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Abstract—This paper presents a method for jointly designing
the transmitter—receiver pair in a block-by-block communication
system that employs (intrablock) decision feedback detection. We
provide closed-form expressions for transmitter—receiver pairs
that simultaneously minimize the arithmetic mean squared error
(MSE) at the decision point (assuming perfect feedback), the
geometric MSE, and the bit error rate of a uniformly bit-loaded
system at moderate-to-high signal-to-noise ratios. Separate ex-
pressions apply for the ‘zero-forcing” and ‘“minimum MSE”
(MMSE) decision feedback structures. In the MMSE case, the
proposed design also maximizes the Gaussian mutual information
and suggests that one can approach the capacity of the block
transmission system using (independent instances of) the same
(Gaussian) code for each element of the block. Our simulation
studies indicate that the proposed transceivers perform signifi-
cantly better than standard transceivers and that they retain their
performance advantages in the presence of error propagation.

Index Terms—Bit error rate, block precoding, channel capacity,
decision feedback detection, minimum mean-square error, mutual
information, zero-forcing.

1. INTRODUCTION

LOCK-BY-BLOCK communication is an effective

scheme for the transmission of data over dispersive
media; e.g., [28]-[30], [41], [42]. In such “vector” commu-
nication schemes, blocks of data are transmitted in a manner
that avoids interference between the received blocks, and
hence the detector need only operate on a block-by-block
basis. Two popular examples of block-by-block communica-
tion schemes are orthogonal frequency-division multiplexing
(OFDM) [5] and discrete multitone modulation (DMT) [8].
In addition, certain multiple antenna systems operate in a
block-by-block fashion (e.g., [18], [20], [26], [36], [43], and
[45]), and block-by-block detection schemes appear in some
multiuser detectors for synchronous code-division multiple-ac-
cess systems [14], [15], [47]. In general, an optimal detector
for a block transmission system must make a decision on the
received data block as a whole, although in certain cases, such
as OFDM and DMT, the elements of that block can be decou-
pled and simpler detection schemes obtained. Unfortunately,
maximum likelihood detection of the transmitted vector can
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be rather computationally expensive, and simpler detectors
based on linear equalization and (disjoint) symbol-by-symbol
detection may incur a significant performance loss. A useful
compromise between performance and complexity can be
obtained by employing intrablock decision feedback detection
[4], [10], [14], [15], [18], [20], [22], [28], [44], [47], [S1]. In an
intrablock decision feedback detector the individual symbols
which constitute a given block are detected sequentially, with
the “intrablock interference” from previously detected symbols
being subtracted before the decision on the current symbol is
made. Such schemes fall into the class of generalized decision
feedback equalizers [10]. In multiple antenna communication
schemes intrablock decision feedback is sometimes referred
to as “nulling and cancelling” [4], [18], [20], and in multiuser
detection the corresponding concept is sometimes referred to
as “successive interference cancellation” [14], [15], [22], [47].

The goal of this paper is to jointly design the linear transmitter
matrix and the receiver feedforward and feedback matrices so
as to optimize the performance of a block-by-block commu-
nication system with an intrablock decision feedback detector
(BDFD). The design is based on knowledge of the channel, and
hence is an appropriate choice for systems in which there is
timely, reliable feedback from the receiver to the transmitter.
The proposed approach provides closed-form expressions for
transceivers that minimize the arithmetic mean (over the block)
of the expected squared errors (MSE) at the input to the (scalar)
decision device that is implicit in the BDFD, under the stan-
dard assumption [3], [9], [10], [17], [40], [52] that the previous
decisions were correct.

The expressions depend on the nature of the BDFD, and sepa-
rate expressions are provided for the zero-forcing (ZF) and min-
imum mean square error (MMSE) BDFDs. In order to help dis-
tinguish our designs from previous work, we point out that if one
is given a transmitter matrix, the design of the feedforward and
feedback matrices of a ZF or MMSE-BDFD that minimize the
MSE is well known; e.g., [2], [4], [9], [10], [17], [20], and [40].
However, the joint minimum MSE design of the transmitter and
receiver matrices has previously been deemed to be difficult
(e.g., [52, p. 1338]), and hence several authors have suggested
minimizing a particular lower bound on the MSE, namely, the
geometric mean of the expected squared errors; e.g., [9], [10],
[52]. We will minimize the geometric MSE as the first step in
our approach, but we will also show how the unitary matrix that
parameterizes the set of transceivers which minimize the geo-
metric MSE can be chosen so that the (arithmetic) MSE attains
its minimized lower bound.

Transceivers designed in the manner we propose have sev-
eral additional desirable properties. In particular, the inputs to
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the (scalar) decision device are uncorrelated and have equal
signal-to-interference-and-noise ratios (SINRs). In fact, the
minimum SINR over the elements of the block is maximized.
As a result, the average bit error rate (BER) is (essentially)
minimized. More precisely, for systems with a ZF-BDFD,
our design minimizes the average BER for (uncoded) uniform
quaternary phase-shift keying (QPSK) signaling at mod-
erate-to-high signal-to-noise ratios (SNRs) and also minimizes
the dominant components of the BER for uniform M-ary
quadrature amplitude modulation (QAM) signaling.! For sys-
tems with an MMSE-BDFD, our design minimizes the average
BER under an assumption that the residual intrablock interfer-
ence is Gaussian.

For the MMSE-BDFD, it is reasonably well known [9], [10],
[17], [40], [52] that any transmitter that minimizes the geo-
metric MSE (including the proposed design) also maximizes
the mutual information between the transmitter and receiver for
Gaussian signals. However, the standard choice from the set of
transmitters that minimize the geometric MSE does not mini-
mize the (arithmetic) MSE and produces inputs to the decision
device that have potentially different SINRs for each element
of the block. Therefore, in order to achieve reliable communi-
cation at rates which approach the capacity of the block trans-
mission system, different codes (and constellations) may need
to be applied for each element of the block [10]. An advantage
of the proposed design is that from within the set of transmitters
that minimize the geometric MSE (and maximize the Gaussian
mutual information), we obtain a transceiver that also mini-
mizes the arithmetic MSE, minimizes the BER, and provides
uncorrelated inputs to the decision device that have identical
(and maximized) SINRs. Since the MMSE-BDFD is a “canon-
ical” receiver [9], [10], [23], this suggests that by using the pro-
posed design, reliable communication at rates approaching the
capacity of the block transmission system can be achieved by
using independent instances of the same (Gaussian) code in each
element of block.

As mentioned earlier, our designs are based on the standard
assumption [3], [9], [10], [17], [40], [52] that the previous
symbols were correctly detected. However, error propagation is
not catastrophic in block-by-block communication schemes be-
cause errors can only propagate within a single block (e.g., [10]
and Section II). Bounds for the conventional symbol-by-symbol
decision feedback equalizer (DFE) [1], [16] also suggest that
good performance should be maintained in the presence of
error propagation, and our simulations confirm this prediction.
Furthermore, our simulation studies indicate that the proposed
transceivers perform significantly better than standard trans-
ceivers and that they retain their performance advantages in the
presence of error propagation.

