex function of l, [24,
p. 64].

b) Minimization of product of MSEs: This objective can
be written as: minimize g(el) =

∑K
i=1 li. Since this is the

sum of each li, it is both a Schur-convex and a Schur-concave
function of l, [24].

c) Minimization of p-norm of MSEs: In this case, the
objective is to minimize g(el) =

(∑K
i=1(e

li)p
)1/p

, p ≥ 1,
which has the form g(el) = h(f(l1), . . . , f(lK)), where
h(x1, . . . ,xK) =

(∑K
i=1 |xi|p

)1/p
is Schur-convex and is an

increasing function of each argument, and f(x) = ex is a
convex function. If follows from the composition properties
of Schur-convex functions [24] that g(el) is a Schur-convex
function. Although minimization of the total MSE is a special
case of the p-norm minimization for p = 1, the proof used
for the total MSE case provides the stronger result of strict
Schur-convexity.
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Fig. 6. BERs of the optimal Schur-convex designs for DFE (DFE-SConvex)
and TH (THP-SConvex) transceivers and other interference (pre-)subtraction
approaches: MMSE DFE with BLAST ordering [9], [32], and MMSE DFE
with no ordering, TH transceiver MMSE design in [9] with BLAST ordering
and with no ordering, for a system with Nt = K = 4, Nr = 5.

d) Maximization of product of SINRs: This objective can
be written as: minimize g(el) = −∑K

i=1 log
(
e−li −1

)
. Since

−g(el) is the sum of the concave function f(x) = log(e−x−1)
applied to each li, −g(el) is a Schur-concave function of l [24,
p. 64], and it follows that g(el) is Schur-convex.

e) Maximization of harmonic mean of SINRs: In this
case the objective is to minimize g(el) =

∑K
i=1

1
SINRi

=∑K
i=1

1
e−li−1

, li < 0. Since each MSE satisfies 0 ≤ eli < 1,
we will restrict our proof to the case of li < 0. We
observe that g(el) is a sum of the strictly convex function
f(x) = 1/(e−x − 1), for x < 0, applied to each li. Hence,
g(el) is a strictly Schur-convex function.

f) Minimization of average BER: Assuming that each
each data stream employs the same constellation, the average
BER is g(el) = 1

K

∑K
i=1 BER(SINRi), where BER(·) is the

bit error rate of the chosen constellation as a function of the
SINR, and SINRi = e−li − 1. As pointed out in Section V-C,
for many constellations the bit error rate function BER(SINR)
can be closely approximated by

BER(SINR) = c2 Q(
√

c1 SINR), (41)

where c1 and c2 are constants that depend on the constellation.
If each BER(e−li − 1) is a (strictly) convex function of li,
it follows that their sum g(el) is (strictly) Schur-convex. To
show the convexity of BER(e−li − 1), we obtain the second
derivative of (41) with respect to li:

d2 BER

d l2i
=

c2 c
1/2
1 e−

c1
2 (y−1−1)

4
√

2π y3/2 (1 − y)3/2

(
2y2−(c1+1)y+c1

)
, (42)

where y = eli . Since the first term is non-negative for
all values of the MSE, the sign of the second derivative is
determined by the quadratic term

(
2y2 − (c1 + 1)y + c1

)
. To

check the sign of this term, we have to consider two cases:

• For values of the constellation constant c1 such that the
discriminant of the quadratic equation is negative, the
second derivative is non-negative for all the range of the

MSE. Hence, the expression for BER in (41) is convex
function of li. This case includes BPSK and M -ary QAM
with M ≤ 16.

• For values of the constellation constant c1 such that
discriminant of the quadratic equation is non-negative,
the second derivative is non-negative for the range of
MSE y ≤ yr, where yr =

(
c1 + 1 − √

c2
1 − 6c1 + 1

)
/4

is a root of the quadratic equation. In this case, which
applies to M -ary constellations with M ≥ 16, the BER
expression in (41) will be convex for all SINRs above
the small threshold 1/yr − 1.

APPENDIX B
PROOFS OF SCHUR-CONCAVE OBJECTIVES

a) Minimization of harmonic mean of MSEs: This cor-
responds to the minimization of g(el) = 1P

K
i=1 e−li

, where the

denominator is the sum of a convex function f(x) = e−x

applied to each li. Hence, the denominator is a Schur-convex
function [24, p. 64]. Since g(el) is a decreasing function of a
Schur-convex function, it follows that g(el) is Schur-concave
[24, p. 61].

b) Maximization of p-norm of SINRs: In this case,
the objective is to minimize: g(el) = −( ∑K

i=1(e
−li −

1)p
)1/p

, p ≥ 1. We observe that −g(el) has the form
g(el) = h(f(l1), . . . , f(lK)), where h(x1, . . . ,xK) =(∑K

i=1 |xi|p
)1/p

is Schur-convex and is an increasing function
of each argument [24], and that f(x) = e−x − 1 is a convex
function. It follows from composition rules of Schur-convex
functions [24, p. 63] that −g(el) is a Schur-convex function.
Hence, g(el) is Schur-concave.

c) Minimization of a subclass of weighted product of
MSEs: Minimization of the weighted product of the indi-
vidual MSEs (or, equivalently, the weighted geometric mean
of the MSEs) corresponds to minimization of the objective
g(el) = log

∏K
i=1

(
eli

)ai =
∑K

i=1 aili. Assuming that li are
in decreasing order, then g(el) is a Schur-concave function
when the weights ai are in ascending order [2], [24]. A special
case of this objective is the unweighted product, for which
all ai = 1. That function is both Schur-concave and Schur-
convex; see Appendix A.
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