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Performance of Wavelet Packet-Division Multiplexing in Impulsive and
Gaussian Noise
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~ Abstract—\Wavelet packet-division multiplexing (WPDM) is a  even translations, and leti[n] = (=1)"go[L — 1 — n].
high-capacity, flexible, and robust multiple-signal transmission Under some mild conditions [13], we can obtain a function
technique in which the message signals are waveform coded ontod)m(t) _ \/an go[n]doL (2t — nT}), for a given intervallp.

wavelet packet basis functions for transmission. In this letter, we Usi d . then defi familv of
derive an expression for the probability of error for a WPDM sing go[n]; g:[n], and¢o.(t), we can then define a family o

scheme in the presence of both impulsive and Gaussian noisefUNCtionsge,y,(t),£ > 0,1 < m < 2¢,in a binary tree structure,
sources and demonstrate that WPDM can provide greater im- with the subscripts denoting the “level” of a node in the tree
munity to impulsive noise than both a time-division multiplexing  and its position within that level, respectively. The functions at
scheme and an orthogonal frequency-division multiplexing the terminalsof the tree form avavelet packekl3]. They are
scheme. . - f)
_ _ o self and mutually orthogonal at integer multiplesiof= 275,
Index Terms—mpulse noise, multiuser communication, wavelet and have a finite duratio), — (L _ 1)T In WPDM [12]
packet-division multiplexing. ; ¢ & ;
the binary messages,[n] = +1 are waveform coded by
pulse amplitude modulation af;,,(t — nZ;) and are then
|. INTRODUCTION added together to form the composite sigs(a). By exploiting
6he wavelet packet tree structure, WPDM can be implemented

RTHOGONAL waveform coding has been widely used . . .
for multiplexing [1] in the form of frequency-division using a transmultiplexer and a single modulator, as illustrated

multiplexing (FDM) or time-division multiplexing (TDM). in Fig. 1. In that figure

However, the recently developed wavelet packet decomposi-

tions generate a set of self and mutually orthogonal waveforms s(t) = Z oo1[k]por (t — K1p) 1)

which could also be used for (synchronous) orthogonal mul- k

tiplexing [2]. Whilst all synchronous orthogonal multiplexing . )

schemes perform identically in additive white Gaussian noiwere%l[k] = Z:(Ar_n)eT_ 2o fém_[k = 2'n]oem[n], W_'th 7

(AWGN), they may perform differently in impulsive noiset_’e'ng the set of terminal |r_1dex pairs ayfig, k] the equwalen_t

[3]. Impulsive noise is a primary source of performancglterfromthe(E, m)th terminal to the rootofth_etree. The orig-

degradation in several applications, including data transmissig! messages can be recovered fropa[k] using ¢ [n] =

over telephone networks, and its effects on various digitZl:k fénz[/f—_2é”]001[/f]- o

communication schemes have received considerable atten!Ve can view WPDM as a combination of TDM and FDM.

tion; e.g., [4]-[7]. In this letter, we demonstrate that waveldh® coding waveforms overlap iboth time and frequency,

packet-division multiplexing (WPDM) [8]-[12] can providebUt orthogonality |s_preserved. Since we do nqt require “gqard

a substantially greater immunity to impulsive noise than bof}nds” nor “guard times” to ensure orthogonality in a practical

TDM and orthogonal frequency-division muItiplexing/multi-SySt_em it is possible to increase the n.umber of users sharing

carrier modulation (OFDM-MCM). a given channel over that of conventional F_DM and TDM
First, let us briefly review WPDM. Lego[n] be a length [12]. We can also interpret WPDM as generalized orthogonal

L finite impulse response filter which is self-orthogonal atede-division multiplexing (CDM) in which the “codes”
are the equivalent filtergy,,[k] and the “chip” waveform is

¢o1(t). This class of generalized CDM includes conventional
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Fig. 1. The transmultiplexer implementation of a four-user WPDM scheme.
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Fig. 2. Receiver model for the/, m)th terminal with bandpass Gaussian and impulsive noise sogr¢gsandr.(t), respectively.

BP channel filter, which has unit zero-frequency (DC) gain. WB(/3;,,[n] = 1) a v D, [14]. Since the parameteus 6, 7, and
will assume that the binary data symbols are independent ghdre independent
equally likely, and that:

1) {7:}:ez is a set of Poisson points with an average ar- Prm;n(elBom[n] = 1)
rival rater such that'D, < 1 for all terminals. /// P 3 _1 0,

2) a;,0;,7;,ande,.(t) are independent;.(t) is zero-mean, tmin{elfem{n] =1, a; 7 6, €)
stationary, white, and Gaussian with power spectral &) dépo(0) db pr(r)drpala)da (4)

density No/2; 6; are independent and identically dis-

tributed (i.i.d.) uniformly on[0, 27); a; are i.i.d. and wherepx () denotes the probability density function (pdf) of

positive with a given distribution. the variablez. Assuming thatoe,,[n] = 1, without loss of
Since ¢y, () is zero outsidg0, Dy), for an impulsive noise generality, B n(clBem(n] = 1, a, 7,60, &) = 1if 1 + &+
burst to significantly affecté,.[n], it must arrive within @ cost qen(T — n1%) < 0, and is zero otherwise. Evaluating
Dimin =~ (nTy, nT; + Dy). Therefore, Assumption 1) implies the first two inner integrals in (4) and substituting into (3), we
that the probability of that more than one impulsive noise burdgve [15]
affects a given bit is negligible. Hence

