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Abstract— We consider point-to-point multiple antenna com-
munication systems in which multiple data streams are transmit-
ted simultaneously. We consider systems which use Tomlinson-
Harashima (TH) precoding to pre-subtract the interference
among these data streams at the transmitter. In a conventional
Tomlinson-Harashima precoding system, transmitter feedback
and receiver feedforward processing matrices are used for in-
terference pre-subtraction and channel spatial equalization. In
addition to these matrices, we consider a transmitter precoding
matrix that generalizes the permutation matrix used for ordering
the precoded symbols in existing designs. This extra degree
of freedom offers the potential for improved performance. In
particular, under a mild signal to noise ratio (SNR) constraint,
we find an optimum zero-forcing precoding matrix that minimizes
the average symbol error rate (SER) of the data streams subject
to a transmitter power constraint. We also show that the
proposed design is optimal from an average bit error rate (BER)
perspective. Simulation studies show significant improvement
over conventional zero-forcing Tomlinson-Harashima precoders.

I. INTRODUCTION

Tomlinson-Harashima (TH) precoding was originally devel-
oped for temporal equalization of channels with inter-symbol
interference [1], [2]. Based on the transmitter’s knowledge
of the channel, it subtracts the effect of the interference that
would be created by previously transmitted symbols. The same
concept can be applied to spatial equalization of Multiple-
Input Multiple-Output (MIMO) channels in which multiple
data streams are transmitted simultaneously [3], [4]. In this
scenario, the data symbols are successively precoded and the
interference created by previously precoded symbols is pre-
subtracted. This pre-subtraction at the transmitter is a dual,
in some sense, to Decision Feedback Equalization (DFE) in
which the effect of previously detected symbols is subtracted
[5]. By operating at the transmitter, TH precoding avoids the
effects of error propagation, but it requires channel knowledge
at the transmitter in return.

In conventional point-to-point Tomlinson-Harashima pre-
coding, interference pre-subtraction and channel spatial equal-
ization are implemented using a feedback matrix at the trans-
mitter and a feedforward matrix at the receiver. For point-
to-point MIMO systems, designs of TH precoding systems
under zero-forcing criteria were considered in [3], [4], and
mean square error (MMSE) designs were derived in [6], [7].
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Fig. 1. Multiple antenna transmitter and receiver using Tomlinson-Harashima
precoding.

Analogous designs were obtained for the multi-user MIMO
scenarios in [8], [9] In addition to these processing matrices,
further improvements were obtained by optimizing the order
of the precoded symbols in a way similar to BLAST ordering
[10], [11]. This is equivalent to ordering the precoded sym-
bols and can be represented by a permutation matrix at the
transmitter. In our work, we consider the use of a transmitter
precoding matrix that generalizes the permutation matrix used
for channel ordering. Under a mild SNR constraint, we find an
optimum precoding matrix that minimizes the average symbol
error rate of the data streams subject to a total transmitter
power constraint. We also show that the proposed design is
optimal from an average bit error rate (BER) perspective.
An extension of our work to the case of MMSE based TH
Precoding can be found in [12].

II. SYSTEM MODEL

We consider a point-to-point multiple antenna communica-
tion system with nt transmit antennas and nr receive antennas.
The use of multiple antennas will enable the transmission of
K data streams simultaneously, where K is less than or equal
the rank of the channel matrix H. We consider communication
systems in which Tomlinson-Harashima precoding is used to
pre-subtract the interference between these data streams. As
shown in Fig. 1, the joint task of interference pre-subtraction
and channel spatial equalization is performed using a transmit
feedback matrix B ∈ C

K×K and a receive feedforward matrix
F ∈ C

K×nr . In addition to the feedback and feedforward
processing of conventional TH precoding, we propose the
use of precoding matrix P ∈ C

nt×K that generalizes the
permutation matrix used in conventional TH design. The
vector s ∈ C

K contains the data symbols of each stream, and
we assume that sk is chosen from a square QAM constellation
S with cardinality M . The Voronoi region of the constellation
V is a square whose side length is D; i.e., D =

√
M d, where

d is the distance between two successive constellation points
along any of the basis directions.

