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Abstract—We consider the design of linear precoders (beam-
formers) for broadcast channels with Quality of Service (QoS)
constraints for each user, in scenarios with uncertain channel
state information (CSI) at the transmitter. We consider a deter-
ministically-bounded model for the channel uncertainty of each
user, and our goal is to design a robust precoder that minimizes
the total transmission power required to satisfy the users’ QoS
constraints for all channels within a specified uncertainty region
around the transmitter’s estimate of each user’s channel. Since
this problem is not known to be computationally tractable, we
will derive three conservative design approaches that yield convex
and computationally-efficient restrictions of the original design
problem. The three approaches yield semidefinite program (SDP)
formulations that offer different trade-offs between the degree of
conservatism and the size of the SDP. We will also show how these
conservative approaches can be used to derive efficiently-solvable
quasi-convex restrictions of some related design problems, in-
cluding the robust counterpart to the problem of maximizing the
minimum signal-to-interference-plus-noise-ratio (SINR) subject
to a given power constraint. Our simulation results indicate that
in the presence of uncertain CSI the proposed approaches can
satisfy the users’ QoS requirements for a significantly larger set of
uncertainties than existing methods, and require less transmission
power to do so.

Index Terms—Broadcast channel, channel uncertainty, down-
link beamforming, quality-of-service, robust optimization.

I. INTRODUCTION

EMPLOYING multiple antennas at the transmitter (base sta-
tion) of a wireless downlink offers the potential for a sub-

stantial improvement in the quality of service (QoS) that the
base station can offer to the assigned users. This potential can be
realized by precoding the data symbols intended for each user in
a manner that mitigates the multiuser interference at the (non-
cooperating) receivers, and hence improves the fidelity of the
received signals. The transmitter’s ability to mitigate interfer-
ence at the receivers is dependent on the availability of (accu-
rate) channel state information (CSI) for all the users’ channels.
For scenarios in which one can assume perfect CSI is available
at the transmitter, the problem of designing a linear precoder1
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1Since we will focus on scenarios in which each user has a single antenna,
linear precoding is analogous to downlink beamforming.

that minimizes the transmitted power required to satisfy a set of
QoS constraints specified by the users has been considered in
[1]–[6].

In practice, the CSI that is available at the transmitter is sub-
ject to uncertainties that arise from a variety of sources, such
as estimation error, channel quantization and short channel co-
herence time, and downlink precoder design methods that as-
sume perfect CSI are particularly sensitive to these uncertain-
ties; e.g., [7]. This suggests that one ought to incorporate ro-
bustness to channel uncertainty into the formulation of the pre-
coder design problem. One approach to doing so is to consider
a bounded model for the errors in the transmitter’s estimate
of the (deterministic) autocorrelation matrices of the channel
[3], [8]. This uncertainty model may be suitable for systems
with uplink-downlink reciprocity in which the transmitter can
estimate the users’ channels. We will adopt an alternative ap-
proach in which we consider a bounded model for the error
in the transmitter’s estimate of the channels. This uncertainty
model is particularly useful for systems in which users feed back
quantized channel measurements to the transmitter, as knowl-
edge of the quantization codebooks can be used to bound the
quantization error. For this bounded channel uncertainty model,
we consider the design of a linear precoder that minimizes the
transmitted power required to ensure that each user’s QoS re-
quirement is satisfied for all channels within the specified un-
certainty region. This problem is not known to be computation-
ally tractable [9], and in order to obtain design methods that are
known to be tractable we will obtain three conservative design
approaches that yield convex and computationally-efficient re-
strictions of the original design problem.2 The three approaches
yield semidefinite program (SDP) formulations that offer dif-
ferent trade-offs between the degree of conservatism and the
size of resulting SDP.

