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Abstract— We consider efficient techniques for the design of
a transceiver for a matrix channel with minimum mean square
error (MMSE) decision-feedback (DF) detection when perfect
channel information is available at both the transmitter and
receiver. By combining the canonical property of the MMSE-
DF detector and our recently developed equal-diagonal QRS
decomposition of a matrix we obtain a uniform decomposition
of mutual information in which each of the synthesized scalar
subchannels has the same mutual information (under the as-
sumption of error-free feedback). To assist our analysis of this
uniform decomposition, we provide a new QR interpretation of
the MMSE-DF receiver. This enables us to show that the natural
detection order is optimal (in an SINR sense), and that for the
proposed transmitter, the MMSE-DF detector is asymptotically
equivalent to the maximum likelihood detector when the SNR
is high. We also derive a low-complexity quadratic recursive
algorithm for the characterization of all eligible S-factors in the
QRS decomposition. When coupled with our QR interpretation
of the MMSE-DF detector, this enables us to efficiently design the
optimal transmitter and to efficiently implement the MMSE-DF
receiver.

I. INTRODUCTION

In many block-by-block communication systems, the
discrete-time baseband model for the received signal is

y =
√

snrHTx + ξ, (1)

where H is an M×N complex matrix that models the channel,
T is an N × K linear precoding matrix (N ≥ K), x is the
block of K transmitted symbols, which is assumed to be zero-
mean, white and of unit variance, and ξ is an M × 1 white
Gaussian noise vector with unit variance. It is well known that
if the channel matrix H is known at both the transmitter and
the receiver, then the Gaussian mutual information between
the input and the output of the model in (1) is IG(x;y) =
log det(I + snrTHHHHT). For a given transmitted power
constraint tr(THT) ≤ p, IG(x;y) is maximized when the
transmitter T is the water-filling solution [1]; i.e., T = VΞW,
where V is the eigen-vector matrix of HHH, Ξ denotes the
optimal power loading matrix and W is an arbitrary unitary
matrix. Since the rotation of the white Gaussian vector x
does not change the channel capacity, we have a unitary
matrix degree of freedom, W, within the water-filling solution
family which can be designed so as to improve other aspects
of system performance. We will propose an efficient design
technique for W for applications in which an MMSE-DF
receiver is employed.

A previous joint design technique for the transmitter and the
DF receiver shows that the receiver that minimizes the (arith-
metic) MSE between the input symbols and their estimates
also achieves the minimum geometric MSE [2]. To design the
transmitter, Yang and Roy [2] chose to optimize the geometric
MSE rather than the (arithmetic) MSE. It turned out that their
transmitter is same as the capacity-achieving input spectrum
for the coordinated multiuser channel obtained by Branden-
burg and Wyner [1]. However, this optimal transmitter is not
guaranteed to simultaneously minimize the (arithmetic) MSE.
In this paper we describe a new quadratic recursive algorithm
for efficiently computing (and implementing) a matrix W
that simultaneously minimizes the arithmetic and geometric
MSEs and also maximizes the Gaussian mutual information.
This algorithm advances our recent development of an equal-
diagonal QRS decomposition of a matrix [3], which was
originally developed for jointly designing a transceiver with
zero-forcing (ZF) DF detector [3].

Notation: Matrices are denoted by uppercase boldface
characters (e.g., A), while column vectors are denoted by
lowercase boldface characters (e.g., b). The (i, j)-th entry of
A is denoted by Ai,j or [A]i,j . The i-th entry of b is denoted
by bi. The columns of an M × N matrix A are denoted by
a1,a2, · · · ,aN . The term Ak denotes a matrix consisting of
the first k columns of A, i.e., Ak = [a1,a2, · · · ,ak], and by
convention A0 = 1. The matrix remaining after deletion of
columns k1, k2, . . . , ki from A is denoted by Ak1,k2··· ,ki

. For
a matrix A, A⊥ denotes the orthonormal complement, AT

the transpose, and AH the conjugate transpose.