Notation: The notation adopted in this paper is fairly stan-
dard. We conform to the following conventions: scalars are de-
noted by lowercase letters; vectors by bold lowercase letters;
and matrices by bold upper case letters. The symbol I de-
notes the identity matrix of size N, and Onx s denotes the
N x M matrix of zeros. The symbol |A| denotes the determinant

10ur design for the ZF-BDFD coincides with the one that minimizes the block
error rate [56], [57], but the design approach taken in this paper is substantially
different from that taken in [56] and [57].
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Fig. 1. A generic block-by-block communication system with intrablock
decision feedback detection. The P /S block denotes parallel-to-serial
conversion with the last element of the input block becoming the first output,
and the S/P block denotes serial-to-parallel conversion with the first input
becoming the last element of the output block.

of a matrix A, and tr(A) denotes its trace. The symbol EJ-]
denotes the expectation operator; (- ) the complex-conjugate
transpose operation; (- )7 the transpose operation; and [ - ];; the
element at the intersection of the :th row and jth column of a
matrix.

II. BLOCK-BY-BLOCK TRANSMISSION

We consider the generic block-by-block transmission system
with intrablock decision feedback detection illustrated in Fig. 1.
In this system, a block of M data symbols s is linearly precoded
to construct a block of K > M channel symbols, u = Fs,
which is transmitted over the channel. The receiver indepen-
dently processes a block of P > M received samples in order to
detect the data vector s. The received block y can be written as

y=HFs+v (D

where the P x K matrix H captures the effects of the channel
and v is a length P vector of additive noise samples. We will
assume that the noise is circularly symmetric [37] (or proper
[35]) and Gaussian, with zero mean and positive definite corre-
lation matrix E[vvf] = R,,,. We will also assume that the data
symbols have zero mean and are white,? of unit energy, and not
correlated with the noise, (i.e., E[ss®] = I and E[sv] = 0).
The model in (1) is applicable in many applications, including
zero-padded or cyclic-prefixed block transmission over a scalar
finite impulse response channel that is constant over the dura-
tion of the block; e.g., [6], [12], [28]-[30], [41], [42], and [44].
In the zero-padded case, H is a tall, lower triangular, full column
rank Toeplitz matrix whose columns contain the impulse re-
sponse of the channel, and in the cyclic-prefixed case H is a
square circulant matrix whose columns contain the channel im-
pulse response. The model in (1) is also applicable in vector
transmission over a narrow-band multiple antenna channel (e.g.,
[18] and [20]), in which case H has no deterministic structure;
in space—time block transmission over a (quasi-static) narrow-
band multiple antenna channel (e.g., [26] and [45]), in which
case H has a block diagonal structure; and in block transmis-
sion over a (quasi-static) frequency-selective multiple antenna
channel (e.g., [36] and [43]), in which case H is either block
Toeplitz or block circulant.

The intrablock decision feedback detector first preprocesses
the received block y with an M x P feedforward matrix W
to form z = Wy. (The functional form of W depends on

2In the case where E[ss’] is not a scaled identity matrix, a data whitening
matrix can readily be absorbed into the precoder, so long as the data covariance
matrix is known (and full rank).

H ]
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whether the ZF- or MMSE-BDFD is implemented; see Sec-
tion III.) The detection of the transmitted symbols s, = [s].n
then proceeds sequentially, starting from m = M, by making
a scalar decision on $3; = zps and then $,,, = zZm — Sm,
m=M-—1,M—2,...,1, where §,, = Ze]\imﬂbmg& is
the output of the feedback filter, with b,,, being its coefficients.
The states of that filter s, are the previously detected symbols
in the block, and the filter coefficients are different for each ele-
ment of the block (indexed by 7). Once a given block has been
detected, the states of the feedback filter are reset to zero. That
is, the symbols are detected on a block-by-block basis and hence
error propagation between blocks is avoided.

If the filter coefficients b,,, are arranged in a strictly upper
triangular M x M matrix

0 b12 b13 blM

0 0 b23 bQM

0 0 0 b(M—l)M
0 O o --- 0

the operation of the block transceiver in Fig. 1 is equivalent to
successively making decisions on the elements of

§ = WHFs + Wv — Bs )

starting from the M th row. That interpretation leads to the con-
venient conceptual model in Fig. 2. We observe that when B =
0, the system in Fig. 2 reduces to a block transmission system
with linear equalization and disjoint detection; e.g., [6], [12],
[36], and [41]-[43]. In fact, many of the results for the linear
case can be obtained by setting B = 0 in the expressions we
will derive herein.

If we denote the error between the input to the detector and
the transmitted data symbols by e = § — s, then

e = (WHF —1I)s — Bs+ Wv. 3)

Under the assumption of correct past decisions (i.e., when de-
ciding $,,, §¢ = s¢ forallm + 1 < ¢ < M), e simplifies to

e=(WHF -1-B)s+ Wv. )

The covariance of this error will play a key role in our designs.
Under our statistical models for s and v, the covariance matrix
of the error is

R.. = E[eef] = (WHF - B — I)(WHF - B — )%
+WR,,W. (5)

The (arithmetic) MSE of the detector input is simply &2 =
tr(E[(5 — )(5 — )")])/M = tr(Rec) /M.

III. MINIMUM MSE TRANSCEIVERS

In this section, our goal is to jointly design the transceiver
elements F, B, and W so that the (arithmetic) MSE is mini-
mized, subject to a bound py on the average transmitted power
and constraints which ensure that the receiver performs either

s

P

Fig. 2. A convenient conceptual model for Fig. 1.

Detector

ZF or MMSE decision-feedback detection. The average trans-
mitted power is given by E[tr(Fs(Fs)®)] = tr(FF), and
hence the design problem can be stated as

tr(WHF — B — I)(WHF - B — I)#

min

g}

+ WR,,WH) (62)

subject to  tr(FFH) < py (6b)
and a functional relationship between

F.B, and W. (6¢)

The functional relationship between F, B, and W determines
whether the BDFD is of the ZF type or the MMSE type. This op-
timization problem is rather difficult to solve directly because it
is not convex and hence is subject to the standard difficulties as-
sociated with the potential for multiple local minima. However,
we will use the following stages to find a solution (F, B, W)
whose performance is optimal.

1) Obtain a (tight) lower bound on the MSE, and minimize
that lower bound, subject to the constraint on transmission
power.

2) Derive a triple (F, B, W) whose performance achieves
the minimized lower bound.

In the following sections, we will perform the above stages to
obtain the minimized lower bounds on the MSE and optimal
transceivers for the ZF and MMSE BDFDs, respectively. The
matrix HF R 'H will play a key role in our designs. For later

VU

convenience we let
VAV = HIR 'H (7

represent the eigenvalue decomposition of H# R, ,'H, with
eigenvalues \; arranged in nonincreasing order along the diag-
onal of A. For an integer 1 < k < K, we also define Vi to
be the first k columns of V and A}, to be the upper left k x k
block of A. In the development of our designs, we will find it
convenient to parameterize the K X M precoder matrix F of
rank ¢ in terms of its singular value decomposition

F=0[® 0,_q] ¥ ®)

where © contains g columns of a K X K unitary matrix, ® is
a diagonal positive definite ¢ X ¢ matrix, and ¥ is an M x M
unitary matrix.