In absence of the modulo operation, the output symbols
of the feedback loop in Fig. 1, vk, would be generated
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Fig. 2. Equivalent linear model for the transmitter.

successively according to the following relation:

vk = sk −
k−1∑
j=1

Bk,jvj , (1)

where at the kth step, only the previously precoded sym-
bols v1, .., vk−1 are subtracted. Hence, B is a strictly lower
triangular matrix. The summation in (1) suggests that the
magnitude of vk may grow beyond the boundaries of V .
The role of the modulo operation is to bring the magnitude
back inside the boundaries of V . The effect of the modulo
operation is equivalent to the addition of the complex quantity
ik = ire

k D + iimag
k D to sk, where ire

k , iimag
k ∈ Z. Using

this observation, we obtain the standard linear model of the
transmitter that does not involve a modulo operation, as shown
in Fig. 2; e.g., [3]. In this model, the constellation of the
modified data symbols in the vector u = s + i is simply the
periodic extension of the original constellation S in both the
real and imaginary directions. From this equivalent model, it
is clear that v is linearly related to the modified data vector
u,

v = (I + B)−1u = C−1u, (2)

where C = I + B.
Since the precoded symbols v will depend on the order used

for the interference pre-subtraction, the ordering can be opti-
mized to improve the performance. The use of a given ordering
is equivalent to using P which is a permutation matrix when
K = nt or consisting of columns of a permutation matrix
when K < nt, [10]. We consider a model in which P is not
necessarily a permutation matrix and this additional degree
of freedom offers the potential for performance improvement.
For this model, the transmitted and received signals are given
by:

x = Pv, (3)

y = HPC−1u + n, (4)

respectively, where n is the vector of additive noise which
is assumed to have zero-mean and a covariance matrix
E{nnH} = σ2

nI. At the receiver, the feedforward processing
matrix F is used to obtain an estimate û of the modified data
symbols u:

û = FHPC−1u + ñ, (5)

where ñ = Fn. Following the linear receive processing, the
modulo operation is used to remove the effect of the periodic
extension of the constellation.

A. Zero-Forcing Design

The goal of zero-forcing designs is the elimination of the
interference among data streams. A design that is based on ZF

criteria was proposed in [3], [4]. In that design the matrices
F,C are obtained using a QL decomposition of the ordered
channel matrix Hordered = HP = QL, where Q ∈ C

nr×K

is a matrix with orthonormal columns and L ∈ C
K×K is a

lower triangular matrix. The ordering P is similar to BLAST
ordering [11]. Assuming a full column rank channel H and the
decomposition HP = QL, the matrices F and C are given
by [3], [4]:

F = QH , (6)

C = Diag
(

1
L11

, . . . ,
1

LKK

)
L. (7)

This QL decomposition is guaranteed to exist [3], and can be
obtained using a QR decomposition algorithm starting with
the last column. Without loss of generality, the L factor can
be assumed to have positive diagonal elements. Once TH
precoding at the transmitter and spatial equalization at the
receiver have been performed, the resulting composite channel
will be interference free, as one would expect from a zero-
forcing design. The output can be written as:

û = Diag (L11, . . . ,LKK) u + ñ, (8)

where E{ññH} = σ2
nI. The modulo operation will then be

used to eliminate i from û (either by scaling down by factors
Lii and taking modulo D for each stream or by directly taking
modulo DLii). Assuming a reasonable SNR, the modulo op-
eration can be assumed to remove the constellation expansion
induced by the transmitter, and the output of the modulo
operation can be modeled as:

ŝ = Diag (L11, . . . ,LKK) s + ñ. (9)

B. Performance Metric

Our performance metric is the average symbol error rate
of the K data streams P avg. Assuming that each data stream
employs the same constellation, and using (9), P avg is given
by:

P avg(L11, . . . ,LKK) =
1
K

K∑
i=1

Pe(Lii), (10)

where Pe(Lii) is the average probability of symbol error of the
ith data stream. This depends on the constellation type and the
SNR of the ith stream, namely L2

ii

σ2
n

. For example, for M -ary
QAM:

Pe(Lii) = 4aQ

(√
3 L2

ii

(M − 1) σ2
n

)
−4a2Q2

(√
3 L2

ii

(M − 1) σ2
n

)

where a = 1 − 1/
√

M and Q(x) = 1√
2π

∫∞
x

e−z2/2 dz.