II. QR INTERPRETATION OF MMSE-DF DETECTION

Consider a communication system of the form in (1) in
which T is absorbed into H; i.e., y =

√
snrHx + ξ. At

the receiver, our task is to detect (estimate) the vector x
given the noisy observation y = [y1, · · · , yM ]T . For notational
convenience, we define IH = I + snrHHH, and we will
call I1/2

H the mutual information matrix. The DF receiver
(with perfect feedback) makes successive decisions on the
vector z = Fy − Bx, [4]–[6], [8]–[10], where F and B
are the feedforward and feedback matrices, respectively. For
the MMSE-DF receiver, F =

√
snr (B+I)I−1

H HH and B+I
is the upper triangular matrix with unit diagonal entries in the
Cholesky decomposition IH = (B+I)HD(B+I), where D is
a positive-definite diagonal matrix. Using this decomposition,
we observe that the feedforward matrix F consists of three

Authorized licensed use limited to: McMaster University. Downloaded on August 15,2010 at 18:10:58 UTC from IEEE Xplore.  Restrictions apply. 



parts. Specifically, F =
√

snrD−1(B + I)−HHH , where√
snrHH is the channel matched filter, (B+I)−H decorrelates

the error covariance matrix, and D−1 is a diagonal scaling.
MMSE decision feedback detection can be also interpreted
using the QR decomposition of a certain virtual channel
matrix [11], [12]. However, that virtual channel matrix has
twice the number of rows as H. In order to place our recently
developed equal-diagonal QRS decomposition of a matrix in
a similar context, we now provide a new QR interpretation
of the MMSE-DF receiver that uses the QR decomposition of
I1/2
H ; i.e., I1/2

H = QR, where Q is an N × N orthonormal
matrix and R is an N × N upper triangular matrix with
Rk,k > 0 for all k = 1, 2, · · · , N . If we observe that
HHH = snr−1(IH − I) = snr−1(RHR − I), then we
can write R−HHHy = snr−1/2(R − R−H)x + R−HHHξ.
Therefore, after having been processed by MMSE-DF detector,
the original model (1) with T absorbed into H is transformed
into the following model,

y̆ = R̆x + ξ̆, (2)

where y̆ = R−HHHy, R̆ = snr−1/2(R − diag(R−H)),
ξ̆ = snr−1/2

(
diag(R−H) − R−H

)
x + R−HHHξ. When

combined with the fast QRS decomposition described be-
low, (2) exposes an efficient algorithm for implementing the
MMSE-DF receiver.

III. FAST CLOSED-FORM EQUAL DIAGONAL QRS
DECOMPOSITION OF MATRIX

In this section, we first state our equal diagonal QRS decom-
position theorem [3] and then give a simplified version of the
quadratic recursive algorithm to characterize all the S-factors
in this decomposition. In particular, we derive specific closed-
form recursions for the S, Q and R-factors for a nonsingular
matrix and its inverse.

A. Equal diagonal QRS decomposition

Let the singular value decomposition (SVD) of an M × N
matrix H be represented by

H = U
(

Λ1/2 0r×(N−r)

0(M−r)×r 0(M−r)×(N−r)

)
VH , (3)

where r is the rank of A, U and V are unitary and Λ =
diag(λ1, λ2, · · · , λr) with λ1 ≥ λ2 ≥ · · · ≥ λr > 0. In [3]
we proved the following equal-diagonal QRS decomposition
lemma.

Lemma 1: For an arbitrary M × N matrix H with rank
r, there exists a unitary matrix S such that HS has an
equal-diagonal R-factor; i.e, HS = QR, where Q is
an M × r column-wise orthonormal matrix and R =
[ Rr×r 0r×(N−r) ] with [Rr×r]k,k = (λ1λ2 · · ·λr)

1/2r,
where

√
λk is the k-th singular value of H.

The key to obtaining such decomposition is to find the
unitary matrix S. Once we have had S, we can apply the
conventional QR decomposition to the matrix HS to obtain the
equal-diagonal QRS decomposition. The following recursive

algorithm is a simplified version of the algorithm in [3] to
find the S-factor.