A. Zero-Forcing BDFD

The zero-forcing criterion imposes the following relationship
between W, F', and B [see (4)]:
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Givena P x K matrix H and an integer M < min{P, K}, there
exists a K x M matrix F', an M x P matrix W, and an M x M
strictly upper triangular matrix B such that (9) is satisfied if and
only if rank(H) > M, and we will make the assumption that
this condition holds.? In order to satisfy (9), F must be chosen
so that it has rank M and that rank(HF) = M.

By substituting (9) into (4) and (5), the covariance matrix of
the error can be written as

Ree,ZF = WRM)WH- (10)

If we define W = WR,%Z, then the design problem (6) can be
rewritten as

min  tr(WWH) (11a)

W,B,F
subject to  tr(FFH) < pg (11b)
WHF =B +1 (11c)

where H = R.. 1/2H. From (11), itis clear that for a given F for

which there exists a solution to (11c) and a given B, the optimal
W is W = (B + I)(HF)™", where (-)* denotes the (min-
imum-norm) Moore—Penrose pseudoinverse. Therefore, the op-

timal receiver feedforward matrix can be written as
Wyr = (B +I)(HF) TR, /2. (12)

Since HF has at least as many rows as it has columns and has
full column rank

(HF)* = (FFH"HF)'F7HY, (13)

If welet U = B+1, the design problem in (11) has been reduced
to

min tr(UHF) T (HF)H)HUH)  (14a)

subject to  tr(FF) < p (14b)
U being a unit-diagonal

upper triangular matrix. (14c)

The first stage in our solution of (14) is to derive and minimize
a lower bound on the objective function (14a). The lower bound
that we will use is a simple consequence of the arithmetic-geo-
metric mean inequality [27, p. 535]. In particular, for an M x M
positive semidefinite matrix X

tr(X)/M > |X[/M (15)

with equality holding if and only if X = oI for some o > 0.
For convenience, we will refer to (15) as the trace-determinant
inequality.

Applying (15) to (14a), a lower bound on the mean-square
error is

é%F = tI‘(WZFRw'UWgF)/M
> |U(ﬁF)+((ﬁF)+)HUH|1/M
_ |FHIjIHIiIF|71/M

(16a)
(16b)
where we have used the fact that U is a unit-diagonal upper-tri-
angular matrix and thus [U| = 1 and the expression for (HF)™

in (13). Observe that (16b) depends only on the transmitter F
and is independent of U = B + I. It is also of interest to

3If M were a design variable, rather than a parameter of the problem, one
could guarantee that this condition holds by simply choosing M < rank(H).
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point out that the bound in (16a) is equivalent to stating that
the arithmetic MSE is bounded below by the geometric MSE;
ie., tr(Reezr)/M > |Ree7ZF|1/M. Therefore, the problem of
minimizing the lower bound in (16a) corresponds to minimizing
the geometric MSE.
The lower bound in (16) can be minimized simply by maxi-
mizing [FEHEHF|; i.e., by solving
max [FEHYRHF| (17a)

subject to  tr(FF™) < p. (17b)

Using the ordered eigendecomposition of H R,/ H in (7) and
applying the trace-determinant inequality (15), we have that

FPHYR;HF| = |®°| |[©"H"R;/HO| (I8)
2) M M
< <trq’ > H)\ (18b)
r M
< (B I (18¢)

Therefore, for any ZF-BDFD system, the (arithmetic) MSE is
bounded below by

—1/M
e > — (H)\ ) .

This bound depends only on the parameters M and pg and the
M largest eigenvalues of HY R 1H
The second stage of the derlvatlon of the proposed design is
to determine matrices F' and B so that the minimized lower
bound on the arithmetic MSE in (19) is achieved, To do so,
we point out that according to the trace-determinant inequality
(15) and the eigenvalue decomposition of HYR'H in (7),
the bound in (18b) holds with equality if and only if ® = ol
for some a > 0and ® = V v P, where \Y% a was defined
after (7) and P is an arbitrary permutation matrix. According
to the power constraint in (17b), the bound in (18c) is achieved
1f and only if « = \/po/M. Therefore, precoders of the form
v/ po/M v M, where W is an arbitrary M X M unitary
matrix, minimize the geometric MSE of a ZF-BDFD system.
The remaining task is to determine matrices ¥ such that the
bound in (16a) holds with equality. To do so, we observe that
the trace-determinant inequality (15) holds with equality if and
only if X = al for some o > 0. Therefore, (16a) holds with
equality if and only if we can choose ¥ such that R.. zr = O’?I,
where 02 = (M/po) (T2, )\i)_l/M. That is, we can achieve
the minimized lower bound on the arithmetic MSE if and only
if we can find a ¥ such that
MU\IJHAMI\IJUH 0’1
bo
where A 3y was defined after (7). By taking the Cholesky factor,
solving (20) is equivalent to solving
MU\IIHA;;/Q =0.Q¥
bo
where Q is an M x M unitary matrix. That is, we can reduce the
search for a pair (F,B) such that the minimized lower bound
on the MSE is achieved to the search for a unit-diagonal upper

19)

(20)

21
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triangular matrix U and unitary matrices ¥ and Q that satisfy
(21). Substituting o, into (21), we get

AVPw =QU (22)

where U = (TT, A:)/@M)U. The following result, which is
a special case of a more general result in [56] and [57], indicates
that a solution to (22) exists.

Lemma 1: Let T be a diagonal nonsingular M X M matrix.
There exists a unitary matrix S such that I'S has an equal-di-
agonal “R-factor” in its (standard) QR decomposition; i.e., IS
such that 'S = QR, where Q is an M x M unitary matrix and
R is an upper triangular matrix with equal diagonal elements
[R]ii = ( 2121 Y)YM fori = 1,2,..., M, where ~y;, is the
kth diagonal element of T". O

The matrix S in Lemma 1 can be obtained by suitably mod-
ifying [57, Algorithm 5]. The modified algorithm is provided
in Appendix I. Using that algorithm, we can obtain ¥ in (22).
By performing the QR decomposition of A}f\I’ we obtain
an upper trlaj\lzgular matrix U whose diagonal elements are all
equal to ( )1/(2M)  Finally, we obtain U using U =
(T2, ) 1/ (2M )U Thus, we have established the following
proposition.

Proposition 1: The (arithmetic) mean-square error

tr(Ree)/M of a block-by-block transceiver with a ZF-BDFD

achieves its minimized lower bound of (M /Po) (Hf\[ L) TYM

when the precoder F = /(po)/ VM\I'ZF, where
Wy is obtained by applying the algorlthm in Appendix I

to AMZ. The corresponding feedback matrix B = U — I,
where U is the unit-diagonal upper triangular matrix
U = ([IX,2)"YEMU and U is obtained from the

QR decomposition in (22). Substituting such F and B into (12)
yields the feedforward matrix W. O

From the above derivation, it is apparent that the precoder in
Proposition 1, which minimizes the arithmetic MSE, also mini-
mizes the geometric MSE. However, a precoder that minimizes
the geometric MSE does not necessarily minimize the arith-
metic MSE.

