
Blind Adaptive Space-Time Processing for

Cyclostationary Signals

Jie Zhang, K. Max Wong∗, and Timothy N. Davidson

Department of Electrical and Computer Engineering,

McMaster University,

Hamilton, Ontario, Canada, L8S 4K1.

9 July 2001

Abstract

In this paper we present a blind adaptive space-time processing algorithm for separating

signals which are spectrally and/or spatially overlapped. The algorithm exploits the cyclosta-

tionary nature of many communication signals, but does not require knowledge of the statistical

properties of the desired signal. It merely requires knowledge of a (distinct) cycle frequency. It

is shown that the performance of the algorithm converges at a rate O(1/N), where N is the

number of received samples, to the performance of the optimal (trained) receiver with the given

structure. Furthermore, we provide an (algebraic) analysis of the performance of a multiuser

communication system which employs our receiver, and confirm this result in simulation exam-

ples. These examples demonstrate that our cyclic adaptive space-time processor is an attractive

alternative to beamforming or filtering alone.
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1 Introduction

A commonly encountered problem in multiuser communication systems is the extraction of the

desired signal from co-channel interference that may overlap spectrally with the desired signal.

Conventional filtering techniques are unable to perform this extraction, but a very useful property

that can be exploited to accomplish this task is the cyclostationarity of the signals [1, 2]. (A cy-

clostationary signal has a mean and variance which vary periodically in time. A formal definition

is given in Section 2.) The optimum frequency-shift (FRESH) filtering technique, called the cyclic

Wiener filter [3], enables us to separate spectrally overlapped signals by using the cyclostationarity

of the signals. The idea of retrieving cyclostationary signals in a multiuser environment has been

studied [4, 5], and blind channel identification and equalization methods using induced cyclosta-

tionarity have also been proposed [6, 7, 8]. The advantage of such blind methods is that we do not

need to have the statistics of the desired signal, nor a training signal, which, in practice, are often

not available. Another important application of cyclostationarity is beamforming in a multiuser

communication system. It has been shown [9, 10] that spatial re-use of allocated frequency slots

by employing an antenna array with multiple beams increases the system capacity substantially.

Cyclostationarity of signals can be exploited to arrive at blind adaptive array beamforming algo-

rithms [11, 12, 13]. These beamforming methods have been proposed to be applied to cellular radio

systems to increase the capacity of the system [14, 15]. The main advantages of such blind adap-

tive beamforming algorithms are: 1) No reference signal is required; 2) No advanced knowledge

of the correlation properties of noise and interference is needed; 3) No antenna array calibration

is necessary. For the above blind processing techniques, whether filtering or beamforming, signal

selectivity is achieved using the knowledge of the cyclostationarity of the desired signal. However,

if the spectral overlap between the desired signal and the interference is very large, the performance

of blind adaptive FRESH filtering will deteriorate [5]. Likewise, if the desired signal and the inter-

ference are spatially too close to each other, the blind cyclostationary beamforming techniques will

also deteriorate in performance [15].

In this paper, we propose to combine the above cyclostationarity-based filtering and the beam-

forming techniques to separate signals which are spectrally and/or spatially overlapped. The re-

sulting methods will be called Cyclic Adaptive Space-Time (CAST) processing techniques. In

particular, we introduce a blind CAST (B-CAST) technique which has the advantage that it does
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not need the knowledge of the statistical properties of the signal nor does it need a training sig-

nal. The convergence of the CAST algorithms is analyzed, showing that the convergence rate is

O
(
1/N

)
, where N is the number of samples received. For large N , it is also shown that B-CAST

has the same performance as CAST methods which employ a training signal. The performance of a

multiuser binary communication system employing a CAST processor is then analyzed. Computer

simulation results confirm the derived probability of error, and show that the communication sys-

tem with CAST processing at the receiver is superior in performance to that using cyclic adaptive

beamforming alone.

2 Cyclostationarity and the CAST Processor

A stochastic sequence x(n) is said to be cyclostationary in the wide sense [3] if its mean

and variance are periodic in n with some period M ; i.e., E[x(n)] = µx(n) = µx(n + M), and

E[x(n1)x(n2)] = Rxx(n1, n2) = Rxx(n1 + M,n2 + M), for all n, n1 and n2. The Fourier expansions

of µx(n) and Rxx(n1, n2) at (angular) frequency α are denoted by µα
x and Rα

xx(n1 − n2), and are

referred to as the cyclic mean and cyclic autocorrelation coefficients, respectively. They are given

by

µα
x = lim

N→∞
〈
µx(n)e−jαn

〉
N

, and Rα
xx(k) = lim

N→∞
〈
Rxx(n + k, n)e−jαn

〉
N

,

respectively, where 〈·〉N denotes the time average over N samples. The set of α for which Rα
xx(k) �≡

0 is called the cycle spectrum, and any such α is called an (angular) cycle frequency. A wide

sense cyclostationary process is said to be cycloergodic in the mean and autocorrelation if, with

probability 1,

µ̂α
x(N) =

〈
x(n)e−jαn

〉
N

m.s.−−→ µα
x

R̂α
xx(k,N) =

〈
x(n + k)x(n)e−jαn

〉
N

m.s.−−→ Rα
xx(k),

where m.s.−−→ denotes convergence in the mean-square sense.

In this paper, we assume all the signals, whether desired or interfering are complex, cycloergodic

in the mean and in autocorrelation [1, 2], and are independent from sample to sample. Furthermore,

we assume that the cycle frequencies of the desired signal are different from those of the interference.

This assumption is not restrictive since the desired signal and the interferences usually have different
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features. Even when the users in a multiuser scheme have the same modulation formats, carrier

frequencies, and symbol periods, different induced cyclostationarity for each user [6, 7, 8] can be

achieved. It is the utilization of the set of cycle frequencies to distinguish the desired signal from

the interferences that leads to the development of an effective B-CAST algorithm.