Algorithm 1 (Construction of the S-factor):
1) SVD. Perform the SVD (3).
2) Initialization. Determine the first column s̆1 of S̆ such

that the following constraints are satisfied,

s̆
H
1 Λs̆1 = D (4a)

s̆
H
1 s̆1 = 1 (4b)

3) Recursion (reduce the dimension and decouple con-
straints). Set s̆k+1 = S̆⊥

k zk+1, where zk+1 is any vector
that satisfies

z
H
k+1C

(k)
zk+1 = D (4c)

z
H
k+1zk+1 = 1, (4d)

where C
(k) =

(
(S̆⊥

k )H
Λ

−1
S̆
⊥
k

)−1

.

4) Complete the S-factor. S = [VrS̆,V1,··· ,r].

We would like to make the following remarks on this quadratic
recursive algorithm.
(a) The structure of the matrix C(k) in Step 3) provides

a substantial reduction in the computational cost of the
recursion over that of the original recursion in [3].

(b) Characterization of the S-factor: In [3] we proved that
Algorithm 1 has a solution, and that when r > 2 it has
an infinite number of solutions. Moreover, the solution
obtained in the ith recursion does not affect whether
the set of equations in the next recursion is solvable.
Therefore, Algorithm 1 characterizes all S-factors such
that the matrix HS has an equal-diagonal R-factor. By
choosing a particular solution for each recursion one can
significantly reduce the complexity of computing the S-
factor, as we show in the next section.

(c) Characterization of the Q-factor: Notice that if Q,R
and S are the Q-R-S factors of an invertible matrix H,
then, S,R−1 and Q are the Q-R-S factors of its inverse,
H−1. This observation implies that there is a companion
algorithm for H−1 which has the same structure as
Algorithm 1. This inverse algorithm actually characterizes
the Q-factor in the equal diagonal QRS decomposition of
the original matrix H, and this observation leads to an
efficient algorithm for finding the S and Q factors.

(d) Uniform decomposition of information: In principal, the
quadratic recursive algorithm is based on Schur’s decom-
position of the determinant of a positive definite matrix
into the product of the determinant of an arbitrary principal
submatrix and the determinant of its Schur complement.
Therefore, Algorithm 1 implicitly describes a process for
successively and evenly distributing the total information
quantity D = det(Λ) over each one-dimensional subspace
(or subchannel). We expand on this observation in Sec-
tion IV.

B. Fast closed-form Q-R-S factors

In this subsection, we will give closed-form equal diagonal
QRS decompositions for both a matrix and its inverse by
carefully choosing such particular solutions in the quadratic
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recursion equations (4a)–(4c) that all the matrices C(k) are
diagonalized simultaneously. To this end, we first define
canonical eigen-diagonal matrix sequences from the original
singular value matrix.

Definition 1: Let Λ = diag(λ1, λ2, · · · , λr) with λ1 ≥
λ2 ≥ · · · ≥ λr > 0 and D = (λ1λ2 · · ·λr)1/r.
A canonical eigen-diagonal matrix sequence {�k,Λ(k) =
diag(λ(k)

1 , λ
(k)
2 , · · · , λ

(k)
r−k)}r−1

k=1 generated by Λ is defined as
follows:

1) Λ
(1) = Λ.

2) If
λ
(k)
1 λ

(k)
r−k+1
D

≥ λ
(k)
2 , we let λ

(k+1)
1 =

λ
(k)
1 λ

(k)
r−k

D
, λ

(k+1)
2 =

λ
(k)
2 , · · · , λ

(k+1)
r−k = λ

(k)
r−k and �k = 1.

3) If
λ
(k)
1 λ

(k)
r−k+1
D

≤ λ
(k)
r−k, we let λ

(k+1)
1 = λ

(k)
2 , λ

(k+1)
2 =

λ
(k)
3 , · · · , λ

(k+1)
r−k−1 = λ

(k)
r−k, λ

(k+1)
r−k =

λ
(k)
1 λ

(k)
r−k+1
D

and �k =
r − k.