We will also show how these conservative design approaches
can be used to obtain efficiently-solvable quasi-convex formula-
tions of certain restrictions of related design problems. In partic-
ular, we consider the problem of determining the largest uncer-
tainty region for which the QoS requirements can be satisfied for
all channels within the region using finite transmission power.
This problem is of considerable interest in scenarios in which
the channel uncertainty is dominated by the quantization error
incurred in a quantized feedback scheme. In that case, one might
wish to choose the rate of the channel quantization scheme to be
large enough (and the quantization cells small enough) for it to
be possible to design a robust precoder with finite power. We

2Since these problems are restrictions of the original problem, the transmis-
sion power of the designed precoder is larger than (or equal to) the power that
would be required if a tractable method for solving the original problem was
available.
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provide quasi-convex formulations of conservative approaches
to this problem that can be efficiently solved using a one-dimen-
sional bisection search. We also consider the robust counterpart
of the problem of maximizing the weakest user’s signal-to-in-
terference-plus-noise-ratio subject to a given power constraint
on the transmitter (e.g., [5], [6]), and we provide quasi-convex
formulations of conservative approaches to that design problem,
too. Our numerical experiments will illustrate the impact that
our proposed designs can have on a number of performance
metrics. In particular, these experiments indicate that proposed
approaches can satisfy the users’ QoS requirements for a sig-
nificantly larger set of uncertainties than existing methods, and
require less transmission power to do so.

Our notation is as follows: We will use boldface capital letters
to denote matrices, boldface lower case letters to denote vectors
and medium weight lower case letters to denote individual el-
ements; and denote the transpose and the conjugate
transpose of the matrix , respectively. The notation de-
notes the Euclidean norm of vector , while denotes the
spectral norm (maximum singular value) of the matrix , and

denotes the expectation operator. The term denotes
the trace of matrix denotes the Kronecker product of

and , and for symmetric matrices and de-
notes the fact that is positive semidefinite. The expres-
sion will denote the diagonal matrix whose diagonal
elements are the elements of . We will denote the identity ma-
trix by , and we will provide its dimension as a subscript where
that makes the formulae significantly easier to parse.

II. SYSTEM MODEL

We consider a broadcast scenario with antennas at the
transmitter which are used to send independent messages to
receivers, each of which has a single antenna. Let be
the vector of data symbols intended for each receiver. The trans-
mitter generates a vector of transmitted signals, , by
linearly precoding the vector

(1)

where is the th column of the precoding matrix , and is
the th element of . Without loss of generality, we will assume
that , and hence, the total transmitted power is
given by

(2)

At the th receiver, the received signal is given by

(3)

where is a row vector3 representing the channel
gains from the transmitting antennas to the th receiver, and
represents the zero-mean additive white noise at the th receiver,

3Although treatingh as a row vector is a mild abuse of notation, it is standard
practice.

whose variance is . We will find it convenient to use the
vector notation

(4)

where is the broadcast channel matrix whose th
row is , and the noise vector has covariance matrix

.
We consider broadcast scenarios in which each receiver has

a quality of service requirement that is specified in terms of a
lower bound on its signal-to-interference-plus-noise-ratio

(5)

This SINR constraint represents a rather general constraint on
the minimum quality of service received by the th user. In-
deed, the SINR constraint can be translated into an equivalent
constraint on the symbol error rate or the achievable data rate;
e.g., [10].

A. Precoding With QoS Constraints: Perfect CSI Case

Given perfect CSI at the transmitter, the design of a precoder
that minimizes the total transmitted power required to satisfy
the users’ QoS constraints can be stated as

(6a)

(6b)

This is a convex optimization problem in the precoding matrix
, and can be efficiently solved [1]–[6]. Indeed, if we make the

following definitions:

(7)

(8)

(9)

we can formulate (6) as the following second order cone pro-
gram (SOCP) with real variables [6]

(10a)

(10b)

(10c)

where .
The primary goal of this paper is to obtain robust counter-

parts to (10) that mitigate the impact of imperfect CSI. Before
we derive those counterparts, we would like to point out that
when has full row rank (which requires that ), the
perfect CSI problem (with finite SINR requirements) is always
feasible. (The robust counterparts will not share this property.)
Indeed, one feasible solution is to chose to be the product of
the right inverse of and a diagonal power loading matrix with
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sufficiently large loadings. In practice, however, one may wish
to constrain the transmission power in various ways, such as
constraining the average power transmitted by each individual
antenna (e.g., [11]), . Another
useful power constraint arises from the imposition of a spa-
tially-shaped bound (e.g., [12], [13]) on the transmitted power,

for all , where
, with being the “steering vector” (e.g., [14])

of the transmitter’s antenna array in the direction
is the maximum allowable power in the direction of , and
is the set of angles of interest. The later case is of particular in-
terest in cellular systems in which interference to neighboring
cells needs to be controlled, e.g., [15], [16]. Although we will
focus on robust versions of the formulation in (10) in the pres-
ence of channel uncertainty, in the Appendix we will show how
these two types of power constraints can be easily incorporated
into our robust formulations.