The general structure of a CAST processor is shown in Fig. 1, in which an antenna array of

L sensors is employed. We assume that the signal arriving at the antenna consists of the desired

signal s(n) together with I interfering signals ui(n), i = 1 · · · I, which may overlap spectrally with

the desired signal, and accompanied by white Gaussian noise ν(n). Thus, if we denote the signal

arriving at �th sensor by x�(n), then we can write

x(n) = d(θs)s(n) +
I∑

i=1

d(θui)ui(n) + ν(n) (2.1)

where x(n) = [x1(n) . . . xL(n)]T , [·]T denotes the transpose, and d(θs) and d(θui) are the array

manifolds (steering vectors) [16] for the signal and the ith interference arriving from angles θs and

θui respectively, and ν(n) is an L dimensional noise vector, assumed to be temporally and spatially

white.

The signal x�(n) arriving at the �th sensor is processed by a frequency-shift (FRESH) filter [3],

the structure of which is shown in Fig. 2. Each of the parallel branches of the FRESH filter processes

the input signal by shifting it, or its conjugate, in frequency by an (angular) cycle frequency α�m of

the desired signal and then passing it through an FIR filter of impulse response h�m(n). Without

loss of generality, we assume in this paper that all the FIR filters are of length Nh and that the

L FRESH filters in the CAST processor have the same number of branches M . To describe the

operation of the CAST processor in a concise way, we will use the following sliding window of data

samples received by the �th sensor:

x�(n) = [x�(n), x�(n − 1), . . . , x�(n − Nh + 1)]T , � = 1, . . . , L. (2.2)

This vector and its conjugate are frequency shifted to a cycle frequency α�m by the FRESH filter

resulting in 
 x̃�m(n)

x̃
′
�m(n)


 =

[
A�m A�m

] x�(n)

x∗
� (n)


 , m = 1, . . . ,M, (2.3)
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where

A�m = diag(ejα�mn, . . . , ejα�m(n−Nh+1)). (2.4)

Let X̃�(n) and H�(n) be the frequency-shifted received data matrix and the filter coefficient matrix

at instant n in the �th branch of the CAST processor, arranged as

X̃�(n) =
[
x̃�1(n), x̃′

�1(n), . . . , x̃�M (n), x̃′
�M (n)

]
, (2.5)

H�(n) =
[
h�1(n), h′

�1(n), . . . , h�M (n), h′
�M(n)

]
, (2.6)

where h�m(n) = [h�m(n), . . . , h�m(n − Nh + 1)]T and h′
�m(n) = [h′

�m(n), . . . , h′
�m(n − Nh + 1)]T are

the FIR filters respectively for the signals x̃�m(n) and x̃′
�m(n) at the nth sampling instant. The

output of the CAST processor can then be written as:

y(n) = vec†
(
H(n)

)
vec
(
X̃(n)

)
= η†(n)χ̃(n), (2.7)

where

H(n) = [H1(n), . . . ,HL(n)] , X̃(n) =
[
X̃1(n), . . . , X̃L(n)

]
, (2.8)

η(n) = vec
(
H(n)

)
, and χ̃(n) = vec

(
X̃(n)

)
, with a superscript † denoting the conjugate transpose.

The purpose of the adaptive CAST processor is to adjust the filter coefficients η(n) so that the

desired signal s(n) can be extracted from the interference ui(n) and noise ν(n).

To facilitate the representation of the processing of the components of the received data through

the CAST processor, we use the following sliding window of samples of the desired signal component

of the data received by the �th sensor:

s�(n) = [s�(n), s�(n − 1), . . . , s�(n − Nh + 1)]T , � = 1, . . . , L. (2.9)

Using definitions analogous to those in Eqs (2.3)–(2.8), the desired signal component of the output

of the CAST processor is η†(n)σ̃(n), where

σ̃(n) = vec
(
S̃(n)

)
, (2.10)

and S̃(n) is defined by analogy with X̃(n) in (2.8) Since the received data also contains the
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interfering signals and noise, then the frequency-shifted interference vector ι̃(n) and the frequency-

shifted noise vector ν̃(n) can be defined by analogy with Eq. (2.10).

The T-CAST Processor If a copy of the desired signal is available at the receiver, then s(n) or

its frequency shifted version can be used as a training signal (reference). Let this frequency-shifted

version of the desired signal be

s̃r(n) = s(n)ejαrn. (2.11)

An optimum CAST processor can then be designed to minimize the mean-square error of the

output; i.e., we seek to

min
η

JT = min
η

E

[∣∣∣s̃r(n) − η†(n)χ̃(n)
∣∣∣2] , (2.12)

giving rise to the Trained Cyclic Adaptive Space-Time (T-CAST) processor. Using the principle of

orthogonality [17], it is straightforward to see that the T-CAST filter coefficient vector is given by

ηT = R−1
χ̃χ̃ρχ̃s̃r

, (2.13)

where R−1
χ̃χ̃ is the correlation matrix of the frequency shifted data vector and ρχ̃s̃r

is the cross-

correlation vector between the frequency shifted data vector and the αr-shifted desired signal. We

note that Rχ̃χ̃ is almost always positive definite and thus non-singular [17].

The B-CAST Processor In a communication system, the transmission of a known training

signal may represent extra costs on bandwidth and overhead, and in some other applications, a

copy of the desired signal may simply not be available. In such cases, a Blind Cyclic Adaptive

Space-Time (B-CAST) processor will be desirable; i.e., we try to extract the desired signal from

the interference without a training signal and without knowledge of the statistics of the desired

signal. We blindly adapt the filter coefficients with prior knowledge of only the modulation type,

the carrier frequency, and the baud rate of the desired signal.