4) If there exists the largest positive integer �k with 2 ≤
�k ≤ r − k − 1 such that λ

(k)
�k

≥ λ
(k)
1 λ

(k)
r−k+1
D

≥ λ
(k)
�k+1,

then, we let λ
(k+1)
1 = λ

(k)
2 , λ

(k+1)
2 = λ

(k)
3 , · · · , λ

(k+1)
�k−1 =

λ
(k)
�k

, λ
(k+1)
�k

=
λ
(k)
1 λ

(k)
r−k

D
, λ

(k+1)
�k+1 = λ

(k)
�k+1, · · · , λ

(k+1)
r−k =

λ
(k)
r−k.

Correspondingly, a basic rotation sequence {αk, βk}r−1
k=1 and

its basic inverse rotation sequence {α̃k, β̃k}r−1
k=1 are defined,

respectively, as

αk =

√
D−λ

(k)
r−k+1

λ
(k)
1 −λ

(k)
r−k+1

, βk =

√
λ
(k)
1 −D

λ
(k)
1 −λ

(k)
r−k+1

(5a)

α̃k =

√
λ̃
(k)
r−k+1−D̃

λ̃
(k)
r−k+1−λ̃

(k)
1

, β̃k =

√
D̃−λ̃

(k)
1

λ̃
(k)
r−k+1−λ̃

(k)
1

, (5b)

where, for simplicity and symmetry of the algorithm structure,
D̃ and λ̃

(k)
r−k+1 denote D−1 and (λ(k)

r−k+1)
−1, respectively.

The canonical eigen-diagonal matrix sequence and the basic
rotation sequence have the following properties, which will
play a key role in deriving our fast closed-form equal-diagonal
QRS decompositions.

Lemma 2: Sequences {αk, βk}r−1
k=1 and {α̃k, β̃k}r−1

k=1 satisfy
conditions

α2
k + β2

k = 1, λ
(k)
1 α2

k + λ
(k)
r−k+1β

2
k = D (6a)

α̃2
k + β̃2

k = 1, λ̃
(k)
1 α̃2

k + λ̃
(k)
r−k+1β̃

2
k = D̃ (6b)

α̃k =

√
λ
(k)
1
D

αk, β̃k =

√
λ
(k)
r−k+1

D
βk. (6c)

Now we are in a position to formally state our main result.
A proof is provided in the appendix.

Theorem 1: Let Λ1/2 = diag(
√

λ1,
√

λ2, · · · ,
√

λr) with
λ1 ≥ λ2 ≥ · · ·λr > 0 and let the basic rotation sequences
{αk, βk}r−1

k=1 and {α̃k, β̃k}r−1
k=1 be defined by (5a) and (5b),

respectively. Then, we have the following closed-form equal
diagonal QRS decompositions,

Λ
1/2

Sα, β = Sα̃, β̃ Rα, Λ, β , (7)

Λ
−1/2

Sα̃, β̃ = Sα, β Rα̃, Λ−1, β̃ , (8)

where Rα, Λ, β and Rα̃, Λ−1, β̃ are upper triangular matrices

with [Rα, Λ, β]k,k = (λ1λ2 · · ·λr)
1
2r = [Rα̃, Λ−1, β̃]−1

k,k and

Sα, β is an r×r unitary matrix that can be represented by the
following two kinds of decompositions:

1) Column decomposition: The n-th column of Sα, β is
determined by

s1 = br−2, α1, β1 (9a)

sr =

r−2∏
k=1

Γ�k, αk, βk, r−kb−1, αr−1, βr−1 (9b)

sn =

n−1∏
k=1

Γ�k, αk, βk, r−kbr−n−1, αn, βn (9c)

for n = 2, 3, · · · , r − 1, where

Γm,α,β,n =

 01×(m−1) β 01×(n−m)
Im−1 0(m−1)×1 0(m−1)×1

0(n−m)×(m−1) 0(n−m)×1 In−m

01×(m−1) α 01×(n−m)

 , (9d)

b−1, α, β = ( β
α ) and bk, α, β =

( α
0k×1
−β

)
.

2) Product decomposition: Sα, β can be factored into
Sα, β =

∏r−1
i=1 Sαi, �i, βi , where

Sαi, �i, βi
=

(
Ii−1 0(i−1)×1 0(i−1)×(r−i)

0(r+1−i)×(i−1) br−1−i,αi,βi
Γ�i,αi,βi,r−i

)
.