C. Transmitter Power Constraints

We want to find an optimum precoding matrix P to min-
imize the average SER in (10) subject to a constraint on
the transmitted power E{xHx} = tr(PRvPH) = Ptotal,
where Rv = E{vvH}. To obtain Rv , will make the standard
observation that the elements of v are almost uncorrelated
and uniformly distributed over the Voronoi region of the
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constellation V [3, Th. 3.1], [13]. In this model, the symbols v
will have slightly higher energy average power than the input
symbols s. For example, for a square M -QAM constellation,
we have σ2

v = E{|vk|2} = M
M−1E{|sk|2} for all k except the

first one [4]. Using these properties and the assumption that
E{ssH} = I, it follows that Rv can be approximated by σ2

vI
[3], [4]. Consequently, the power constraint can be rewritten
as tr(PPH) = Ptotal

σ2
v

.

III. MINIMUM SER PRECODER DESIGN

Our approach to optimum precoder design will consist of
two steps. We will start by finding an optimum choice of
values of Lii, i = 1, . . . , K that minimizes the average SER
expression in (10). Then, we will find the optimal precoding
matrix such that the equivalent channel Heq = HP will yield
QL decomposition with the desired L factor.

A. Choice of Lii

In this section we show that under a mild constraint on
the SNR of each stream, Pe(Lii) exhibits desirable convexity
properties that enable us to characterize optimal values of Lii

using results from majorization theory, a concept that has been
useful in the design of of linear transceiver [14]. We will start
our presentation by brief introduction of the relevant concepts
from majorization theory [15].
Majorization: Let a, b ∈ R

K and let a[1] ≥ . . . ≥ a[K]

denote the components of a in descending order. The vector
b is said to majorize the vector a, a ≺ b, if:

j∑
i=1

a[i] ≤
j∑

i=1

b[i] j = 1, . . . , K − 1, (11)

K∑
i=1

a[i] =
K∑

i=1

b[i]. (12)

A useful result that follows from the above definition is that
any vector a ∈ R

K majorizes its mean vector a whose
elements are all equal to the mean; i.e., ai = 1

K

∑K
i=1 ai.

That is:
a ≺ a. (13)

Schur-convex and Schur-concave functions: A real-valued
function f(x) defined on a subset A of R

K is said to be
Schur-convex if a ≺ b on A ⇒ f(a) ≤ f(b), and is said to
be Schur-concave if a ≺ b on A ⇒ f(a) ≥ f(b).

Now, let L be the lower triangular matrix resulting from the
QL factorization of Heq. We know that:

K∏
i=1

L2
ii = det(LHL) = det(Heq

HHeq). (14)

Define λ = (ln(L11), . . . , ln(LKK)). Then,∑K
i=1 λi = 1

2 ln det(Heq
HHeq). It follows from (13) that:

λ ≺ λ, (15)

where λi = 1
2K ln det(Heq

HHeq). Using this majorization
relation with the following lemma we can characterize the
optimal Lii.

Lemma 1: If each Pe(Lii) = Pe(eλi) is a convex func-
tion of λi, then P avg(L11, . . . ,LKK) is minimized when

L11 = . . . = LKK = 2K

√
det(Heq

HHeq)
Proof: The proof relies on the fact that if f(x) is convex

function, then φ(x) =
∑K

i=1 f(xi) is a Schur-convex function
of x [15]. In particular, if Pe(eλi) is convex function of
λi then P avg = 1

K

∑K
i=1 f(xi) is a Schur-convex function

of λ. Using (13), P avg minimized by λ1 = · · · = λK =
1

2K ln det(Heq
HHeq).

The condition that Pe(eλi) is convex function of λi is
satisfied under a mild assumption on the SNR. For example,
for BPSK constellations, Pe(eλi) is convex for L2

ii ≥ σ2
n.

Appendix I provides similar thresholds for M -ary QAM
constellations.

The optimal Lii in Lemma 1 can also be shown to be
optimal from the average BER perspective. Indeed if we
assume that each data stream employs the same constellation,
then using (9), the average bit error rate, BERavg, is:

BERavg(L11, . . . ,LKK) =
1
K

K∑
i=1

BER(Lii), (16)

where for M -ary QAM, BER is closely approximated by
[16], [17]:

BER(Lii) � b Q

(√
3 log2 M L2

ii

(M − 1)σ2
n

)
+ c Q

(
3

√
3 log2 M L2

ii

(M − 1)σ2
n

)
(17)

where b = 2(
√

M − 1)/(
√

M log2

√
M) and c = 2(

√
M −

2)/(
√

M log2

√
M). Using the approach of the proof of

Lemma 1, it can be shown that (17) is a convex function of
λi = lnLii under a mild constraint on SNR of each stream.
Hence, the design of equal Lii is optimal from the average
BER perspective; See Appendix I.

