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Abstract—The efficient representation of a signal as a linear
combination of elementary “atoms” or building blocks is central
to much signal processing theory and many applications. Wavelets
provide a powerful, flexible, and efficiently implementable class of
such atoms. In this paper, we develop an efficient method for se-
lecting an orthonormal wavelet that is matched to a given signal
in the sense that the squared error between the signal and some
finite resolution wavelet representation of it is minimized. Since
the squared error is not an explicit function of the design param-
eters, some form of approximation of this objective is required if
conventional optimization techniques are to be used. Previous ap-
proximations have resulted in nonconvex optimization problems,
which require delicate management of local minima. In this paper,
we employ an approximation that results in a design problem that
can be transformed into a convex optimization problem and effi-
ciently solved. Constraints on the smoothness of the wavelet can be
efficiently incorporated into the design. We show that the error in-
curred in our approximation is bounded by a function that decays
to zero as the number of vanishing moments of the wavelet grows.
In our examples, we demonstrate that our method provides wavelet
bases that yield substantially better performance than members of
standard wavelet families and are competitive with those designed
by more intricate nonconvex optimization methods.

Index Terms—Convex optimization, signal adapted wavelet de-
sign, signal representation.

I. INTRODUCTION

ASIGNAL expansion expresses a signal as linear combi-
nation of elementary atoms or building blocks, and, as

such, signal expansions are central to much signal processing
theory and many applications. Recently, the wavelet transform
has emerged as a powerful and efficient tool for signal expan-
sion and has shown potential in several applications, e.g., [1].
For example, in computer vision, wavelet-based multiresolution
has been used for motion estimation and stereo vision problems
[2], and multiresolution techniques have found applications in
transient and edge detection [3], [4], in computer graphics, pitch
estimation [5], medical imaging [6], and communications [7],
[8]. One of the features of the wavelet transform is that it can
be viewed as a family of transforms indexed by the wavelet
function (or the scaling function). When selecting a wavelet
function, one may pursue a “universal” approach in which one
seeks a wavelet that provides “good” performance over a broad
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class of signals, e.g., [9]. An alternative approach is to seek a
“signal-adapted” wavelet that is “matched” to a particular signal
or to a narrow class of signals, e.g., [10], [11]. In recent years,
several authors have developed systematic and efficient design
algorithms for signal-adapted filterbanks [12]–[22]. The goal
of the present paper is to develop a correspondingly system-
atic and efficient design algorithm for signal-adapted wavelet
bases. In particular, for a given signal of interest, we will ad-
dress the problem of finding the wavelet (or, more precisely, the
scaling function) that minimizes the squared error between the
signal and some finite resolution wavelet representation of itself
[10], [11]. A simple version of this problem can be formally
stated as follows: Given a particular signal that is ban-
dlimited to and an even integer , find an orthonormal
scaling function supported on that minimizes

, where
is the energy of , and represents the projection
of the signal onto the multiresolution subspace

, i.e.,

where denotes the inner product. While this problem is
stated for a deterministic signal , we will point out in (12)
that our approach extends directly to stationary stochastic sig-
nals with a given power spectral density. The above problem
can be viewed as a sampling problem [23] in which the “gen-
erating function” is required to satisfy the constraints of
an orthonormal multiresolution analysis and is designed so that
the squared error between the original signal and the re-
constructed signal is minimized.

At first glance, this problem appears to be infinite-di-
mensional (the “parameter to be optimized” is a function,

). However, the set of orthonormal scaling functions of
support is determined [24, Ch. 6] by param-
eters through a fixed point of the “dilation equation”

. Although this results in a
finite-dimensional optimization problem, there is no explicit
relationship between and . (The dilation equation is
an implicit relationship.) This makes it difficult to determine
the gradients of our objective with respect to the parameters,
which would ordinarily be used in the solution of the problem.
Several authors have recognized the fact that this represents
a rather awkward optimization problem and have developed
approximations to the cost function that are explicit functions
of the design parameters [10], [11]. (The method in [10] is
applicable to a more general setting than the bandlimited
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setting considered in [11] and herein.) These approximations
will be described in more detail in Section II, but in order to
motivate our design approach, we point out two drawbacks
of the approximations in [10] and [11]. First, although the
gradients of the approximated objective with respect to design
parameters can be explicitly determined, the resulting optimiza-
tion problem is not convex, and hence, delicate management
of local minima will be required. (The importance of this
management of local minima was observed in both [10] and
[11].) Second, the established methods do not explicitly control
the error incurred in the approximation of the objective, leading
to concerns that the optimal solution might incur considerable
approximation error.