B. Channel Uncertainty Model

We will model the channel uncertainty using a determinis-
tically-bounded additive uncertainty set. More specifically, we
will model the th user’s channel as

(11)

where is the transmitter’s estimate of the th user’s channel,
and is the corresponding estimation error. In order to avoid
making any assumptions on the statistics of , we will merely
assume that it lies in the ball , for some given .
This model is a convenient one for systems in which the channel
state information is (vector) quantized at the receivers and fed
back to the transmitter, e.g., [7]. In particular, if the quantizer is
(almost) uniform, then the quantization cells in the interior of the
quantization region can be approximated by balls of size . A
similar bounded uncertainty model has been used in the context
of generic beamforming systems [17], [18], where it is the error
in the estimate of the steering vector that is being bounded, and
in CDMA systems [19].

By using the vector , the uncertainty
set of each channel can be described by the following (spherical)
region:

(12)

III. PRECODING WITH QOS CONSTRAINTS: UNCERTAIN CSI
CASE

Given the model for the channel uncertainty in (12), our goal
is to design a robust precoding matrix that minimizes the trans-
mitted power required to ensure that the users’ QoS require-
ments are satisfied for all channels within the uncertainty
region . Using the SOCP formulation in (10), this de-
sign problem can be formulated as the following semi-infinite
SOCP:4

(13a)

4Observe that (13c) contains an infinite number of second-order cone con-
straints, one for each h 2 U (� ).

(13b)

(13c)

For later convenience, any precoder of finite power that satisfies
(13c) will be said to provide a robust QoS guarantee.

Since is present on both the left and right hand sides of
each SOC constraint in (13c), the left and right hand sides of
(13c) vary together and share the same ellipsoidal uncertainty
region. That joint variation appears to make this problem dif-
ficult to solve, but the formal treatment of the computational
tractability of this problem remains an open problem [9], [20].
Some insight can be obtained by using a standard transforma-
tion (via the Schur Complement Theorem [21]) to write the SOC
constraint as an equivalent linear
matrix inequality (LMI) [22]

(14)

By substituting in (14), the inequality
takes the form

(15)

where the matrices and are

(16)

(17)

From (16), we observe that the uncertainty matrix belongs
to a subspace of block diagonal matrices with equal blocks.
Specifically,

(18)

Hence, the spectral norm of is . Using
(14)–(18), the robust QoS design problem in (13) can also be
formulated as the following semi-infinite robust semidefinite
program (SDP):

(19a)

(19b)

(19c)

A general instance of (19) is NP-hard for a general subspace
, [23]; see also [20] and [24]. This result and the undeter-

mined tractability of the robust SOCP in (13) suggest that in
order to obtain a robust design technique that is guaranteed to
be computationally tractable, we will need to modify the formu-
lation of (13) or (19). In the following section, we will present
three conservative design approaches that yield convex and effi-
ciently-solvable restrictions of (13) and (19). These approaches
are conservative in the sense that they guarantee that the SINR
constraints are satisfied for a larger set of channel uncertainties
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than that described in (12), and hence the resulting transmission
power is larger than (or equal to) that of an optimal solution to
(13), if such a solution could be found. The three approaches
yield SDP formulations that offer different tradeoffs between
the degree of conservatism and the size of the resulting SDP
(and hence its computational cost).