B. MMSE-BDFD

In this section, we consider joint transmitter—receiver design
for a system based on the MMSE-BDFD. The approach is sim-
ilar to that for the ZF-BDFD in the previous section, but the
details are substantially different.

Recall from Section II and Fig. 2 that the received vector
is y = HFs + v. Hence, the error between § and s is
e = Wy — (B + I)s. The covariance matrix of y is
R,, = (HF)(HF)” + R,,, and cross-correlation matrix
of sand y is Ry, = (HF)” = R/l In order to deter-
mine the minimum MSE feedforward matrix Wyvsg, we
exploit the standard first-order necessary condition for op-
timality known as the orthogonality principle [39], namely,
Eleyf] = WR,, — (B + I)R,, = 0. Therefore

Wunse = (B + )Ry R, (23)

Substituting (23) into (5), and invoking the matrix inver-
sion lemma (A + CB~'D)"! = A-! - A-IC(B +
DA! C)*lDA*1 [32], the covariance matrix of the error can
be written as

B+
(24)

R..avvse = (B +1) (I+ FYHYR,HF)

Our goal is to design the F and B to minimize the MSE subject

to the power constraint. Letting U = B + 1, the design problem

(6) can be rewritten as

. -1
min
F,U

subjectto  tr (FFH) < po,

unit-diagonal upper triangular matrix. (25b)

tr (U (I+ FYHYR'HF) UH) (252)

and U being a

Following the first stage outlined at the beginning of
Section III, we now obtain and minimize a lower bound on the
MSE. According to the trace-determinant inequality (15), we
have that

tr (U T+ FPHPRJHF) ' UY)
1/M
'HF)

> M’U (I+ FTHTR] UH‘

1M (26)

=M |1+ F'H"R;HF|"
Therefore, the lower bound on the MSE can be minimized by
solving
I+ F"H"R; HF| (27a)

max
F

subjectto  tr (FFH) < po. (27b)
As in the ZF case, the problem of minimizing the lower bound
depends only on the transmitter. We point out that the objective
in (27a) is equivalent to minimizing the geometric MSE implicit
in (26). Furthermore, the logarithm of the objective in (27a) is
the mutual information between the transmitter and receiver for
Gaussian signals. (An analogous observation has been made in
several similar contexts [9], [10], [17], [40], [52].) Hence, mini-
mizing the lower bound on the arithmetic MSE in (26) is equiv-
alent to maximizing the Gaussian mutual information.

Given that the problem in (27) is equivalent to maximizing
the mutual information for Gaussian signals, the solution in-
volves a “waterfilling” power allocation over the eigenvectors
of HYR;'H, [50]. More formally, the solution depends on a
parameter r < K which is the largest integer satisfying 1/, <
(Po+2251 A ~1)/r. 1f we define ¢ = min{r, M}, then the fol-
lowing set of precoders4 minimize the lower bound [50], F =
Vq[@ 04x (M—q)) ¥, where @ is a ¢ x ¢ diagonal matrix with
diagonal elements satisfying

1 _
|piil? = P0+Z/\1 — X (28)

Uf M = K andr = K, orif \; > A 41, this set is the set of all precoders
that minimize the lower bound.
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and W is an arbitrary M x M unitary matrix.> In that case, the
minimal value of the lower bound on the MSE generated by (26)
and (27) is

—q/M

q q
Anase > M | po+ Y AT 1T /\j_l/M (29)
=1 j=1

which is independent of our design parameters F' and B.
Moving to the second stage of our general approach, we
now determine a transceiver that achieves the minimized
lower bound in (29). For ease of exposition, we define
® =[® 0, (1) Substituting F = V, & into (24) and
(25a), the arithmetic MSE is tr(Ree vmmse) /M, where
Re,g?MMSE = U‘I’H(IM + (i)TAqi))_l‘I’UH. 30)
Using the trace-determinant inequality (15), for the MSE
to achieve its minimized lower bound, we must choose
U and ¥ so that Reevuse = 21 where 52 =
q/M(po + X 0_ A7) TM T, A;UM. That is, a system
of the form in (28) achieves the minimized lower bound on
the MSE in (30) if and only if we can find U = (1/5.)U and
unitary matrices ¥ and Q so that
(Ins + 3TA,8)/2® = QU. (31
According to Lemma 1, there exists a unitary matrix ¥ such that
the QR decomposition of (I5; + ®7A,®)'/2® has an upper
triangular “R-factor” with diagonal elements all equal to |(Ins +
éTAqé)l/z\I'P/(zM). This unitary matrix can be obtained by
applying the algorithm in Appendix I to (In; + ®TA,$)1/2.
We summarize this result in the following proposition.
Proposition  2: The mean-square error tr(R..)/M
for a block-by-block transceiver with an MMSE-BDFD
achieves its minimized lower bound (29) when the precoder
F = Vq[¢' qu(M—q)]‘I’MMSE, where ® satisfies (28), and
W\ivsk is obtained by applying the algorithm in Appendix I
to (Ins + @Tﬂqtf’)l/ 2. The corresponding feedback matrix
B = U — I, where U is the unit-diagonal upper triangular
matrix U = (}efj and U is obtained from the QR decompo-
sition in (31). Substituting such F and B into (23) yields the
feedforward matrix W. O
As was the case for the ZF-BDFD in Section III-A, the pre-
coder in Proposition 2, which minimizes the arithmetic MSE,
lies within the set of precoders that minimize the geometric
MSE, but a precoder chosen arbitrarily from the set of pre-
coders that minimize the geometric MSE does not necessarily
minimize the arithmetic MSE. This observation provides a con-
nection between the proposed design and an earlier design for a
more general overlapping block transmission system in which
the transmitter was designed to minimize the geometric MSE
[52]. In the context of the block-by-block transmission schemes
that we have considered, the design in [52] corresponds to

5The rank of the resulting product HF is ¢, and hence if M were a design
variable rather than a parameter of the problem, a natural choice for M would
be M = r.
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choosing ¥ = I, rather than choice of ¥ = Wy;\gg in
Proposition 2. While the choice of ¥ = I, results in a system
that minimizes the geometric MSE, it does not minimize the
arithmetic MSE in the general case. In addition, the SINR for
each element of the block may be different. In contrast, the
choice of ¥ = Wy ;g minimizes the geometric MSE and the
arithmetic MSE, and provides an equal SINR for each element
of the block.