B. Optimum Design of P

Using the fact that the optimal solution results in all Lii’s
taking the same value, the optimized average SER will be
given by:

P avg = Pe(Lii) = Pe

(
2K

√
det(Heq

HHeq)
)

(18)

A similar expression can be obtained for the average BER.
What remains is to determine the optimal value for the Lii’s
and a P that achieves it. Since Pe and BER are both
decreasing functions of their argument, our objective reduces
to designing a P to maximize det(Heq

HHeq) subject to the
power constraint tr(PPH) = Ptotal

σ2
v

and subject to the constraint
that diagonal elements of the L factor of Heq are all equal.
We will start by characterizing the family of solutions that
maximize det(Heq

HHeq) subject to the power constraint,
then we will choose from this family the one that yields
the desired L factor. The family of precoders that maximize
det(Heq

HHeq) is derived in Appendix II and is given by:

P =

√
Ptotal

Kσ2
v

U1V, (19)
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where U1 is the matrix consisting of the eigen vectors corre-
sponding to the K largest eigen values of HHH and V is a
unitary matrix degree of freedom.

To complete the design of P, we will select V such that the
QL decomposition of Heq =

√
Ptotal
Kσ2

v
(HU1)V = QL yields

an L with equal diagonal elements. In [18], it was shown that
there exists a unitary matrix such that the QR decomposition
AVr = QrR will have R factor with equal diagonal elements.
Using this result to obtain Qr,Vr,R of A = HU1, we can
obtain Q,V,L by reversing the order of columns of Qr,Vr

to obtain Q,L and reversing the columns and rows of R to
obtain L.

IV. SIMULATION STUDIES

In our simulations, we use QPSK and 16-QAM signaling
over an independent Rayleigh fading channel. The coefficients
of the H matrix are modelled as being independent proper
complex Gaussian random variables with zero mean and unit
variance. We plot the average bit error rate (BER) of the K
data streams against the signal-to-noise-ratio, which is defined
as the ratio of the total average transmitted power Ptotal to the
total receiver noise power E{nHn}.

We compare the performance of the proposed zero-forcing
TH precoding with minimum SER and BER criteria (ZFTHP-
MinBER) to that of the zero-forcing TH precoder designs with
BLAST ordering (ZFTHP-BLAST ordering), and no ordering,
P = I, (ZFTHP-No ordering) [3], [4]. We also compare
with zero-forcing linear precoding design with minimum BER
criteria (ZFLinear-MinBER) in [19]. In Fig. 3 we plot the
average BER for a system with 4 transmit and receive an-
tennas transmitting 4 data steams using 16-QAM signaling.
We observe the significant BER improvement resulting from
using a precoding matrix P that is not merely an ordering
(permutation) matrix. In Fig. 4 we plot the average BER for a
system with 3 transmit and receive antennas transmitting 3 data
steams using QPSK signaling. Similar performance improve-
ment is observed specially at medium and high SNR when
the condition of optimality of the proposed design is valid.
We observe also that the minimum BER linear transceiver is
performing better than Tomlinson-Harashima system at low
SNRs. This is a consequence the periodic extension of the
constellation in TH precoding, which results in additional
neighbors for the constellation points. This is more apparent
in the case of QPSK signalling than the case of 16-QAM
signaling shown in Fig. 3.

V. CONCLUSION

We have considered the design of Tomlinson-Harashima
precoders for single user multiple antenna communication
systems. We have considered the use of a transmitter precoding
matrix in addition to the feedforward and feedback matrices of
conventional Tomlinson-Harashima precoding. This precoding
matrix can be viewed as a generalization of permutation
matrices used for ordering the precoded signals. We designed
an optimum precoding matrix for zero-forcing systems that
minimizes the average probability of symbol error of the data
streams. We also showed that the proposed design is optimal
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Fig. 3. Comparison between the performance of the proposed minimum BER
zero-forcing TH precoding design with conventional design of zero-forcing
TH precoding [3], [4] and minimum BER zero-forcing linear precoding [19]
for a system with nt = 4, nr = 4 and K = 4 simultaneous data streams
using 16-QAM signaling.
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Fig. 4. Comparison between the performance of the proposed minimum BER
zero-forcing TH precoding design with conventional design of zero-forcing
TH precoding [3], [4] and minimum BER zero-forcing linear precoding [19]
for a system with nt = 3, nr = 3 and K = 3 simultaneous data streams
using QPSK signaling.

from an average bit error rate (BER) perspective. Simulation
studies showed significant BER improvements over existing
designs of zero-forcing Tomlinson-Harashima precoding for
single user multiple antenna systems.