The configuration of the B-CAST processor is the same as that shown in Fig. 1, while its

input is given by Eq. (2.1). Our purpose is to extract the desired signal s(n) by adjusting the

filter coefficients so that the output closely approximates s(n). Since there is no reference signal

available, a suitable reference is created by taking the input x(n) and modulating it by a cycle

frequency αr of the desired signal; i.e., the reference signal r(n) of the B-CAST processor is given
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by:

r(n) = x(n)ejαrn = s̃r(n) +
I∑

i=1

ũri(n) + ν̃r(n), (2.14)

where s̃r(n) is given by Eq. (2.11) and ũri(n) and ν̃r(n) are respectively the αr-shifted versions

of ui(n) and ν(n), defined in an analogous way to s̃r(n). With αr �= α�m, � = 1, . . . , L, m =

1, . . . ,M , the B-CAST processor seeks to maximize the normalized correlation between y(n) and

r(n) by adjusting the filter coefficients η; i.e.,

max
η

JB = max
η

|Ryr|2
|Ryy||Rrr| , (2.15)

where Ruv = E[u(n)v∗(n)]. The rationale behind this is that if the output y(n) is a close approxi-

mate to desired signal s(n) and is relatively free from interference ui(n), i = 1, 2, . . . , I, and noise

ν(n), then it must have high correlation with the αr-shifted version of s(n) and must have low

correlation with the αr-shifted versions of ui(n) and ν(n) respectively. Thus, the correlation of

the two signals may provide a measure of the suppression of the interference and the closeness of

the output to the desired signal. In using this measure, we must ensure that the FRESH filters

in the B-CAST processor primary branch has no common frequency shift with the reference. The

optimum filter coefficients ηB can be obtained by substituting Eqs (2.7) and (2.14) into (2.15) and

applying the Schwarz inequality so that

ηB = R−1
χ̃χ̃ρχ̃r, (2.16)

where ρχ̃r = E[χ̃(n)r∗(n)]. We note that the optimum filter coefficients of both the T-CAST

and B-CAST processors as expressed in Eqs (2.13) and (2.16) have the form of the Wiener-Hopf

equation, being different only in the cross-correlator vectors used. A recursive method for up-

dating the coefficients in both processors can be obtained following the Widrow-Hoff algorithm [17]

by using s̃r(n) and r(n) as the respective reference signals and choosing an appropriate step-size.

Alternatively, we may window the frequency-shifted data vector χ̃(n) to obtain a time-averaged

estimate R̂χ̃χ̃(n) of the data correlation matrix Rχ̃χ̃ and establish the corresponding correlation

vectors with either s̃r(n) or r(n) and apply the standard recursive least-square (RLS) algorithm [17]

to up-date the filter coefficients. In the next section, we show that the RLS estimates of ηT and

ηB both converge to the same value under large sample time-average realization.
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3 Convergence Analysis of the CAST Processors

To realize the T-CAST and B-CAST signal processors of Eqs (2.13) and (2.16) respectively,

we have to employ time-averaged approximations of the correlation matrix and cross-correlation

vectors. To this end, we define the N -sample estimates of the correlation matrix of the signal vector

χ̃(n) and the cross-correlation vector of χ̃(n) and another signal q(n) as

R̂χ̃χ̃(N) =
〈
χ̃(n)χ̃†(n)

〉
N

and ρ̂χ̃q(N) = 〈χ̃(n)q∗(n)〉N , (3.1)

respectively. Thus, the finite-sample time-average realization of ηT and ηB in Eqs (2.13) and (2.16)

are given, respectively, by

η̂T (N) = R̂χ̃χ̃(N)ρ̂χ̃sr
(N) and η̂B(N) = R̂χ̃χ̃(N)ρ̂χ̃r(N). (3.2)

We will apply the 2-norms of a vector v and a matrix A, which are defined as

‖v‖ =
(
v†v

)1/2 and ‖A‖ = max
‖v‖=1

∥∥Av
∥∥, (3.3)

respectively. In the following theorem we state that the finite-sample realizations of the weight

vectors converge to their optimal values at a rate which is O
(
1/N

)
.

Theorem 3.1 Let Ψs and Ψu respectively denote the set of cycle frequencies of the desired signal

s(n) and interferences ui(n), i = 1, 2, . . . , I, and let them be such that Ψs
⋂

Ψu = ∅. Let α�m, � =

1, . . . , L, m = 1, . . . ,M, be the frequency shift parameters in the branches of the T-CAST and B-

CAST processors. Let αr be the frequency shift parameter in the reference branch of the B-CAST

processor be such that

α�m �= αr, and α�m, (α�m − αr) ∈ Ψs, ∀�,m. (3.4)

Suppose that R̂χ̃χ̃(N) is full rank for N ≥ 2MLNh with probability 1, then both η̂T (N) and η̂B(N)

converge in the mean-square sense to

ηopt = R−1
χ̃χ̃ρσ̃s̃r

(3.5)
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at rates which are O
(
1/N

)
.