The same results holds for Sα̃, β̃ by replacing the basic rotation
sequences {αk, βk}r−1

k=1 in Sα, β by its inverse basic rotation
sequences {α̃k, β̃k}r−1

k=1.
We would like to make the following observations.

1) Different eigen-diagonal matrix sequences result in differ-
ent rotation sequences and thus, different specific Q-R-S
triples.

2) Combining Lemma 1, Theorem 1 and Algorithm 1 we
have a specific Q-R-S triple in the equal-diagonal QRS
decomposition of a general matrix H; i.e., Q = UrSα̃,β̃,
Rr×r = Rα, Λ, β and S = [VrSα, β,V1,2,··· ,r].

IV. UNIFORM DECOMPOSITION OF MUTUAL INFORMATION

In this section we combine the canonical property of the
MMSE-DF detector [6], [7], [13] with an equal-diagonal QRS
decomposition of the mutual information matrix I1/2

HT to obtain
a uniform factorization of the Gaussian mutual information for
the MMSE-DF detector. Then, we give some perspective to
such factorization from both information theoretic and signal
estimation and detection error viewpoints, with an emphasis
on building a comprehensive understanding of the MMSE-DF
receiver and the resulting optimal transmitter.

It is known that under the assumption that the channel
matrix H is available to both the receiver and the transmitter,
the Gaussian mutual information for the precoded channel
model (1) is given by IG(x;y) = log det(I+snrTHHHHT).
The standard approach to the design of a transmitter that
maximizes IG(x;y) subject to a power constraint uses the
singular vector decomposition (SVD) to diagonalize the origi-
nal matrix channel matrix H in (1). That results in an optimal
T of the form T = V[ Ξ̆,0K×(N−K) ]T W = T̃W, where
V is the singular value matrix of H given in (3), Ξ̆ =
diag(µ1, µ2, · · · , µK) and W is a K × K unitary matrix.
For this choice of T, IG(x;y) =

∑K
k=1 log(1 + snrλkµ2

k),
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and optimal power loading is performed over the eigen-
subchannels.

An alternative decomposition of IG(x;y) is the QR
decomposition of the mutual information matrix. It was
proved [13] that under an assumption of error-free feed-
back, the mutual information between the (K − i)th sym-
bol (or user) xK−i and y conditioned on xK−i+1

K =
[xK , xK−1, · · · , xK−i+1] for the model (1) can be ex-
pressed as IG(xK−i;y|xK−i+1

K ) = log
([

RI1/2
HT

]2
K−i,K−i

)
.

Therefore, IG(x;y) =
∑K−1

i=0 I(xK−i;y|xK−i+1
K ) =∑K−1

i=0 log
([

RI1/2
HT

]2
K−i,K−i

)
= log det(I + snrTHHHHT).

This shows that the MMSE-DF receiver is information loss-
less. For a given matrix H, its singular values are fixed under
any unitary transformation and hence, its eigen-subchannel de-
composition of mutual information does not change. However,
the R-factor diagonal entries of the mutual information matrix
change with the unitary transformation, and as a result the
capacity of each R-factor subchannel of the MMSE-DF detec-
tor will change too. (These subchannels are implicit in (2).)
In other words, different unitary matrices W result in the
different R-factors, and hence different R-factor subchannel
capacities and different detection error performance for the
MMSE-DF detector. Therefore, a natural question is that what
is the “best” distribution of the total mutual information to
each R-factor subchannel (2) for the MMSE-DF detector? As
proved in the appendix, a candidate is the uniform distribution.

Theorem 2: Under an assumption of error-free feedback,
the total mutual information for the system in (1) can be
uniformly decomposed into the sum of that of each R-factor
subchannel (2) for the MMSE-DF detector by rotating the
input signal vector with the S-factor of its mutual information
matrix.

In order to provide some properties of the uniform decom-
position of mutual information, we provide the following three
propositions. Let e = x̃ − x = (

√
snrFHT − I − B)x + Fξ

denote the error vector between the transmitted symbols and
the corresponding receiver estimates.