IV. CONSERVATIVE APPROACHES TO ROBUST PRECODER

DESIGN WITH QOS CONSTRAINTS

A. Robust SOCP With Independent Uncertainty

In this section, we will work directly with the robust SOCP
formulation in (13). The presence of on both the left and right
hand sides of each SOC constraint in (13c) means that these
terms vary together and share the same ellipsoidal uncertainty
region. We will obtain a conservative robust design by assuming
independent uncertainties for on the left and right hand sides
of (13c). Relaxing the common uncertainty structure in this way
will result in a tractable restriction of (13) that can be formulated
as an SDP. To obtain that SDP, we will use the following lemma
[20].

Lemma 1: Consider the robust SOCP

where the ellipsoidal uncertainty regions
and

are independent. This robust SOCP is
equivalent to the following SDP:

By writing , and
invoking Lemma 1, we obtain the following SDP formulation
of a conservative version of (13):

(22a)

(22b)

(22c)

(22d)

This problem can be efficiently solved using general purpose
implementations of interior point methods, e.g., SeDuMi [25].

B. Robust SDP With Unstructured Uncertainty

In this section and the following one, we will obtain two con-
servative robust designs from the SDP formulation in (19) of
the original design problem. The difficulty of solving (19) arises
from the particular structure that the matrix must possess.
In this section we will show that if we restrict the robust design
so that the SINR targets are to be satisfied for all
rather than just those that satisfy , then
one can obtain an efficiently-solvable problem. That is, we will
show that by replacing (19c) by

(23)

one can obtain a restriction of (19) that can be efficiently solved.
Although (23) is simpler than (19c), it still represents an in-

finite set of LMIs, one for each that satisfies .
However, by using the following lemma, which is a special case
of a more general result in [24], this semi-infinite LMI constraint
can be precisely transformed into a single LMI.

Lemma 2: Let be a symmetric matrix, and let and
be affine functions of . Then

(24)

if and only if there exists a scalar such that

By applying the result of Lemma 2 to the LMIs in (23), we
obtain the following efficiently-solvable SDP formulation for a
conservative approach to the robust precoder design problem:

(25a)

(25b)

(25c)

where and were defined in (14) and (17),
respectively, and .

C. Robust SDP With Structured Uncertainty

The efficiently-solvable conservative formulation in (25) was
obtained by relaxing the structural constraint in (19).
In this section, we will obtain a less conservative formulation of
(19) that results in an SDP that retains this structural constraint.

We begin with a definition. Given an arbitrary subspace of
matrices , let denote the following set of matrices asso-
ciated with :

(26)
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TABLE I
COMPARISON OF THE SIZE AND STRUCTURE OF VARIOUS DESIGN METHODS

For the subspace in (18), applying (26) yields

(27)

where . Although the construction of
may appear to be arbitrary, it enables us to develop an SDP
formulation of a conservative design that retains the structure

. To do so, we will use the following result, which is
a special case of a more general result in [24].

Lemma 3: Consider the following robust SDP problem:

where and are affine functions of , and the sub-
space is arbitrary. Let denote the set of matrices in (26)
associated with . An upper bound on the optimal value of this
robust SDP and a corresponding solution can be obtained by
solving the following SDP:

By applying Lemma 3 to (19), using the characterization of
in (27), it can be shown that the solution of the following

SDP generates a conservative solution to the original design
problem:

(30a)

(30b)

(30c)

where and are as defined in the previous
section, and we have exploited the fact that (30c) implies that

and hence that , which eliminates the
constraints that would have been generated by the constraint

in Lemma 3. We would like to point out that the SDP
in (25) is the special case of the SDP in (30) that is obtained
when . Therefore, the solution of (30) yields a tighter
upper bound on the minimum power required to solve the orig-
inal problem than the solution of (25).