Proof: As shown in Section 2, the frequency-shifted input data vector in a CAST processor contains

the frequency-shifted desired signal, interference, and noise vectors such that

χ̃(n) = σ̃(n) + ι̃(n) + ν̃(n), (3.6)

where σ̃(n) was defined in Eq. (2.10) and ι̃(n) and ν̃(n) are similarly defined. Under the assumption

that R̂χ̃χ̃(N) has full rank for N ≥ 2MLNh, we have

E

[∥∥∥R−1
χ̃χ̃ − R̂

−1
χ̃χ̃(N)

∥∥∥2
]

= E

[∥∥∥R−1
χ̃χ̃(R̂χ̃χ̃(N) − Rχ̃χ̃)R̂

−1
χ̃χ̃(N)

∥∥∥2
]

≤
∥∥∥R−1

χ̃χ̃

∥∥∥2
[∥∥∥R̂−1

χ̃χ̃(N)
∥∥∥2
]

E

[∥∥∥R̂χ̃χ̃(N) − Rχ̃χ̃

∥∥∥2
]

, (3.7)

where we have used the Schwarz inequality. From Eq. (3.1) and a property of matrix norms [18],

we have

E

[∥∥∥R̂χ̃χ̃(N) − Rχ̃χ̃

∥∥∥2
]
≤ E tr

[(
R̂χ̃χ̃(N) − Rχ̃χ̃

)(
R̂χ̃χ̃(N) − Rχ̃χ̃

)†]

= trE

[
1

N2

N∑
n=1

(
χ̃(n)χ̃†(n) − Rχ̃χ̃

)(
χ̃(n)χ̃†(n) − Rχ̃χ̃

)†]

+ trE


 1

N2

∑
m

∑
n

n �=m

(
χ̃(m)χ̃†(m) − Rχ̃χ̃

)(
χ̃(n)χ̃†(n) − Rχ̃χ̃

)†
=

1
N

trE

[(
χ̃(n)χ̃†(n) − Rχ̃χ̃

)(
χ̃(n)χ̃†(n) − Rχ̃χ̃

)†]
, (3.8)

where tr denotes the trace of a matrix, and in the last step we have used the assumption that χ̃(m)

and χ̃(n) are independent for m �= n, and therefore, the expected value of the product is equal to

the product of the expected values. Hence,

E

[∥∥∥R̂χ̃χ̃(N) − Rχ̃χ̃

∥∥∥2
]

= O
(
1/N

)
. (3.9)
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Using the boundedness of ‖R−1
χ̃χ̃‖2 and that of ‖R̂−1

χ̃χ̃(N)‖2 with probability 1, together with

Eqs (3.7) and (3.9) we obtain

E

[∥∥∥R−1
χ̃χ̃ − R̂

−1
χ̃χ̃(N)

∥∥∥2
]

= O
(
1/N

)
, for N ≥ 2MLNh. (3.10)

Following similar steps as in Eq. (3.9) and noting that ρχ̃r = ρχ̃s̃r
= ρσ̃s̃r

, we can also see that

E
[∥∥ρ̂χ̃s̃r

(N) − ρσ̃s̃r

∥∥2
]

= O
(
1/N

)
and E

[∥∥ρ̂χ̃r(N) − ρσ̃s̃r

∥∥2
]

= O
(
1/N

)
. (3.11)

Now, from Eqs (3.2) and (3.5), we have

E
[∥∥η̂T (N) − ηopt

∥∥2
]

= E

[∥∥∥R−1
χ̃χ̃

(
ρ̂χ̃sr

(N) − ρσ̃s̃r

)
+
(
R̂

−1
χ̃χ̃(N) − R−1

χ̃χ̃

)
ρ̂χ̃s̃r

(N)
∥∥∥2
]

≤ 2E
[∥∥∥R−1

χ̃χ̃

∥∥∥2 (∥∥ρ̂χ̃s̃r
(N) − ρσ̃s̃r

∥∥2
)

+
(∥∥∥R̂−1

χ̃χ̃(N) − R−1
χ̃χ̃

∥∥∥2
)∥∥ρ̂χ̃s̃r

(N)
∥∥2
]

(3.12)

where we have used the inequality ‖a + b‖2 ≤ 2
(‖a‖2 + ‖b‖2

)
followed by the Schwarz inequality.

Similarly, we have

E
[∥∥η̂B(N) − ηopt

∥∥2
]
≤ 2E

[∥∥∥R−1
χ̃χ̃

∥∥∥2 (∥∥ρ̂χ̃r(N) − ρσ̃s̃r

∥∥2
)

+
(∥∥∥R̂−1

χ̃χ̃(N) − R−1
χ̃χ̃

∥∥∥2
)∥∥ρ̂χ̃r(N)

∥∥2
]

.

(3.13)

Using the boundedness of ‖R−1
χ̃χ̃‖ together with Eqs. (3.10) and (3.11) in Eqs (3.12) and (3.13), we

conclude that

E
[∥∥η̂T (N) − ηopt

∥∥2
]

= O
(
1/N

)
and E

[∥∥η̂B(N) − ηopt

∥∥2
]

= O
(
1/N

)
. (3.14)

From Eq. (3.14) we can conclude that as N gets large, both η̂T (N) and η̂B(N) converge in the

mean-square sense to ηopt at a rate which is O
(
1/N

)
. �

4 Reception of BPSK Signals Using CAST Processors

In this section, we provide an algebraic performance analysis of a binary phase-shift-keying

(BPSK) transmission system which employs CAST processors under the effect of co-channel inter-
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ference. (This analysis will be confirmed by simulations in Section 5.) The analyses for both the

T-CAST and B-CAST processors are similar, being different only in the values of the parameters.

The analysis can also be extended to reception of other digital signals in a straightforward man-

ner. A discrete-time baseband equivalent model for the transmission and reception of the signals

is depicted in Fig. 3, where we have assumed that the received signal is sampled at Nb times the

baud rate. The sampled desired signal is then given by

s(n) =
∞∑

k=−∞
b(k)p(n − kNb), (4.1)

where we have assumed that the centre frequency of the baseband model is the carrier frequency of

the desired signal and that the carrier has been acquired by the receiver. Here, p(n) = pc(t)|t=nTb/Nb
,

where pc(t) is the impulse response of the (continuous-time) pulse shaping filter and Tb is the baud

period. We assume that α�m/(2π) is a factor of the sampling frequency; i.e., α�m = 2πkNb/Tb, for

some integer k. The message data b(k) = ±1 is an independent binary sequence for which +1 and

−1 occur with equal probability. If d(θs) denotes the array manifold of the sensors for the desired

signal arriving from an angle θs, then the received desired signal vector at the array containing L

sensors is given by

s(n) = [s1(n), . . . , sL(n)]T = s(n)d(θs). (4.2)

Similarly the ith interfering binary signal overlapping in spectrum with the desired signal can be

modeled as

ui(n) = Aui

∞∑
k=−∞

bui(k)pi(n − kNb) cos(∆ωuin + φi), (4.3)

where pi(n) = pc(t)|t=nTb/Nb−τi
, and Aui is the amplitude, ∆ωui the frequency off-set, φi the phase

off-set and τi the timing offset of the interference, and bui(k) = ±1 is an independent sequence.