Proposition 1: The arithmetic MSE [2] of the MMSE-DF
receiver is MSEa(HT) = 1

K tr
(
E[eeH ]

)
. Let C denote the

capacity of the channel in (1). Then, C ≥ IG(x;y) ≥
− log(MSEa(HT)). Maximizing this lower bound is equiva-
lent to minimizing MSEa(HT). The maximum value of this
lower bound is C, which is achieved by choosing T such that
IG(x;y) is maximized, and then using the remaining unitary
degree of freedom to achieve the uniform decomposition of
mutual information.
Proof : It is clear that C ≥ IG(x;y). Since the
error covariance matrix [13] of the MMSE-DFE is
E[eeH ] = diag([RIHT

]−2
1,1, [RIHT

]−2
2,2, · · · , [RIHT

]−2
K,K),

we have MSEa(HT) =
∑

1≤k≤K [RIHT
]−2
k,k. On the

other hand, IG(x;y) = log det(I + snrTHHHHT) =
log

( ∏K
k=1[RIHT

]2k,k

) ≥ −K log
(

1
K

∑K
k=1[RIHT

]−2
k,k

)
=

−K log(MSEa(HT)) with equality holding if and only if
all [RIHT

]2k,k are equal. (Here we have used the arithmetic-
geometric mean inequality.) Therefore, maximizing the lower

bound on the Gaussian mutual information is equivalent to
minimizing the arithmetic MSE. This can be shown to be
equivalent to first maximizing the Gaussian mutual informa-
tion and then uniformly distributing total channel capacity into
each R-factor subchannel by choosing the free unitary matrix
in the water-filling solution family as the S-factor. �

The following two propositions further describe the opti-
mality of the uniform distribution of mutual information into
R-factor subchannels for the MMSE-DF detector.

Proposition 2: Suppose we wish to use an ordered MMSE-
DF detector for a channel where the mutual information matrix
has the equal-diagonal R-factor. Then, the optimal detection
order (that ensures that the high SINR components are detected
first) is the natural order, i.e., the i-th symbol to be detected
is the symbol xN+1−i.

Definition 2: Define the minimum distance of a finite con-
stellation X as

dmin(X ) = min
x�=x′,x,x′∈X

|x − x′| =
√

min
x,x′∈XN ,x�=x′

||x − x′||2.

Definition 3: Define the free distance of an M×N channel
matrix H as

dfree(H) =
√

min
x,x′∈XN ,x�=x′

(x − x′)HHHH(x − x′).

The following proposition shows the asymptotic behavior
of the free distance, and hence that of the MMSE-DF detector
for a channel with the equal-diagonal R-factor of its mutual
information matrix.

Proposition 3: Let the SVD of H be given by (3) and the
signaling point in constellation X be PAM or PSK or QAM.
When T = VΞS = T̃S with tr(THT) ≤ p, where S is
obtained by applying Algorithm 1 to I1/2

HT̃
, we have

lim
snr→∞

dfree(HT) =

√
p

r

( r∏
k=1

λk

)1/2r

dmin(X ). (10)

Therefore, under the Gaussian approximation (e.g., [14]), the
MMSE-DF detector is asymptotically equivalent to the ML
detector in the sense that

lim
snr→∞

ln PML(snr)

lnPMMSE−DFE(snr)
= 1, (11)

where PML(snr) and PMMSE−DFE(snr) denote the block
error probability of the ML detector and MMSE-DF detector,
respectively.

V. CONCLUSION

In this paper we have shown that if the precoder in (1) is
chosen to be T = VΞS = T̃S, where T̃ performs a water-
filling power allocation over the eigen vectors of HHH and S
is determined by applying Algorithm 1 to I1/2

HT̃
, then we obtain

a uniform decomposition of the maximum Gaussian mutual
information of the channel matrix H into implicit scalar
subchannels, each of which has the same mutual information.
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APPENDIX

A. Proof of Theorem 1

First, we show that Sα,β defined by (9) is an orthonormal
matrix. Let sm and sn denote the m-th and n-th columns
(n ≤ m) of Sα, β, respectively. Since the matrix Γ�k,αk,βk,r−k
is column-wise orthonormal, we have that

s
T
nsm = b

T
r−n−1, αn, βn

m−1∏
k=n

Γ�k, αk, βk, r−kbr−m−1, αm, βm . (12)

In addition, we notice that bT
r−n−1, αn, βn

Γ�n, αn, βn, r−n =
01×(r−n). Combining this with (12) yields sT

nsm = 0 for
n < m. For n = m, equation (12) becomes sT

nsm =
bT

r−n−1, αn, βn
br−n−1, αn, βn

= 1, where we have used (6a).
Therefore, Sα, β is an orthonormal matrix. We can prove that
Sα̃, β̃ is also an orthonormal matrix in a similar way.