D. Some Comparisons

As we have just pointed out, the structured robust SDP in
(30) yields a tighter upper bound on the minimum transmission
power than the unstructured SDP in (25). Furthermore, our nu-
merical experiments suggest that the unstructured SDP in (25)
provides a tighter upper bound than that obtained from the ro-
bust SOCP with independent uncertainties in (22). Given this
performance hierarchy, it is of interest to examine the relative
size and structure of each of the proposed formulations, and
that of the design problem for the case of perfect CSI; cf. (10).
We have collected this information in Table I, where the “core”
design variables are the unique elements of and the
scalar . In the robust SOCP formulation, each (unique) ele-
ment of enters all of the LMIs in (22c) and one of the LMIs
in (22d), and in the robust SDP formulations, each element of

enters all the LMIs. The additional variables in the robust
SOCP formulation are the scalars, and . Each is
involved in 2 LMIs (one from the set in (22c) and one from the
set in (22d)) and each is involved in only one. The addi-
tional variables in the unstructured robust SDP formulation are
the scalars , and each one is involved in only one LMI. In
the structured robust SDP formulation, the additional variables
take the form of the symmetric matrices , each of which is
of size and is involved in only one LMI.
In addition to the structure of the additional variables, Table I
also emphasizes the fact that the constraints in the two robust
SDP approaches have the same structure, while that of the ro-
bust SOCP approach is somewhat simpler. These observations
show that the improved bounds provided by the robust SDP ap-
proaches do incur an increase of the size of the SDP. However,
our numerical experiments in Section VI suggest that in some
applications the improved performance will justify this increase
in size.

E. Maximum Allowable Uncertainty Size

Up until this point, we have focused on problems in which
the goal has been to minimize the transmission power required
to guarantee that the SINR of each user exceeds the required
value for every channel uncertainty in the bounded set in (12).
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As mentioned in Section II, for the class of systems with full
row rank channel matrices, , the QoS requirements can al-
ways be satisfied in the absence of channel uncertainty, but this
is not the case when the transmitter’s model for the channel
is inaccurate. This fact raises the question of whether one can
determine, for a given set of channel estimates, the largest un-
certainty set for which the robust QoS guarantee can be made.
That is, find the largest value of , namely , such that (13)
[or (19)] has a finite solution. This problem is of interest in the
design of quantization codebooks for feeding back estimates of
the channel to the transmitter. In particular, one may wish to
choose the rate of the codebooks to be large enough (and the
quantization cells small enough) so that it is possible to design
a robust precoder with finite power.5 As we will point out below,
we can obtain efficiently solvable formulations for lower bounds
on by using the conservative approaches to the robust QoS
design problem.

Using the first conservative approach in Section IV-A, it can
be shown that the optimal value of the following problem is a
lower bound on :

(31a)

(31b)

(31c)

where and are as defined
in (22c) and (22d), respectively. Although similar to (22), the
above problem is not jointly convex in and , since the con-
straints (31b) and (31c) are not jointly affine. However, this
problem is quasi-convex (cf. [22]), and an optimal solution can
be efficiently found using a one-dimensional bisection search
on in which the problem solved at each step is the convex fea-
sibility problem corresponding to (31) with a fixed value for .

Using the structured robust SDP approach in Section IV-C, it
can be shown that , where is the optimal
value of the following quasi-convex optimization problem:

(32a)

(32b)

(The unstructured robust SDP approach leads to the special case
in which .) This problem can be solved using bisection
search on . Furthermore, by observing that the constraints in
(32b) can be written as

(33)

one can show that (32) is equivalent to minimizing the largest
generalized eigen value of a pair of (block diagonal) symmetric
matrices that depend affinely on the decision variables [24],

5The minimum distance between two codewords (and hence �) is bounded by
a function of the size of the codebook and the dimension of the space [26], [27].

[28]. Identifying (32) as lying within this class of problems is of
interest because efficient algorithms that exploit the structure of
the constituent matrices in (33) are available for such problems;
cf. [28], [29].

V. FAIR SINR MAXIMIZATION

In the previous section, we considered problems that required
each user to be provided with an SINR that is at least as large as a
given SINR requirement, even in the presence of uncertainty. In
this section, we consider the related problem of maximizing the
SINR of the “weakest” user subject to a transmitted power con-
straint, in scenarios with uncertain CSI. Problems of this form
are sometimes called max-min fair SINR problems; e.g., [5],
[6]. While most formulations of max-min fair SINR problems
have focussed on the case of perfect CSI, under the bounded un-
certainty model in (12) the robust max-min fair SINR problem
can be stated as6

(34a)

(34b)

(34c)