Here the interference has the same baud rate, 1/Tb, and pulse shape, pc(t), as the desired signal,

but has a different carrier frequency and is not necessarily phase nor symbol synchronous with the

desired signal. This model is common in multi-user mobile communication scenarios, and can be

easily extended to signals having different baud rates and different pulse shapes without affecting

the analysis. If θui is the direction of arrival (DOA) of the ith interference, then the interference
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vector at the L-sensor array is given by

ui(n) � [ui1(n), . . . , uiL(n)]T = ui(n)d(θui). (4.4)

In general, there may be a total of I of such interfering signals. Thus, the vector of received samples

at the input to the CAST processor is given by

x(n) = s(n) +
I∑

i=1

ui(n) + ν(n), (4.5)

where ν(n) is the vector of noise samples at the input of the processor. These samples are complex-

valued and are assumed to be zero-mean, Gaussian, jointly stationary, and spatially white so that

E [ν(n)] � E
{
[ν1(n) · · · νL(n)]T

}
= 0 and E

[
ν(n1)ν†(n2)

]
= diag{σ2

ν�
r�(n1 − n2)}, (4.6)

where ν�(n) is the complex noise process at the input to the �th FRESH filter in the CAST processor,

with σ2
ν�

being its power, and r�(m) its normalized temporal correlation. The temporal correlation is

induced by oversampling the output of the bandpass “radio-frequency (RF)” filter which is implicit

in the baseband equivalent model in Fig. 3, [22]. It becomes negligible as the bandwidth of the RF

filter approaches Nb/Tb.

To simplify the analysis, we invoke the usual assumption [17] that the filter coefficient vector

η̂(N) defined in Eq. (3.2) for the T-CAST and B-CAST processors is uncorrelated with the noise

ν(n), the desired symbols b(n), and the interfering symbols bui(n). This assumption has been

verified to be valid by extensive computer simulation testing of the correlation coefficients [19].

When the input x(n) arrives at the CAST processor, it is frequency shifted by α�m at the mth

branch of the �th FRESH filter. Here, we choose the set of cycle frequencies for each FRESH filter

to be the same, i.e., α�m = αλm. Hence, from Fig. 2, the output of the �th FRESH filter is given

by

y�(n) =
M∑

m=1

∑
k

[
h�m(n − k)ejα�mkx�(k) + h′

�m(n − k)ejα�mkx∗
�(k)

]
(4.7)

and the output of the CAST processor (Fig. 1) is given by

y(n) =
L∑

�=1

y�(n). (4.8)
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We now refer our discussion to the transmitter/receiver system shown in Fig. 3. After passing

through the CAST processor at the receiver, the signal is demodulated and processed by a filter

p(−n) matched to the pulse shaping filter p(n) at the desired transmitter, to produce

z(n) =
∑

k

p(k − n)y(k). (4.9)

Substituting Eqs.(4.7) and (4.8) into Eq. (4.9) and simplifying, we obtain

z(nNb) =
L∑

�=1

Nh+Np−1∑
k=0

[
g�(k)x�(nNb − k) + g′�(k)x∗

� (nNb − k)
]
, (4.10)

where Nh and Np are the lengths of the FIR filters and the receiver matched filter respectively,

g�(n) =
M∑

m=1

Np−1∑
i=0

h�m(n − i)e−jα�mn p(−i), (4.11)

and g′�(n) is defined similarly, with h′
�m(k) replacing h�m(k). Using Eqs. (4.1), (4.2) and (4.5), we

see that the input to the threshold can be written as

b̂(n) = γob(n) + ξISI(n) + ξCT (n) + ξν(n) � γob(n) + ζe(n), (4.12)

where

ξISI(n) =
∞∑

i=−∞
i�=n

b(i)γ(n − i), (4.13)

γ(n) =
L∑

�=1

Nh+Np−1∑
k=0

p(nNb − k)Re
[
g�(n)d�(θs) + g′�(n)d∗� (θs)

]
, (4.14)

ξCT (n) =
I∑

i=1

Re


 L∑

�=1

Nh+Np−1∑
k=0

[
g�(k)ui�(nNb − k) + g′�(k)u∗

i�(nNb − k)
] , (4.15)

ξν(n) = Re


 L∑

�=1

Nh+Np−1∑
k=0

[
g�(k)ν�(nNb − k) + g′�(k)ν∗

� (nNb − k)
] , (4.16)

Re[·] denotes the real part, γo ≡ γ(0) and d�(θs) is the �th element of the array manifold at the DOA

of the desired signal. We note that the length of γ(n) is given by Kγ = (Nh+2Np−2)/Nb�, wherex�
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denotes the least integer ≥ x. We observe that input to the threshold device in Eq. (4.12) consists of

four terms: (i) the desired bit b(n) scaled by a random variable γo; (ii) the intersymbol interference

ξISI(n) caused by the previous bits of the desired signal; (iii) the cross-talk ξCT (n) caused by the

co-channel signals ui(n) which arrive from angles θui ; and (iv) the processed channel noise ξν(n).