We now show that ST
α̃, β̃

Λ1/2Sα, β is an upper triangular
matrix with equal diagonal entries. Let s̃m denote the m-th col-
umn of ST

α̃, β̃
. Note that ΓT

�k,α̃k,β̃k,r−k

√
Λ(k)Γ�k,αk,βk,r−k =√

Λ(k+1), where Λ(k) is the canonical eigen-diagonal matrix
sequence in Definition 1. Therefore, when m > n, we can

use the fact that
√

λ
(n)
1 β̃nαn −

√
λ

(n)
r−n+1α̃nβn = 0 to show

that s̃T
mΛ1/2sn = 0 When m = n, we have s̃T

nΛ1/2sn =√
λ

(n)
1 α̃nαn+

√
λ

(n)
r−n+1β̃nβn =

√
D. Similarly, we can prove

the product decomposition of Sα,β. �

B. Proof of Proposition 3

We first note that THHHHT = snr−1(IHT − I). Now
consider two different signal vectors: x = [x1, x2, · · · , xK ]T
and x′ = [x′

1, x
′
2, · · · , x′

K ]T . If xk = x′
k for k = 2, · · · ,K,

but x1 �= x′
1, then

(x − x
′)H

T
H
H

H
HT(x − x

′)

= snr−1
(
(x − x

′)HIHT(x − x
′) − |x1 − x′

1|2
)

= snr−1([R]21 − 1)|x1 − x′
1|2. (13)

Hence, by taking the minima of both sides of (13), we have

d2
free(HT) ≤ snr−1([R]21 − 1) · d2

min(X ). (14)

Since limsnr→∞ snr−1[R]21 = p
r (

∏r
k=1 λk)1/r, (14) implies

that

lim
snr→∞

dfree(HT) ≤
√

p

r

( r∏
k=1

λk

)1/2r

· dmin(X ). (15)

On the other hand, we note that

(x − x
′)H

T
H
H

H
HT(x − x

′)

= snr−1((x − x
′)HIHT(x − x

′) − ‖x‖2)
= snr−1

( K∑
i=1

∣∣∣ K∑
j=i

Ri,j · (xj − x′
j)
∣∣2 − ‖x‖2

)
. (16)

Assume x �= x′. Let k be an integer such that xi = x′
i, for i >

k, but xk �= x′
k. Then, from (16), using the upper triangularity

of R, we have

(x − x
′)H

T
H
H

H
HT(x − x

′)

= snr−1
( k∑

i=1

∣∣∣ k∑
j=i

Ri,j(xj − x′
j)
∣∣∣2 − ‖x‖2

)
≥ snr−1 (([R]21 − 1)|xk − x′

k|2 − ‖x‖2)
≥ snr−1 (([R]21 − 1) · d2

min(X ) − ‖x‖2) . (17)

Taking the minima of both sides of (17) yields

d2
free(HT) ≥ snr−1 (([R]1 − 1) · dmin(X ) − ‖x‖2

max

)
. (18)

Since the constellation X is finite, the quantity ‖x‖2
max is

bounded. Therefore, using (18) we have that

lim
snr→∞

dfree(HT) ≥
√

p

r

(
r∏

k=1

λk

)1/2r

· dmin(X ). (19)

Combining (15) with (19), we complete the proof of (10).
Moreover, we know from [15] and [8] that

lim
snr→∞

ln PMLD(snr)

ln Q
(√

snr dfree(HT)
2

) = lim
snr→∞

ln PMMSE−DFE(snr)

ln Q
(√

snr dfree(HT)
2

) =1.
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