The choice of ¥ also has an impact on the nature of coding
strategies for approaching the capacity of the block-by-block
transmission system. From the discussion following (27), it is
evident that the Gaussian mutual information is maximized by
choosing M = r and employing a transmitter matrix of the
form F = V,®WP, where ® satisfies (28) and W is an arbi-
trary 7 X r unitary matrix. Since the MMSE-BDFD is a “canon-
ical” receiver® for Gaussian signals [9], [10], [23], this suggests
that by using sufficiently powerful codes, reliable communica-
tion at rates approaching the capacity of the block transmis-
sion system can be achieved by employing any F of this form
and the MMSE-BDEFD [9], [10], [23]. The choice ¥ = I, re-
sults in a “vector coding” scheme [10], [29], [30], [36], [41] in
which the feedback component of the MMSE-BDFD is inac-
tive; i.e., B = 0. Vector coding induces an equivalent system
with r parallel Gaussian subchannels, each with a possibly dif-
ferent SNR p;. (Standard DMT modulation schemes [5], [8] are
a class of vector coding schemes.) Therefore, one can approach
the capacity of the block transmission scheme by choosing the
code for the ith element of the block to be one that approxi-
mates the ideal Gaussian code of rate b; = log,(1 + p;) bits
per channel use. (Such approximations will often involve the
selection of a constellation for each element of the block.) The
choice ¥ = W) \sk results in a system in which the feedback
component of the MMSE-BDFD is active, and the inputs to the
decision device are uncorrelated and have identical SINRs p.
Since the MMSE-BDFD is a canonical receiver, this suggests
that one can also approach the capacity of the block transmis-
sion system by employing an independent instance of the same
approximation of the ideal Gaussian code of rate b = log,(1+p)
for each element of the block. The MMSE-BDFD used when
¥ = ¥y \isg is more complicated to implement than the linear
detector of the vector coding scheme because of the need to
compute the feedback signal. However, the vector coding ap-
proach requires the design (and implementation) of (up to) r
codes, one for each element of the block, whereas the proposed
design requires the design of only one code.

IV. BIT ERROR RATE PERFORMANCE

In this section, we show that the (F,B) pairs designed in
Section III to minimize the arithmetic MSE also minimize the
(dominant components of the uncoded) BER of a block trans-
mission system with uniform bit loading at moderate-to-high
block SNRs. We define the average BER of the detected signal

The term “canonical” is used to denote the fact that in the absence of error
propagation, employing an MMSE-BDFD in place of the optimal detector does
not reduce the achievable data rate [9], [10]. Methods for exploiting this property
of the MMSE-BDFD were described in [24] and [48].
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to be the average of the probability of error of each element of
the block; i.e.,

1 M
P, =— P, ; 32
M; , (32)

where P, ; denotes the BER of the ¢th symbol s;. For ease of
exposition, we will deal with the ZF and MMSE-BDFDs sepa-
rately. We will begin with the case of the ZF-BDFD.

A. ZF-BDFD

For the ZF-BDFD7 and for square® QAM signaling with 2b;
bits per symbol, if all the previous decisions are correct, P, ; is
closely approximated® by [7]

P.; ~ P.; = ajerfc(\/Bipizr) + Gerfe(3v/Bipizr) (33)

where erfc(z) = (2/y/x) [° e~ dz is the error function com-
plement, p; zF is the decision point SNR for the <th symbol in
the block, ov; = (V4% — 1)/(b;V4%), B; = 3b; /(4% — 1), and
¢ = (V4 —2)/(b;/4b). Hence

- 1 Mo
P.~P. = M;Pe,i.

Under the assumption that all the previous symbols were cor-
rectly detected, we have that

Els?
pi,ZF = 7 53] (34)

|8; — s:]?]

and under our assumptions that E[ss”] = I and E[sv] = 0,
this expression simplifies to

1

. (35)
ee,ZF]ii

Pi,ZF = [R

Therefore, the average BER can be closely approximated by

M
- 1
P.~ P = Vi ; ajerfe ( /Bi/[Ree,ZF]ii)

+ (erfe (3\/[3¢/[R56,ZF]ii> . (36)

Since our precoders generate equal decision point SNRs for
each element of the block, we will assume uniform bit-loading
in the remainder of this section, and therefore we will drop the
element index ¢ in «;, ; and (;. When [Rec zrlii < 206/3,

TWe implicitly assume that rank(H) > M so that the ZF-BDFD exists.

8For notational simplicity, we have restricted our attention to square QAM
constellations. The extension to rectangular QAM constellations can be derived
in a straightforward manner using the BER expressions in [7] and [53].

9In the case of QPSK signaling, the expression in (33), in which (; = 0, is
exact.

which corresponds to moderate-to-high SNRs, P, is a convex
function of [R..]:, [12], [13], [36]. By applying Jensen’s in-
equality [11] to (36), we obtain the following lower bound on
the average BER:

P. > aerfc ( [)’M/tr(Ree,ZF)>

+ Cerfc (3\/ﬂM/tr(Ree,Zp)> . (37

Equality in (37) holds if and only if the diagonal elements of
Ree zr are equal.

Equation (37) exposes an intriguing relationship between the
(arithmetic) MSE and the BER. Since minimizing tr(Re.,zr)
simultaneously minimizes both terms in the summation on the
right-hand side of (37), minimizing the lower bound on P, in
(37) is equivalent to minimizing the MSE; i.e., it is equivalent
to minimizing tr(Re. zr). Therefore, the lower bound on P.
achieves its minimum value if the MSE is minimal. However,
for the actual P, to achieve its lower bound [i.e., for (37) to hold
with equality], the diagonal elements of R.. zr must be iden-
tical.!? Fortunately, the design proposed in Proposition 1 results
in Ree zr = JSI, and hence the proposed design, which mini-
mizes the (arithmetic) MSE of a ZF-BDFD, also minimizes the
BER of the ZF-BDFD at moderate-to-high SNRs, in the sense

that it minimizes P, in (36).

B. MMSE-BDFD

The analysis of the previous section can be extended to the
case of the MMSE-BDFD if the residual intrablock interference
on each element of the block is approximated by a Gaussian
random variable. For large block sizes, this approximation is
(almost surely) sufficiently accurate for all but the last few el-
ements of the block (see [25], [38], and [54]), and hence it is
appropriate for our analysis. In order to account for the bias in
the MMSE-BDFD (e.g., [9]), we can express the BER as a func-
tion of the decision point SINR of the ith element of the block
[91, [101, [36]

1

-1
ee, MMSEii

Pi,MMSE = i (38)

(Note that 0 < [R.. mmseli < 1.) By replacing p; zr in (33)
by p; mMsE, the BER of the MMSE-BDFE can be approximated
by

M
~ 1
P.~P. = i ; ajerfe (\//Bi(([Ree,MMSE]ii)_l - 1))

+ (erfe (3\/ﬂi(([Ree,1vIMSE]n)1 - 1)) . (39

As was the case for the ZF-BDFD, this function is convex in
[Ree,MMSE]ii when [Ree,]\’I]\’ISE]ii is below a (reasonably large)

10The alternative analysis in [47] generates a related observation.
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threshold [6], [36], and hence for a system in which uniform bit
loading is applied, Jensen’s inequality can be used to show that

P. > aerfc <\/ﬂ(M/tr(Ree,MMSE) - 1))

+ Cerfc (3\/ﬂ(M/tr(Ree,l\fﬂ\'ISE) - 1)) (40)

with equality holding when the diagonal elements of R MvsE
are equal. Hence, using similar arguments to those used in the
case of the ZF-BDFD, the design proposed in Proposition 2,
which minimizes the arithmetic MSE of the MMSE-BDFD and
results in Ree vivse = c}gI, also minimizes the BER of the
MMSE-BDFD at moderate-to-high SNRs, in the sense that it
minimizes P. in (39).!!