We note that the scaled desired bit γob(n) and the intersymbol interference ξISI(n) depend on

different bits. By the assumption of independence of bits, these two terms are uncorrelated. We

further note that the last three terms of interference and noise are from different sources and are

therefore independent of each other. We now examine each of the terms in Eq. (4.12). Taking the

expected value of Eq. (4.16), since E[ν�(n)] = 0, we have E [ξν(n)] = 0. If the temporal correlation

in (4.6) is negligible and if each sensor has the same noise power, σ2
ν�

= σ2
ν , then the variance of

ξν(n) can be calculated in a straightforward manner:

σ2
ξν = E

[
ξ2
ν(n)

]
=

σ2
ν

2

L∑
�=1

Nh+Np−1∑
k=0

E

{
Re2 [g�(k)] + 2Re [g�(k)] Re

[
g′�(k)

]
+ Re2

[
g′�(k)

]

+ Im2 [g�(k)] + 2Im [g�(k)] Im
[
g′�(k)

]
+ Im2

[
g′�(k)

]}
, (4.17)

where Im[·] denotes the imaginary part. An equivalent expression for the case where the RF filter

is narrow enough to induce significant temporal correlation in (4.6) can be calculated in a similar

way, but is omitted for brevity.

Using Eqs. (4.13) and (4.15) and the independence assumption [17] we can conclude that

E [ξISI(n)] = 0 and E [ξCT (n)] = 0. The variance of the ISI component can be obtained using

Eq. (4.13) and is given by

σ2
ISI = E [ξISI(n)ξ∗ISI(n)] =

Kγ∑
k=1

E
[
|γ(k)|2

]
. (4.18)

The variance of the cross-talk interference can be obtained as follows: Using Eq. (4.3) in Eq. (4.15),

and after much simplifying, we have

ξCT (n) =
I∑

i=1

∑
m

bui(n − m)βi(m,n), (4.19)
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where

βi(m,n) � Aui

L∑
�=1

Nh+Np−1∑
k=1

pi(mNb − k)Re
[
g�(k) cos(∆ωui(nNb − k) + φi)d�(θui)

+ g′�(k) cos(∆ωui(nNb − k) + φi)d∗� (θui)
]
, (4.20)

with d�(θui) being the �th element of the array manifold of the sensors for the ith interfering signal.

We note that βi(m,n) is periodic in n having a period Qi = min {n : nNb∆ωui/(2π) is an integer}
and its length in m is finite being equal to Nβi

= (Nh +2Npi − 2)/Nb�. From Eq. (4.19) we obtain

σ2
CT (n) = E [ξCT (n)ξ∗CT (n)] =

I∑
i=1

E


Nβi

−1∑
m=0

βi(m,n)β∗
i (m,n)


 , (4.21)

where we have used the fact that E[bui1
(n − m1)b∗ui2

(n − m2)] = δm1,m2δi1,i2. Since βi(m,n) is

periodic in n, we can obtain an averaged value of the cross-talk over the period yielding

σ̄2
CT =

I∑
i=1

1
Qi

Qi−1∑
n=0

σ2
CT (n). (4.22)

Since ξν(n), ξISI(n), ξCT (n) are results of linear combinations of many random variables from

different sources, we can approximate the sum of them by a Gaussian random variable by virtue

of the Generalized Central Limit Theorem for a correlated sequence of random variables [20].

Each of these variables are of zero mean and their variances are given by Eqs. (4.17), (4.18) and

(4.22), respectively. Thus the combined noise and interference term ζe(n) in Eq. (4.12) can be

approximated by a zero-mean Gaussian random variable with variance given by

σ2
ζe

= σ2
ξν

+ σ2
ISI + σ̄2

CT . (4.23)

This approximation is common in the performance analysis of digital communication systems in

the presence of ISI and cross-talk. For the current application, the Gaussianity of ζe(n) has be

verified by extensive simulations [19].

We now turn our attention to the signal term γob(n) in Eq. (4.12) . This is the information bit
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b(n) multiply by a random variable γo. From Eq.(4.14) we obtain

E[γo] =
L∑

�=1

No+N2−1∑
k=1

p(−k)Re
{
E
[
g�(0)d�(θs) + g′�(0)d

∗
� (θs)

]}
. (4.24)

By definition, the variance of γo can be evaluated using σ2
γo

= E[γ2
o ]−E2[γo]. From the Generalized

Central Limit Theorem, we can approximate γo by a Gaussian random variable. To show that

E[γo] > 0 theoretically may prove to be mathematically intractable. However, through many

simulation examples with different pulse-shaping filters, DOAs, carrier frequencies, and FRESH

filter lengths, we have observed that γo is indeed Gaussian with positive mean. Fig. 4 shows an

example of the histograms of γo (for 100,000 runs) for different DOAs in a typical operating scenario.

The scenario has a single interferer with 30% spectral overlap of the desired signal [as defined in

Eq. (5.1) below], sample size N = 15, input signal-to-noise ratio (SNR) of 20 dB and input signal-

to-interference ratio (SIR) of 0 dB. Since the amplitude of the desired signal has been normalized to

one in our model, we have that SNR = 1/σ2
ν and SIR = 1/

(∑I
i=1 A2

ui

)
. The mean square error d2

between these histograms of γo and their Gaussian approximation is given in Table 1, along with the

the sample means and variances of the histograms. It can be observed that the value of the sample

mean is positive and increases as the difference in the DOAs of the signal and interference increases.

From the squared error values, it can be seen that the assumption of Gaussian distribution for γo

is very accurate. Many other simulations have been carried out under different conditions. It is

observed that [19]:

i) The Gaussian approximation of γo is very accurate in all cases.

ii) The sample mean of γo is positive in all cases and increases with increasing data length,

increasing DOA difference and decreasing frequency overlap.

iii) The sample variance of γo is essentially independent of the DOA difference and it decreases

with increasing data length and decreasing frequency overlap.