By defining and using the SOC character-
ization of the QoS constraints in (10c), this problem can be
cast as the following (semi-infinite) quasi-convex optimization
problem (see [6] for a related formulation for the case of perfect
CSI)

(35a)

(35b)

(35c)

Efficient formulations for precoders that minimize upper bounds
on (and hence maximize lower bounds on ) can be ob-
tained by applying the conservative approaches of Section IV
to (35). In particular, by applying the robust SOCP approach in
Section IV-A, one obtains the following quasi-convex problem:

(36a)

(36b)

(36c)

(36d)

where and were defined
in (22c) and (22d), respectively. This problem can be efficiently
solved by using a bisection search on in which problem
solved at each step is the convex feasibility problem generated
by (36) with a fixed value of . Similarly, the structured ro-
bust SDP approach of Section IV-C yields the following quasi-

6Although we will not discuss them here, the “per-antenna” and “shaping”
power constraints discussed in the Appendix can be easily incorporated into the
proposed framework.
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convex problem that can also be efficiently solved using a bi-
section search on

(37a)

(37b)

(37c)

VI. SIMULATION STUDIES

In this section we will compare the performance of the three
proposed approaches to robust QoS precoding, namely the
robust SOCP design (RSOCP) with independent uncertainty in
Section IV-A, the unstructured robust SDP (RSDP-Unstruct.)
in Section IV-B, and the robust SDP that preserves structure
(RSDP-Struct.) in Section IV-C. We will also provide perfor-
mance comparisons with some existing approaches, namely
the robust autocorrelation matrix approach in [3], [4] (Robust
Correl. Appr.), and the robust downlink power loading ap-
proach in [8]. The approach in [8] requires the beamforming
vectors to be specified, and we will consider two choices: the
columns of the pseudo-inverse of (Robust Power Load. 1);
and the beamforming vectors obtained by assuming that
is the actual channel and using the existing methods for QoS
precoding with perfect CSI [1]–[6] (Robust Power Load. 2).
The approaches in [3], [4] and [8] are based on uncertainty
models that are different from the one in (12), and from each
other. The approach in [3], [4] considers a model in which the
spectral norm of the error in the (deterministic) autocorrelation
matrix is bounded, and in the approach in [8]
the Frobenius norm of the error in is bounded. However,
by bounding these norms of in terms of the norm of , a
comparable uncertainty set can be generated.7 We will compare
these schemes in an environment with transmit an-
tennas and users. In our experiments, we will evaluate
performance statistics for the standard case of independent
Rayleigh fading channels in which the coefficients of the fading
channels are modeled as being independent proper complex
Gaussian random variables with zero-mean and unit variance,
and the receivers’ noise sources are modeled as zero-mean,
additive, white, and Gaussian with unit variance.

In our first experiment, we randomly generated 2000 real-
izations of the set of channel estimates and examined
the performance of each method in the presence of equal uncer-
tainty, . The QoS requirement of each user is that the
SINR is at least 10 dB. For each set of channel estimates and for
each value of we determined whether each design method is
able to generate a precoder (of finite power) that guarantees that
the SINR constraints are satisfied in the presence of the mod-

7A bound on the spectral norm of the error in the matrix C can be obtained
as follows: k(ĥ +e ) (ĥ +e )�h h k = kĥ e +e ĥ +e e k �
kĥ e k + ke ĥ k + ke e k = 2kĥ kke k + ke k . The same bound
also holds for the Frobenius norm, since the matrices on the immediate right
hand side of the inequality are all rank one. Furthermore, the uncertainty e =
� ĥ =kĥ k achieves this upper bound with equality for both norms. (See also
[30].)

Fig. 1. Percentage of channel realizations for which the robust QoS guarantee
can be made against the uncertainty size �, for a system with N = 3 and
K = 3.

eled uncertainty. In Fig. 1, we provide the percentage of the
2000 channel realizations for which each method generated a
precoder with finite power, as a function of the size of the un-
certainty. From this figure, it is clear that the RSDP approach
that preserves the structure of the uncertainty is able to provide
robust QoS guarantees for a significantly larger percentage of
the channels and for significantly larger uncertainty sets than the
other methods. The unstructured SDP approach provides a rea-
sonable degree of robustness to channel uncertainty compared
to that provided by the RSOCP approach, the robust autocorrela-
tion approach in [3], [4], and the robust power loading approach
in [8].