V. PERFORMANCE ANALYSIS

In Section IV, it was shown that the precoders that we
designed in Section III (essentially) minimize the BER of the
BDFD, under the assumption that the decisions that are fed
back in the receiver are correct. It can also be shown (see
Appendix II) that under the same assumption, the optimized
system for an MMSE-BDFD provides a lower BER than the
optimized system for a ZF-BDFD, and that each optimized
BDFD system provides a lower BER than the optimized system
for the corresponding linear detector; see [6], [12], and [36].
That said, an incorrect decision in a BDFD can make it more
likely that subsequent errors will occur by feeding back in-
correct decisions. This may lead to error propagation across
the block. (Recall that error propagation between blocks is
explicitly avoided in block-by-block communication systems.)
A standard bound on the probability of error of a conventional
decision feedback equalizer in the presence of error propagation
is a simple multiple of the probability of error in the absence of
error propagation [16]. This suggests that the systems designed
in Section III should perform well in the presence of error
propagation. (A bound that is sometimes tighter [1] gener-
ates similar insight.) In this section, we seek to verify these
suggestions by analyzing, via simulation, the (uncoded) BER
performance of the system when error propagation may occur.

We will consider two communication scenarios: zero-padded
block transmission [41], [42], [44] through a (quasi-static)
scalar finite impulse response (FIR) frequency-selective fading
channel that is constant over the length of the block; and trans-
mission through a narrow-band (i.e., frequency-flat) multiple
antenna fading channel with at least as many receive antennas
as transmit antennas [18]. In the first scenario, the channel
matrix H is a tall, lower triangular, Toeplitz matrix, but in the
second scenario H does not possess any deterministic structure.
We will evaluate the average BER performance of various
transceivers for these channels in the presence of additive white
Gaussian noise at the receiver; i.e., R,, = o2I. We will plot
the BER performance curves as a function of the (system) SNR,

lNote that if M > 7, then rank(F) < M and hence the lower bound on
the BER in (40) will be quite high. If M were a design variable, rather than a
parameter of the problem, reducing the symbol rate to A/ = r would result in
a substantial reduction in the error rate of the optimized system.
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which we define as being the ratio of the transmitted energy per
symbol to the noise variance; i.e., (po/M)/o?.

In addition to the transceivers we designed for the ZF-BDFD
and MMSE-BDFD in Section III, for which the precoders are
denoted by Fopr zr BDFD and FopT MMSE-BDFD, respec-
tively, when M = K, we will also consider the direct transmis-
sion scheme, for which the precoder is

F1 = \/po/M Iy

and the discrete Fourier transform (DFT) precoded scheme, for
which the precoder is

Fprr = /po/M D*

where D is the normalized M x M DFT matrix. For the pre-
coders in (41) and (42), the receiver matrices B and W are
chosen according to the (separate) design procedures for the
ZF-BDFD and MMSE-BDEFD in [44]. (Note that the precoders
in the direct and DFT schemes are channel independent.) For
all these precoders, we provide BER curves for the idealized
detector, in which the decisions that are fed back are correct,
and for the practical detector, in which the actual decisions are
fed back (and hence error propagation may occur).

In order to assess the extent of the performance gains (de-
rived in Appendix II) of the optimized BDFD systems over
the optimized system for the corresponding linear detector, we
will include the performance of systems with linear ZF and
MMSE detection and precoders designed so that the BER at
moderate-to-high block SNRs is minimized [6], [12], [36].
Using the notational conventions in Sections II and III, in par-
ticular the ordered eigendecomposition HZR,/H = VAV
a minimum BER precoder for the linear ZF detector is [12]

(41)

(42)

Fopr—zr—L = {/po/tr (A;;ﬂ) VMAE;MD 43)
and one for the linear MMSE detector is [6], [36]
Fopr_mumse—1 = Vi[T  Opx(a—p)|D (44)

where the integer £ = min{¢, M }, where / is the largest integer
such that

‘ ¢
)\;1/2 Z)\;1/2 _ Z)‘J_l < o
j=1 j=1

and Y is a k X k diagonal matrix with diagonal elements
satisfying

k -1
o= (P 2= A\ 12y
Vii| = Zk )\_1/2 i i

J=17

A. Scalar Frequency-Selective Fading Channel

In this section, we consider the case of zero-padded block
transmission through a (quasi-static) scalar FIR frequency-se-
lective fading channel. In this case, the direct transmission
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BER

SNR, dB

Fig. 3. Average BER performance of the ZF-BDFD for the various
precoders and the linear ZF detector with its optimal precoder in the scalar
frequency-selective fading channel scenario in Section V-A. The solid curves
denote performance achieved in the absence of error propagation, and the
dashed curves incorporate the effects of error propagation. *: optimized scheme
Fopr_zr_Bprp; 0: direct (SCZP) F;; x: DFT (ZP-OFDM), Fppr; ©:
optimized linear ZF scheme Fopr_7r _1..

scheme in (41) is sometimes referred to as the single-car-
rier zero-padded (SCZP) scheme [49], and the DFT pre-
coded scheme is sometimes called the zero-padded OFDM
(ZP-OFDM) scheme [34]. We consider a scenario in which the
channel is of length L + 1 = 5 and L zeros are appended to
each block of channel symbols u. The symbol block s is of
length M = 16, and we consider square precoders F. (Hence,
K = 16 and P = K 4+ L = 20.) Each element of s is an
independently selected symbol from the 4-QAM constellation,
with each constellation point being equally likely. In Fig. 3
we plot the BER for the ZF-BDFD transceivers, averaged over
10000 channel realizations. (In the optimized designs, the
transceiver was redesigned for each channel realization.) For
each channel realization, the tap coefficients were generated
independently from a zero-mean circular complex Gaussian
distribution and then normalized so that the impulse response
had unit energy. It is clear from the solid curves in Fig. 3 that
in the absence of error propagation, the design proposed in
Proposition 1 performs better than all the other transmission
schemes,'2 although the SNR gain over the direct transmission
(SCZP) scheme is rather small (around 0.5 dB at a BER of
10~%). Furthermore, the dashed curves demonstrate that this
performance advantage is maintained in the presence of error
propagation. In particular, the performance of the proposed
scheme in the presence of error propagation is as good as the
performance of the SCZP scheme in the absence of error prop-
agation. The combination of the DFT transmitter (ZP-OFDM)
and the ZF-BDFD performs poorly at moderate-to-high block
SNRs. In fact, it is apparent from Fig. 3 that the linear ZF
detection scheme with its minimum BER precoder [12] per-
forms better than the combination of the DFT transmitter

12A5 predicted by the derivation in Section IV-A, the proposed precoder per-
forms better than all other transmission schemes for each realization of the
channel.

BER

SNR, dB

Fig. 4. Average BER performance of the MMSE-BDFD for the various
precoders and the linear MMSE detector with its optimal precoder in the
scalar frequency-selective fading channel scenario in Section V-A. The solid
curves denote performance achieved in the absence of error propagation, and
the dashed curves incorporate the effects of error propagation. A: optimized
scheme Fopr_nmMmse_Bprp; 0: direct (SCZP) F;; x: DFT (ZP-OFDM)
Fprr; O: optimized linear MMSE scheme Fopr_MMsE—1-

and the ZF-BDFD. However, as predicted by the analysis in
Appendix II, the optimal precoder for the ZF-BDFD provides
substantially better performance than the combination of the
linear ZF detector and its minimum BER precoder.