APPENDIX I
CONVEXITY OF Pe(eλi) AND BER(eλi)

In this appendix will find the regions for which Pe(eλi) and
BER(eλi) are convex for different constellations.
Convexity of Pe(eλi) for BPSK: The average probability of
symbol error in each data stream is equal to Pe(Lii) =
Q(Lii/σn) = Q(eλi/σn), where Q(x) = 1√

2π

∫∞
x

e−z2/2 dz.
The second derivative of Pe with respect to λi is given by:

d2Pe(eλi)
dλi

2 =
e(λi−(e2λi)/2σ2

n)√
2πσ2

n

(
e2λi

σ2
n

− 1
)

, (20)
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which is non-negative for e2λi

σ2
n

= L2
ii

σ2
n
≥ 1. Hence, Pe(eλi) is

convex in this region.
Convexity of Pe(eλi) for M -ary QAM: The average probabil-
ity of error of each stream is:

Pe(Lii) = 4aQ

(√
3

M − 1

Lii

σn

)
− 4a2Q2

(√
3

M − 1

Lii

σn

)
,

= 4aQ

(
eλi

σM

)
− 4a2Q2

(
eλi

σM

)
,

where a = 1 − 1/
√

M and σM =
√

M−1
3 σn. The second

derivative of Pe with respect to λi is given by:

d2Pe

dλi
2 = 4a

e(λi−(e2λi)/2σ2
M)√

2πσ2
M

×
([

1 − 2aQ

(
eλi

σM

)][
e2λi

σ2
M

− 1
]
− 2a

e(λi−(e2λi)/2σ2
M)√

2πσ2
M

)
.

(21)

If we denote x = eλi

σM
= Lii

σM
, it can be shown that the second

derivative is non-negative for values of x ≥ γ, where γ is the
root of the equation:

f(x) = (1 − 2aQ(x))
(
x2 − 1

)− 2a√
2π

xe−x2/2. (22)

As a result, Pe(eλi) is convex for values Lii

σM
≥ γ. For

example, for 16-QAM γ = 1.1935.
Convexity of BER(eλi): For BPSK, the expression for
BER(eλi) is the same as Pe(eλi). For M -QAM, we will
use the approximation given by (17), [16], [17]. Using this
expression and defining σB =

√
M−1

3 log2 M σn, it can be verified

that the second derivative of BER(eλi) is:

d2BER

dλi
2 =

b√
2π

[ye
−y2

2 (y2 − 1)] +
3c√
2π

[ye
−9y2

2 (9y2 − 1)],

(23)
where b and c are defined in Section III and y = eλi

σB
= Lii

σB
.

The second derivative is non-negative for values of y ≥ 1.
Therefore, BER(eλi) is convex for values Lii ≥ σB .

APPENDIX II
DERIVATION OF OPTIMAL P

Let HHH = GΛGH be the eigen vector decomposition of
the HHH such that eigen values are in descending order. Let
the singular value decomposition of the precoding matrix be
given by:

P = U
[

Φ
0

]
V = U1ΦV. (24)

Now, the objective of the maximization can written as:

det(Heq
HHeq) = det(VHΦUH

1 GΛGHU1ΦV)
= det(W1

HΛW1) det(Φ2) (25)

where W1 = GHU1 is a matrix with orthonormal columns
(WH

1 W1 = I). Using Hadamard inequality, the first term in
Eq. (25) is maximized when W1 consists of first K columns
of I. Accordingly, U1 is the first K columns of G.

Next, we choose Φ = Diag(Φ11, . . . , ΦKK) to maximize
det(Φ2) subject to

∑K
i=1 Φ2

ii = Ptotal/σ2
v . We observe that

ln det(Φ2) =
∑K

i=1 ln(Φ2
ii) is a Schur-concave function of

Φ2
ii and is maximized when all Φ2

ii are equal to Ptotal
Kσ2

v
[15].
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