In our second experiment, we selected those sets of channel
estimates from the 2000 sets used in the first experiment for
which all design methods were able to provide robust QoS
guarantees for all uncertainties with . We calcu-
lated the average, over the 609 such channel environments, of
the transmitted power required to achieve these robust QoS
guarantees and we have plotted the results for different values
of in Fig. 2(a). The average transmitted power approaches
infinity for a certain value of when for one (or more) of
the channel estimates the method under consideration cannot
provide the robust QoS guarantee with finite power. The ex-
cellent performance of the structured RSDP method and the
good performance of the unstructured RSDP method that were
apparent in Fig. 1 are also apparent in Fig. 2(a). In Fig. 2(b),
we provide a detail of Fig. 2(a) in order to demonstrate the
relative difference in the performance of the RSOCP approach,
the robust autocorrelation approach in [3], [4], and the robust
power loading approach in [8].

In the third experiment, we used the 2000 randomly generated
realizations of the estimates of the channel environments from
the first experiment, and for each scenario we used the methods
in Section IV-E to find lower bounds on the value of the uncer-
tainty, , above which each design method is unable guar-
antee the SINR requirements in the presence of the modeled un-
certainty. In these experiments the size of uncertainty was the
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Fig. 2. Average of the transmitted power tr(P P), on a linear scale, versus
uncertainty size � for a system with N = 3 and K = 3. Part (b) is a detail of
part (a).

same for each user (i.e., ), and the minimum SINR
requirement of each user was 10 dB. In Fig. 3, we plot the cumu-
lative distribution function (CDF) of the lower bound on
for each method. From this figure, it is clear that the relative
performance of each method under this performance metric is
similar to that established from the first two experiments.

In the fourth experiment, we examine the performance of the
2000 randomly generated realizations of the set of channel esti-
mates in the presence of equal uncertainty,

. The SINR requirements of the three users are equal
and varied from 0 to 25 dB. For each set of channel estimates
and for each value of the required SINR we determined whether
each design method is able to generate a precoder (of finite
power) that guarantees the required SINRs. In Fig. 4, we pro-
vide a histogram of the fraction of the 2000 channel realizations
for which each method generated a precoder with finite power.
From this figure, it is clear that both robust SDP approaches are

Fig. 3. The (empirical) cumulative distribution function (CDF) of lower bounds
on � for a system with N = 3 and K = 3.

Fig. 4. Percentage of channel realizations for which the robust QoS guarantee
can be made against the required SINRs, for a system withN = 3 andK = 3.

able to provide robust QoS guarantees for a wider range of re-
quired SINRs than the other methods, with the structured SDP
approach having a significant advantage.

In the fifth experiment, we selected all the sets of channel es-
timates from the 2000 sets used in the previous experiment for
which all design methods were able to provide robust QoS guar-
antees for all SINRs less than or equal to 6 dB. We calculated the
average, over the 264 such channel environments, of the trans-
mitted power required to achieve these robust QoS guarantees.
We have plotted the equal SINR requirement of each user versus
the average transmitted power in Fig. 5. In order to assess the
additional power required to achieve robustness, we have in-
cluded the corresponding curve for the case of perfect CSI at the
transmitter; cf. [1]–[6] and (10). This figure illustrates the satu-
ration effect that channel uncertainty imposes on the growth of
the SINR of each user with the transmitted power. This effect
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Fig. 5. Maximum achievable (equal) SINRs against the average transmitted
power, for a system with N = 3 and K = 3.

was observed in [7] for nonrobust linear precoding on the MISO
downlink with quantized CSI. Fig. 5 also illustrates the role that
robust precoding can play in extending the SINR interval over
which linear growth with the transmitted power can be achieved.
This is particularly evident for the robust SDP approaches.