The corresponding results for the MMSE-BDFD are pro-
vided in Fig. 4. The same trends are observed and the SNR
gains are at least as large. Furthermore, the improved BER
performance of the optimized MMSE-BDFD system over
the optimized ZF-BDFD system predicted by the analysis in
Appendix II can be clearly observed. In both Figs. 3 and 4, the
performance of the optimized scheme in the absence of error
propagation is indistinguishable from the corresponding bound
on 155 in Section IV; see (37) and (40), respectively.

An interesting by-product of the above performance evalu-
ation is the good performance provided by the (channel-inde-
pendent) direct transmission scheme (SCZP). In fact, the SCZP
scheme is an optimal channel independent transmission scheme
for systems that employ linear [31] or maximum likelihood
[49], [55] detection, and it approaches the diversity-multi-
plexing tradeoff for a standard class of FIR channels as the
block length grows [21]. These desirable characteristics are
due, in part, to the fact that the SCZP scheme preserves the
good conditioning properties implicit in the tall lower-trian-
gular Toeplitz structure of the channel matrix.

B. Multiple Antenna Systems

In this example, we consider the case of narrow-band trans-
mission over a multiple antenna channel with at least as many
receiver antennas as transmitter antennas. In this scenario, the
combination of the direct transmission scheme and a BDFD is
sometimes referred to as (uncoded) V-BLAST with a (fixed-
order) “nulling and cancelling” receiver [4], [18], [20]. We con-
sider a standard Rayleigh model for the channel in which the
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BER

SNR, dB

Fig. 5. Average BER performance of the ZF-BDFD for the various precoders
and the linear ZF detector with its optimal precoder in the narrow-band multiple
antenna scenario in Section V-B with three transmitter antennas, three receiver
antennas, and A = 3 symbols per block. The solid curves denote performance
achieved in the absence of error propagation, and the dashed curves incorporate
the effects of error propagation. *: optimized scheme Fopr_zr_BpDFD; O
direct F;; X: DFT Fppr; ©: optimized linear ZF scheme Fopr_zp_1; V:
OSTBC. For later reference, the unmarked curves are for the optimized scheme
with M = 2.

BER

30

SNR, dB

Fig. 6. Average BER performance of the ZF-BDFD for the various precoders
and the linear ZF detector with its optimal precoder in the narrow-band
multiple antenna scenario in Section V-B with three transmitter antennas and
four receiver antennas. The legend is the same as that in Fig. 5.

paths between antennas are modeled as independent zero-mean
circular Gaussian random variables of unit variance.

We will focus on scenarios with K = 3 transmitter antennas
and P = 3 or 4 receiver antennas in which M = K = 3
symbols are transmitted per channel use. Each element of s is
an independent and equally likely 4-QAM symbol. Therefore,
the bit rate of each scheme is 6 bits-per-channel-use (bpcu). In
Figs. 5 and 6, we plot the average BER performance over 10 000
channel realizations of the various transmission schemes with
the ZF receivers, and in Figs. 7 and 8 we plot the corresponding
curves for the MMSE receivers. While most of the basic trends
from the case of the scalar frequency-selective channels are
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BER

SNR, dB

Fig. 7. Average BER performance of the MMSE-BDFD for the various
precoders and the linear MMSE detector with its optimal precoder in the
narrow-band multiple antenna scenario in Section V-B with three transmitter
antennas and three receiver antennas. The solid curves denote performance
achieved in the absence of error propagation, and the dashed curves incorporate
the effects of error propagation. A: optimized scheme Fopr_mmMseE—BDFDS
o:direct F';; X: DFT Fprr; : optimized linear ZF scheme Fopr_vmse—1;
V: OSTBC. The dotted curve denotes the lower bound on P, in (40).

BER

30

Fig. 8. Average BER performance of the MMSE-BDFD for the various
precoders and the linear MMSE detector with its optimal precoder in the
narrow-band multiple antenna scenario in Section V-B with three transmitter
antennas, four receiver antennas. The legend is the same as that in Fig. 7.

maintained in the multiple antenna scenario, the performance
advantages of the precoders designed in Section III are much
greater. (The SNR gains are of the order of 6-8 dB at a BER of
10~%.) This can be attributed to the fact that the channel matrix
H does not possess any deterministic structure. In particular, the
probability of encountering a channel matrix that does not have
M substantial singular values is not negligible. Since the pro-
posed designs provide significantly better performance in those
cases, the average performance is also substantially improved.
As expected, the performance of the optimized ZF-BDFD
scheme in the absence of error propagation in Figs. 5 and 6
is equal to the lower bound on 135 in (37). (Recall that we are
using 4-QAM signaling.) However, in the MMSE-BDFD case,
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the lower bound on f’e in (40) is distinguishable from the simu-
lated BER in the absence of error propagation. This is due to the
fact that the block size (M = 3) is small enough for the inaccu-
racy of the Gaussian approximation of the residual interference
to result in a discernible difference between the BER and ]58.
That said, even for this small block size, f’e is an accurate ap-
proximation of the BER in the absence of error propagation.

A few other features of Figs. 5-8 are worthy of note. First,
the average performances of the direct and DFT transmission
schemes are essentially the same. This is to be expected because
the statistics of H are unitarily invariant. Second, the increase
in the diversity provided by the channel when using P = 4 re-
ceiver antennas rather than P = 3 is clear from the different
slopes of the BER curves at high SNR. Finally, the performance
advantage of the optimized MMSE-BDFD scheme over the op-
timized ZF-BDFD scheme is significant in the case of P = 4
receiver antennas and is substantial in the case of P = 3. The
performance advantage of the optimized MMSE-BDFD scheme
is due, in part, to the fact the power allocated to the first M
eigenmodes of H* R} H depends on the corresponding eigen-
values. In particular, weak eigenmodes might not be allocated
any power at all. In contrast, the optimized ZF-BDFD scheme
allocates power uniformly over these eigenmodes. The larger
performance advantage of the optimized MMSE-BDFD scheme
in the case of P = 3 is due to the larger probability of en-
countering a channel matrix such that H? R,' H does not have
M = 3 significant eigenvalues.

For reference, we have included the performance of a stan-
dard orthogonal space-time block coding (OSTBC) scheme
in Figs. 5-8. (Like the direct and DFT transmission schemes,
OSTBC schemes were designed to be applied without knowl-
edge of the channel at the transmitter.) We have used the
(symbol) rate 3/4 code in [19] (which is a simplified version of
that in [45]), and hence in order to achieve a bit rate of 6 bpcu,
a natural choice for the underlying constellation is 256-QAM.
(We assume that the channel is constant for the four channel
uses that are required to transmit the codewords.) As expected,
at high SNR, the OSTBC scheme provides better BER per-
formance than that direct transmission (V-BLAST) scheme.
However, the proposed precoder (which exploits knowledge of
the channel) provides substantially better performance when
P = 4 receiver antennas are employed, and when P = 3 and
the MMSE-BDFD receiver is used.