From the assumption of independence [17] we can conclude that γo and ζe(n) are uncorrelated

Gaussian random variables. From Eq. (4.12) we can see that both γo and ζe(n) constitute inter-

ference on the detected symbol b̂(n). We now examine the effect of these interferences on, the

probability of error, Pe. An error occurs if b(n) = 1 and b̂(n) < 0, or if b(n) = −1 and b̂(n) > 0.
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0◦ 2◦ 5◦ 10◦

E[γo] 0.4223 0.4435 0.4632 0.4696
Var[γo] 0.8 ×10−4 2.4 ×10−4 2.3 ×10−4 2.2 ×10−4

d2 6.9 ×10−5 5.7 ×10−5 3.2 ×10−5 3.0 ×10−5

Table 1: The mean and the variance of γo, and the mean square error, d2, between the experimental
histogram of γo and its Gaussian approximation, for different DOAs in the scenario described in
Section 4.

Assuming equally likely transmission of +1 and −1, we have

Pe =
1
2
Prob

(−γo + ζe(n) > 0
∣∣ b(n) = −1

)
+

1
2
Prob

(
γo + ζe(n) < 0

∣∣ b(n) = 1
)

=
1
2

[∫ ∞

−∞
p(γo)

∫ ∞

γo

p(ζe) dζe dγo +
∫ ∞

−∞
p(γo)

∫ −γo

−∞
p(ζe) dζe dγo

]

=
∫ ∞

−∞
p(γo)

∫ ∞

γo

1√
2πσ2

ζe

exp

(
−ζ2

e

2σ2
ζe

)
dζe dγo, (4.25)

where in the last step, we have use the symmetry of p(ζe) about ζe = 0. After some changes of

variables, it can be shown that [19]

Pe =
1
2
erfc

(√
(E[γo])2

2σ2
γo

+ 2σ2
ζe

)
, (4.26)

where erfc(x) = 2√
π

∫∞
x e−z2

dz. Eq. (4.26) indicates that the higher the mean value of γo, the lower

the probability of error. On the other hand, the higher the power of the interference ζe or the

higher the variance of γ0, the higher the Pe. Since Eqs. (2.13) and (2.16) are identical in form, the

above error analysis is applicable to both T-CAST and B-CAST processors (the differences appear

in the definitions of γo and ζe).

5 Simulations

We now present some computer simulation examples in which the B-CAST and T-CAST pro-

cessors are employed to extract the desired signal from interference using the receiver shown in

Fig. 3. In all the examples shown here, we assume that there is a desired signal and a single inter-

fering signal, both of the BPSK type, given by Eqs. (4.1) and (4.3), respectively. The signals have

the same baud period and the same (continuous-time) square root raised cosine pulse shaping filter
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with 100% roll-off factor [21]. For simplicity, we assume that the interference is phase and symbol

synchronous with the desired user. In all cases we use a uniform linear array with L = 3 sensors

for the receiver.

Example 5.1 We firstly present some computer simulation results illustrating the convergence

properties of the T-CAST and B-CAST processors. Here, the baud rate is 5000 symbols-per-

second, and the carrier frequencies of the desired signal and interference are 10 kHz and 17 kHz,

respectively, so the spectral overlap is 30%. The spectral overlap is defined as

Bs + Bi − |fi − fs|
2Bs

× 100% (5.1)

where Bs and Bi are the baud rates and fs and fi are the carrier frequencies of the signal and

interference, respectively. There are M = 2 branches in each FRESH filter, and each branch

contains an FIR filter of length Nh = 6. The frequency shift parameters for the FRESH filters

are chosen to be α�1/(2π) = 20 kHz, α�2/(2π) = −20 kHz, for � = 1, 2, 3. These are cycle

frequencies of the desired signal. The frequency shift parameter for the reference signal for both

the B-CAST and T-CAST processors is chosen to be αr = 0. Fig. 5 shows the convergence

of E
[‖η̂T − ηopt‖2

]
/‖ηopt‖2 and E

[‖η̂B − ηopt‖2
]
/‖ηopt‖2, against the number of received data

symbols, each being averaged over 20 realizations. The desired signal DOA in this scenario is

0◦ (i.e., normal to the array), the received SNR is 10 dB and the received SIR is 0 dB. (The

optimal weight vector ηopt, was calculated using Eq. (3.5) using a time-average of 500 symbols.)

It is observed that both the T-CAST and B-CAST processors converge to the optimum processor

when the number of samples is large, with the T-CAST processor being the faster in convergence.

As a further comparison, the output signal-to-interference-and-noise (power) ratio (SINR) of both

the T-CAST and B-CAST processors for various DOA differences are plotted in Fig. 6. We also

plotted the output SINR of the corresponding processor using the C-CAB [13] and SCORE [12, 13]

beamforming algorithms (not facilitated with FRESH filtering). It is observed that while the T-

CAST and B-CAST algorithms both produce acceptable output SINR, the performance of C-CAB

and SCORE are much inferior, especially when the signal and interference are close in space,

a scenario in which C-CAB and SCORE fail completely. This example confirms the validity of

Theorem 3.1 on the convergence of T-CAST and B-CAST.
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Example 5.2 In this example, we examine the effect of data length on the performance of the

receiver employing the B-CAST and T-CAST processors. The basic scenario is the same as that

in Ex. 5.1, with the DOA of the interference being set to 2◦. The bit error rate (BER) curves for

both B-CAST and T-CAST processors using 15, 25, 50 and 150 received data symbols were found

by averaging over 10,000 simulation runs. These simulated curves, together with the analytical

expression for the probability of error in Eq. (4.26) are shown in Fig. 7. It can be observed the

averaged BER agrees very well with the analytical expression. It can also be seen that the larger

the data length, the closer are the performance of the B-CAST processor to that of the T-CAST

processors, again confirming the convergence analysis in Section 3.