In the sixth experiment, we examine the performance of the
2000 randomly generated realizations of the set of channel esti-
mates in the presence of equal uncertainty,

. The SINR requirements of the three users are equal
and varied from 0 to 25 dB. For each set of channel estimates, we
determine the maximum value of the SINR, , above
which each design method is unable to guarantee the SINR re-
quirements. In Fig. 6, we plot the CDF of for each
method. From this figure, it is clear that the three proposed ap-
proaches are able to provide SINR guarantees for significantly
larger values of SINR than the robust power loading approaches
in [8] and the robust autocorrelation approach in [3], [4].

In the last experiment, we assess the degree of conservatism
of each method by studying the statistics of the actual received
SINRs for channel realizations within a given uncertainty
bound. Scenarios in which the actual SINRs are likely to be
significantly higher than the requested SINRs indicate that the
transmitter adopts a more conservative approach that requires
higher transmitted power. Ideally, when perfect CSI is available
at the transmitter, the actual received SINRs are equal to the
requested ones, i.e., all QoS constraints are achieved with
equality [1]–[6]. In this experiment, we selected the sets of
channel estimates from the 2000 sets used in the first experi-
ment for which all design methods were able to provide robust
QoS guarantees of 10 dB for all users for the uncertainty bound

. For each of the 609 such channel environments,
we randomly generated 100 channel uncertainties that were
uniformly distributed in direction and whose norms were equal
to 0.01. In Fig. 7, we plot the CDF of the actual received SINRs
for each design method. To help interpret this figure, in Table II

Fig. 6. The (empirical) cumulative distribution function (CDF) of SINR
for a system with N = 3 and K = 3.

Fig. 7. The (empirical) cumulative distribution function (CDF) of the actual
received SINRs for a system withN = 3 andK = 3 and a target SINR of 10
dB.

TABLE II
TRANSMISSION POWERS FOR FIG. 7

we have provided the average transmission powers of each
design method. It is apparent from Fig. 7 and Table II that
the proposed approaches are able to save transmission power
by reducing the likelihood that a user’s SINR requirement is
substantially over-satisfied.
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VII. CONCLUSION

We have considered linear precoding (beamforming) for
broadcast channels with QoS constraints in the presence of un-
certain CSI at the transmitter. We studied the design of a robust
linear precoder that minimizes the total transmitted power while
satisfying the users’ QoS constraints for all channel realizations
within a bounded uncertainty region around the transmitter’s
estimate of each user’s channel.8 Since that problem is not
known to be computationally tractable, we presented three
conservative design approaches that yield convex and compu-
tationally-efficient restrictions of the original design problem.
We also showed how the conservative design approach could
be used to obtain efficiently-solvable quasi-convex restrictions
of some related problems, including the robust counterpart of
the problem of maximizing the minimum SINR subject to a
given power constraint. As illustrated by the simulations, the
proposed approaches can satisfy the users’ QoS requirements
for a significantly larger set of uncertainties than existing
methods, and require less transmission power to do so.

APPENDIX

In this Appendix, we show how different power constraints
can be incorporated in our formulations. Consider a set of per-
antenna power constraints, , one for each

, where is the bound on the power transmitted from
the th antenna. Each of these constraints can be written as

(38)

where denotes the th element of a vector. This is a convex
quadratic constraint on the elements of , and can formulated
as a second order cone constraint and directly accommodated in
(10) and all the subsequent robust counterparts.

The shaping constraint can be
written as

(39)

where is defined analogously to (8). A convenient way in
which this constraint can be incorporated into (10) is to write

(40)

Whenever the set is discrete and finite, this set of SOCs
constraints can be easily incorporated in (10) without compro-
mising our approach. Integral constraints of the form

(41)

can be accommodated in a similar way.

8If a certain probability of outage can be tolerated, then a so-called chance
constrained formulation might be appropriate; see, e.g., [31] for an application
in multiple access systems. We have extended the approach taken in this paper
to the chance constrained framework, and the results will appear in due course.

The power constraints considered above all have the SOCP
formulations, but they all fall into the more general class of
shaping constraints

(42)

for given and , that have been previously studied
for the single user case [12]. Using the Schur Complement The-
orem [21], this constraint is equivalent to the LMI

(43)

and hence constraints of the form in (42) can be easily incorpo-
rated into our approach.
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