When P = 3 receiver antennas are employed and the
ZF-BDFD is used, the OSTBC scheme performs better than
the optimized scheme at high SNRs. This does not contradict
the optimality of the proposed transceiver design, because the
values of m, k and P, and the structure of the channel matrix,
are different for the OSTBC scheme.!? The good performance
of the OSTBC scheme at high SNRs is simply a manifesta-
tion of the tradeoff between error rate (achievable diversity)
and symbol rate in multiple antenna fading channels without
outer codes [46]. (That tradeoff is related to the fundamental
diversity-multiplexing tradeoff [58].) The symbol rate of the
OSTBC scheme is significantly lower than that of the proposed

131n this example, the channel matrix for the OSTBC scheme is I, @ H, where

¢ denotes the Kronecker product and H is the channel matrix for the other
schemes. The corresponding block sizes are P = 12, K = 12, and M = 3.

scheme.!* Hence, in the range of SNRs in which noise dom-
inates the error performance, the proposed scheme provides
better performance than the OSTBC scheme, but in the SNR
range in which the channel condition dominates the error
performance, the OSTBC scheme provides better performance.
To illustrate that point, in Fig. 5 we plotted with unmarked
curves the performance of the proposed ZF-BDFD scheme
with a symbol rate of M = 2 (as distinct from the scheme
with M = 3 described above). In order to maintain a bit rate
of 6 bpcu, the elements of s were taken, in an independent and
equally likely fashion, from an 8-QAM constellations, and for
consistency, the SNR was defined to be (po/3)/o?. Over the
range of SNRs considered, the performance of the proposed
ZF-BDFD scheme with M = 2 is substantially better than that
of the OSTBC scheme, with SNR gains of over 7 dB.

VI. CONCLUSION

In this paper, we have jointly designed the precoder and
the feedback matrix of a block-by-block transmission scheme
equipped with a zero-forcing or MMSE intrablock decision
feedback detector. The designs minimize the arithmetic mean
of the expected squared errors at the decision point, under the
standard assumption that the previous symbols were correctly
detected. The covariance matrix of the minimized error is white,
and hence the proposed designs also minimize the (dominant
components of the) bit error rate of a uniformly bit-loaded
transmission system. In our simulations, the proposed systems
performed significantly better than standard precoding systems
and retained their performance advantages in the presence
of error propagation. In the case of the MMSE-BDFD, the
proposed design also maximizes the Gaussian mutual infor-
mation. Since the MMSE-BDFD is a “canonical” receiver [9],
[10], [23], this suggests that by using the proposed transceiver
design, one can approach the capacity of the block transmission
system using (independent instances of) the same (Gaussian)
code for each element of the block.

APPENDIX 1
ALGORITHM FOR LEMMA 1

To state the algorithm succinctly, we make the following def-
initions: g = ( i\[:l y2)1/M; [S].}, denotes the kth column of
S and sy, denotes its elements; Z;, denotes the first k£ columns
of S and Z;- denotes its orthogonal complement; P = I —
A(AHA)~TAH The recursion will be based on the (M — k) x
(M — k) matrix

A®) = (TZi))" Pz TZi - (45)
For convenience, we assume that the elements of I" are arranged
in nonincreasing order. The algorithm proceeds as follows.

1) Initialization: Set k& = 1. An explicit solution for the first
column of S is s11 = /(g9 —73,)/(V3 —73,), sm1 =
\/(712 —9)/(F —73),sa =0forl =2,3,...,M—1.

141n particular, in four consecutive channel uses, the proposed scheme trans-

mits 40 = 12 symbols, whereas the OSTBC scheme transmits only three
symbols.

Authorized licensed use limited to: McMaster University. Downloaded on July 13,2010 at 06:24:13 UTC from IEEE Xplore. Restrictions apply.



976

2) Construct A®) jp (45) and its eigendecomposition,
AF) = VRIAE) (VR))H
3) Set the (k+1)th column of S to be
)1 = ZEVFy®),

where

k k k v

k k k k k
yB = O = /080 a8, =0

for/ =2,3,..., M — k — 1.
4) Increment k. If & < M — 2 return to 2). Otherwise, set
[S].ar = Z3;_, VM2 y(M=1) \yhere

g0 = (g = A8 ) Z -y

M-—1 M-=2 M-=-2 M-=2
gD = (O gy (M \My

APPENDIX II
ANALYTIC PERFORMANCE COMPARISONS

It was shown in Section IV that the precoders designed in
Section III achieve the minimized value of the lower bound on
155; see (37) and (40). Therefore, the relative BER performance
of the optimized ZF-BDFD and MMSE-BDFD systems in the
absence of error propagation can be determined by simply com-
paring the optimal values of the MSE &2 = tr(R..)/M. (A pre-
liminary version of this appendix appeared in [33], and related
results on the MSEs of conventional decision feedback equal-
izers appear in [2, ch. 8].)

In order to ensure that the ZF systems exist, we will assume
that rank(H) > M, and to simplify the comparisons, we will
also assume that the transmitted power pg is large enough that
q = M in (28) for the MMSE-BDFD and ¢/ = M in (44) for the
linear MMSE detector.!5 Proposition 1 states that the minimum
value of the MSE for a ZF-BDFD system is

COPT_ZF-BDFD = M [Apg| 7™M
Po
and Proposition 2 states that the minimum value of the MSE for
an MMSE-BDFD system is

_2 _ A —1/M
EOPT-MMSE—BDFD = — =<1 |A] .
po +tr(Ay)

Since Aj is positive definite, €3pp \vsE BDFD <
e3pr_zr_pprp. and hence, in the absence of error prop-
agation, the optimized MMSE-BDFD system will provide a

15The assumption that rank(H) > M ensures that there is a threshold value
for pg above which ¢ = M and ¢ = M.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 3, MARCH 2006

lower BER than the optimized ZF-BDFD system. While it is
intuitively obvious that for a given precoder, the MMSE-BDFD
will provide a lower MSE than the ZF-BDFD, in the case of
optimized precoders, this lower MSE leads directly to a lower
BER.

The analysis of Section IV remains valid for systems with
linear detectors, so long as the constraint B = 0 is enforced.
Therefore, we can compare the BER performance of an opti-
mized BDFD system with that of the system that is optimized
for the corresponding linear detector by simply comparing their
minimum MSEs. The minimum MSE of a system with a linear

ZF detector is [12]
(o (3577

M - ,
—1/M _ 22
2 p—o |A ] = €OPT-ZF-BDFD

5 1
€OPT-ZF-L — Mpo

where we have used the trace-determinant inequality (15).
Therefore, in the absence of error propagation, the optimized
system for the ZF-BDFD will provide a lower BER than the
optimized system for the linear ZF detector. Similarly, the
minimum MSE of a system with a linear MMSE detector is
[6], [36]

2
€OPT-MMSE-L

o ooe(30) - (o (57)
(o (357))

M ~ /
— AT
po + tr (AK})

_ 2
= €OPT—-MMSE-BDFD

>

and hence the optimized system for the MMSE-BDFD provides
a lower BER than the optimized system for the linear MMSE
detector. As observed in [6], €3 pr_\MSE_L < €HPT_zF—Ls
and hence the optimized system for the linear MMSE detector
provides a lower BER than the optimized system for the linear
ZF detector.
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