Example 5.3 In this example, we examine the finite sample BER of the receiver employing the

B-CAST and T-CAST processors, when the signal and interference vary in their DOA. Here, the

basic scenario is the same as that in Ex. 5.1. The number of received data symbols is fixed at

15, while the DOA of the interference varies amongst θu = 0◦, 2◦, 5◦, and 10◦. The experiments

were repeated 10,000 times and the averaged BERs at different SNRs are plotted in Fig. 8. The

analytical expression for the probability of error in Eq. 4.26 is also shown in each case. It can be

observed that when the interference moves from 0◦ to 5◦ the improvement in BER is marginal, but

that it is more significant when the DOA of the interference is at 10◦. The improvement will be

increased if the number of sensors in the array is increased as confirmed by other simulations [19].

Example 5.4 We now examine the effect of spectral overlap between the signal and interference.

The basic scenario is once again the same as that in Ex. 5.1. Since the baud rate of each signal is

5000 symbols-per-second, they each have a bandwidth of about 10 kHz. We fix the carrier frequency

for the desired signal at 10 kHz while varying that for the interference so that the percentages of

spectral overlap are 40%, 30%, 20% and 10%. The number of received data symbols is fixed at

15, and the DOA of the interference is either 2◦ (Fig. 9) or 10◦ (Fig. 10). The experiments were

repeated 10,000 times and the average BER curves are plotted in Figs 9 and 10. It can be observed

from these figures that decreasing the spectral overlap between signal and interference improves

performance. Furthermore, increasing the physical separation between signal and interference im-

proves performance, especially when the spectral overlap is relatively large. Other simulations have

been carried out and it has been observed that if the spectral overlap between signal and interfer-

ence is relatively large, an increase in number of sensors (L) and/or an increase in the FIR filter
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length (Nh) will also improve the performance [19].

6 Conclusions

In this paper, we have proposed a class of adaptive space-time processors based on the cyclo-

stationarity properties of signals. These processors can be used with or without (blind) a training

signal leading to realizations called T-CAST and B-CAST, respectively. The advantage of employ-

ing the T-CAST or B-CAST processors over using beamforming or filtering alone is that when

the spectral overlap between the signal and interference is large, or when they are close to each

other in their direction of arrival, these processors can still extract the signal from the interference

satisfactorily. Moreover, the B-CAST technique has the further advantage of not having to need a

training signal.

Analysis showed that under moderate data lengths, the performance of B-CAST and T-CAST

converge to that of the ideal Wiener solution. The space-time processors were then applied to a

binary digital communication receiver and their performance analyzed. It has been shown that

their performance depends on the data length, the DOA of the signal and inferences, as well as on

the percentage of spectral overlap between the signal and interference.

In view of their ability to extract the desired signal from interference, especially when the signal

and interferer have large spectral overlap or when their DOAs are close, the T-CAST and B-CAST

processors offer an attractive alternative to beamforming or filtering alone.
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Figure 4: Comparison between the experimental histogram for γo and its Gaussian approximation
for DOA differences of (a) 0◦, (b) 2◦, (c) 5◦, (d) 10◦ in the scenario described in Section 4.
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Figure 5: Normalized filter coefficient convergence of B-CAST and T-CAST for Ex. 5.1, with DOA
differences of (a) 0◦, (b) 2◦, (c) 5◦, and (d) 10◦.
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Figure 6: Output SINR of B-CAST (solid), T-CAST (dotted), C-CAB (dash-dot), and SCORE
(dashed) algorithms against the number of received data symbols for Ex. 5.1, with DOA differences
of (a) 0◦, (b) 2◦, (c) 5◦, and (d) 10◦.

28



−18 −16 −14 −12 −10 −8 −6 −4 −2 0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Input SNR (dB)

P
ro

ba
bi

lit
y 

of
 e

rr
or

−18 −16 −14 −12 −10 −8 −6 −4 −2 0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Input SNR (dB)

P
ro

ba
bi

lit
y 

of
 e

rr
or

(a) (b)

−18 −16 −14 −12 −10 −8 −6 −4 −2 0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Input SNR (dB)

P
ro

ba
bi

lit
y 

of
 e

rr
or

−18 −16 −14 −12 −10 −8 −6 −4 −2 0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Input SNR (dB)

P
ro

ba
bi

lit
y 

of
 e

rr
or

(c) (d)

Figure 7: Probability of error (analytical and simulation) for B-CAST (solid and ×) and T-CAST
(dash-dot and ◦) against SNR for Ex. 5.2, with the number of received data symbols being (a) 15,
(b) 25, (c) 50, and (d) 150.
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Figure 8: Probability of error (analytical and simulation) for B-CAST (solid and ×) and T-CAST
(dash-dot and ◦) algorithms against SNR for Ex. 5.3, with DOA differences of (a) 0◦, (b) 2◦, (c)
5◦, and (d) 10◦.
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Figure 9: Probability of error (analytical and simulation) for B-CAST (solid and ×) and T-CAST
(dash-dot and ◦) algorithms against SNR for Ex. 5.4 with a DOA difference of 2◦, for frequency
overlappings of (a) 40%, (b) 30%, (c) 20%, and (d) 10%.
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Figure 10: Probability of error (analytical and simulation) for B-CAST (solid and ×) and T-CAST
(dash-dot and ◦) algorithms against SNR for Ex. 5.4 with a DOA difference of 10◦, for frequency
overlappings of (a) 40%, (b) 30%, (c) 20%, and (d) 10%.
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