In this paper, we address both these drawbacks by deriving
an approximation of the objective that is not only explicit in
the design parameters but can be transformed into a convex
optimization problem from which a globally optimal solution
can be efficiently found. (The convex optimization problem
we obtain is a semidefinite program.) Our derivation includes
an explicit bound on the error incurred in the approximation
of the objective, and this bound can be incorporated into the
convex optimization problem. Furthermore, constraints on the
“smoothness” of the scaling function can be easily incorporated
into the formulation. Therefore, using our new method, good
wavelet bases matched to a given application can be efficiently
designed. In our examples, we demonstrate that our method
provides wavelet bases that yield substantially lower squared
error than members of the standard wavelet families and are
competitive with those designed by more intricate nonconvex
optimization methods.

Notation

In order to distinguish between continuous functions, dis-
crete sequences, and their Fourier transforms, we will use
the following notational conventions. These conventions have
been influenced by both the engineering and mathematics
literature. Functions of a real variable will have the variable
enclosed in parentheses, (e.g., ), and functions of
a discrete variable will have the variable enclosed in brackets
(e.g., ). We will use the notation to denote
the continuous-time Fourier transform (CTFT) of , that
is, . We will let denote
the discrete time Fourier transform (DTFT) of , that is,

. Given our choice of notation for the
CTFT, approximations will be denoted by a tilde. Given a
matrix , the th element of will be denoted by .

II. BACKGROUND

We begin with a brief review of the basics of wavelet theory
[24]–[26]. Let be the impulse response of
a finite impulse response (FIR) filter. Furthermore, let be
self-orthogonal at even shifts, i.e., let

(1)

where is the Kronecker delta. Now, let be a scaling
function generated by this filter via a fixed point of the dilation
equation

(2)

and let be the corresponding wavelet function

(3)

Then, the set of functions
forms a tight frame [27] for the space of all finite energy func-
tions . In order to ensure that this set of functions forms
an orthonormal basis for , we need to enforce more con-
straints on in addition to those in (1). For example, a neces-
sary condition is that . A set of necessary and
sufficient conditions for the set to form an orthonormal basis
is available in [28], and another is available in [29], but for the
purposes of this paper, we prefer to use Daubechies’ sufficient
condition [24], [30] because it can be easily reformulated as a
convex constraint.

Lemma 1 [24, p. 182], [30]: Let the scaling filter of
length satisfy the orthonormality condition in (1), and let
be such that

(4)

for some and some with
. If

for all (5)

then the scaling function in (2) is orthonormal, and the set
, where was defined in

(3), forms an orthonormal basis for .
We point out that a necessary condition for an in the

form of (4) to satisfy the orthonormality condition in (1) is that
[24, p. 171]. Given an that satisfies Lemma 1, any

finite energy signal can be decomposed using the
following wavelet series:

(6)

where the indices and denote the scale and translation of
the wavelet, respectively. The projection coefficients are simply
obtained by the inner product

In the design of the decomposition in (6), we are often inter-
ested in the components of at and below the th scale.
That is, . From the theory of multireso-
lution analysis [24, Ch. 5], [26, p. 221], this is simply the pro-
jection of onto span , which is
the space spanned by the scaling function at the th scale. To
describe that projection, we let and
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. Then, the projection of onto
is

(7)

Therefore, the decomposition in (6) can be partitioned into com-
ponents at or below the th scale and those at scales above (i.e.,
finer than) the th scale

(8)

As stated in the Introduction, the design problem in which
we are interested is the following: For a given function ,
determine the scaling function that minimizes the squared
error between and

(9)

where . For functions that are
bandlimited to , the Nyquist sampling interval is 1 s, and
hence, the natural scale partition in (8) is . [In that case,
the time shift in the function in (7) is 1 s.] For such
signals, Parseval’s relation can be used to obtain the following
simple expression for [11]

(10)