PZrn; n(e)
Gem[n] = oem[n] + Eem[n] + Bem([n] a cos 0 gem (T — nly) 1—vDy FE v
) = erfc — |+ =

. . . g 2 2Ny 2
where the Gaussian noise at the, m)th terminal is b
£énl[71] = Ek fénl[k — 2%1]501[/6‘], with 501[/6‘] being the . o ¢ i _
demodulated Gaussian channel noigg,[k] = (1/VE) o Jo erfe V2N0(1 aen()) | dr
J &(t)por(t — KTo)dt. For the impulsive noise component, y F oo D
Gem(T) = Y JemE] [ Ryt — )01 (1) dt, and e, [n] = 1f - pa(a) da - —,/W/ / / cos—1
3i such that; € Dy, and is zero otherwise. The quantities v 0Jo Jo J-1
a and @ inherit the distributions ofa; and 6;, respectively, - exp _ E(l4-agem(r)y)? dy o (7) dr ap(a) da
and Assumption 1) implies that is uniformly distributed 2N, tm A
on Dem.n [14]. Using the orthonormality off.,[k] and (5)

Po1(t), &€ = &um[n] is a zero-mean Gaussian random variable
independent of:, ¢, andm, with varianceN,/F. Hence, the wherecos ! v € [0, ]. Equation (5) is independent efand

probability of error ingg,,,[n] is will be denoted byP,,,, (¢). Since the terminals at differentlevels
have different bit rates, /7, the overall probability of error is
Prm;n(€) = P(Bem[n] = 0) Pem; n(e|Bem[n] = 0) F(e) 2 E(Z,m)CT Q_éPém(C)-

+P(Bem[n] = 1) Pem;n(e]Bem[n] = 1) (3) The receiver impulse characteristic (RIC) [4] for {fe m )th
terminal, denoted b¥gy,,,(a), is defined so thab,,,(e|¢ = 0) =
where Prp:n(elBem[n] = 0) = (1/2)erfc(\/E/2No) [1], v [;° Rem(a)pa(a) da. Hence, it captures the robustness of a
and under Assumption 1R (8¢n[n] = 0) = 1 — vD; and given scheme to an impulse of a given amplitude in the absence
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Fig. 3. Calculated probability of erraP(e) (curves) and simulated BER _ o _ )
(points) against SImpNR for the scenario in Example 1. Solid and asteriskFig- 4. The (a\_/e.rage) receiver |mpulse (.:haracterB(lc.) for the schemes in
WPDM; dashed and circle: TDM; dashed-dot and plus: OFDM-MCM. Example 1. Solid: WPDM; dashed: TDM; dashed-dot: OFDM-MCM.

of Gaussian noise. An expression for the RIC can be easily digcause the WPDM waveforms overlap in time, and hence the

tained from (4) [15]. The overall RICR(«), can be defined in energy of an impulsive noise burst is dispersed over several
a similar manner t@(¢) above. bits at each terminal. Therefore, a moderate noise burst which
is strong enough to cause an error in one bit in TDM may be
sufficiently dispersed in WPDM so as not to cause an error.
This advantage is clearly indicated in the superior RIC of
We now compare the performance of WPDM to that of TDMVPDM for moderate amplitudes (Fig. 4). Similar advantages
and a real-valued OFDM-MCM scheme. The composite signaer TDM have been observed for OFDM-MCM [7], but since
for TDM and OFDM-MCM can be written in the form of (1) WPDM waveforms from the same terminal overlap with each
ass(t) = >, oopo(t — k1p), where, forM users,oo[k] = other, whereas OFDM-MCM waveforms do not, the dispersion
Eﬁf:l fmlk — Mn]op,[n]. For TDM, f,,,[k] = 6[k —m + 1], of the noise bursts is greater in WPDM. Hence, the superior
and for the real-valued OFDM-MCM scheme, they are the syperformance of WPDM at moderate SImpNR’s (Figs. 3 and 4).
thesis filters from a discrete cosine transform; efg.[k] = Athigh SImpNR'’s, the probability of error is dominated by the
V2/M cos((n(2k+1)(2m—1))/4M),fork = 0,1, ---, M— effects of the Gaussian noise, and hence the performance of
1. We choose(t) to be the unit-energy rectangular function orall orthogonal multiplexing schemes is the same. At very low
(0, Ty). With the minor modifications suggested by the equiveSImpNR’s, however, the performance of WPDM degrades with
lent filters above, the analysis in Section Il also applies to TDkespect to that of TDM because a strong noise burst may induce
and OFDM-MCM [15]. more than one bit error in WPDM, whereas it can induce at
Example 1:Consider the transmission of binary datanost one error in TDM. Similar performance degradation has
from four message sources, each with a bit rgt&,. The also been observed for OFDM-MCM [7]. (Saturating receivers
output of the distortionless channel is corrupted by AWGIN}] provide protection from large noise bursts and may improve
and impulsive noise bursts with an average arrival rate tife performance of WPDM and OFDM-MCM at very low
vTy, = 1072 and amplitudes: from a log-normal pdf [4] SImpNR'’s.) |
with skewnes0log,,(v/E{a?}/E{a}) = 1, whereE{-}
denotes expectation. The BP channel filter has an LP envelope
hp(t) = exp(—t/C)/C for t > Owith ¢ = T;/20. The REFERENCES
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