In many applications, it may be desirable to minimize
over a set of scaling functions that possesses certain properties.
In particular, it may be desirable to impose lower bounds on the
number of vanishing moments of the corresponding wavelet and
on the number of its derivatives that are continuous. The number
of vanishing moments, which are denoted by , is the largest
non-negative integer such that , that is, the
order of locally polynomial signals that are orthogonal to the
mother wavelet . These polynomial signals thus lie in the
corresponding “scaling” subspace , and hence, is some-
times referred to as the approximation order of the scaling func-
tion. The number of vanishing moments of the wavelet is easily
controllable. In fact, any smooth orthogonal wavelet for which
the corresponding scaling filter has a zero of multiplicity

at [i.e., satisfies (4)] has vanishing moments. In
contrast, it can be rather awkward to parameterize all filters that
generate wavelets with at least a specified number of continuous
derivatives. However, we can obtain a convenient parameteriza-
tion of a class of scaling filters that generate wavelets with
vanishing moments and at least continuous derivatives
by simply replacing (5) in Lemma 1 by the following constraint
[24, p. 216]:

for all (11)

Note that when , (11) reduces to (5). As shown in Ap-
pendix A, a necessary condition on for a satisfying
Lemma 1 and (11) to exist is .

We are now ready to formally state our design problem.
Problem 1: Given a particular signal that is bandlimited

to , an integer that denotes the length of the scaling
filter, and integers and , find

a (orthonormal) scaling function that minimizes ,
subject to (1), (2), (4), and (11).

Before we attempt to solve Problem 1, we point out the fol-
lowing fact: If is a stochastic signal with a power spectral
density , which is zero outside the interval , then

(12)

where denotes expectation. Although the focus of the present
paper is on the design of orthonormal wavelet bases matched
to a bandlimited deterministic signal, the common algebraic
structure of (10) and (12) indicates that our approach can be
extended in a straightforward manner to the design of wavelet
bases matched to a bandlimited stochastic signal.

As we pointed out in the Introduction, Problem 1 is a rather
awkward optimization problem because the objective is not an
explicit function of the parameters , which uniquely define

according to (2). Therefore, several authors have suggested
bounding or approximating the objective by an explicit function
of . The approach taken in [11] exploits the Fourier trans-
form of the scaling equation (2), namely

(13)

which allows us to write ,
where . Approximating this infinite product by a finite
one, we have that

(14)

where, consistent with the notational conventions in the Intro-
duction, we have used a tilde to denote the approximation of

. Using (14), we can approximate Problem 1 in the fol-
lowing way.

Problem 2: Given a particular signal that is bandlimited
to and integers , , ,
and , find a (orthonormal) scaling filter

, which minimizes

(15)

subject to (1), (4), and (11).
Gopinath et al. [11] proposed a similar approximation of

Problem 1 but did not include the constraint in (11).
Once Problem 2 has been solved, the corresponding scaling

function can be found by solving (2) using, for example, the
cascade method [24, Sect. 6.5] or the iterated filter method [25,
Sect. 4.4.2]. An advantage of Problem 2 is that the objective
is now an explicit function of the parameters . However,
Problem 2 remains an awkward problem to solve because it is
not convex in . Any algorithm used to design directly
will require delicate management of local minima—a point
emphasized in [10] and [11]. Furthermore, as is increased
so that (15) becomes a better approximation for (10), the
objective in (15) becomes a more complicated function of

, which can make the calculation of derivatives of the
objective quite cumbersome. In addition, while searching for
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the scaling filter that minimizes , one ought to guard

against amplifying the approximation error
in (14). (This point was overlooked in [11].) These drawbacks
motivate us to find a design method that provides a compromise
between the complexity of the optimization problem and the
accuracy of the approximation while allowing us to explicitly
bound approximation error. A candidate method is provided
in the next section.

III. TRANSFORMATION OF PROBLEM

The purpose of this section is to derive an alternative ap-
proximation of Problem 1 that results in a convex optimization
problem that can be efficiently solved while allowing explicit
control of the approximation error.

A. Approximation of

We begin the derivation with a proposition that describes an
approximation of and provides a bound on the approx-
imation error. For convenience, we first introduce some nota-
tion. Let be the discrete-time Fourier
transform (DTFT) of the integer samples of the scaling function

, and let

and (16)

where was defined in Lemma 1.
Proposition 1: If satisfies the conditions of Lemma 1

with , then

(17)

where

(18)

Furthermore

(19)

where

(20)

The proof of Proposition 1 is given in Appendix B. In essence,
Proposition 1 reflects the lowpass characteristic of the scaling
function. It also reflects the fact that the zero moments control
the accuracy with which approximates near low fre-
quencies, i.e., the greater the approximation order of the scaling
function, the higher the accuracy at low frequencies. An advan-
tage of Proposition 1 over some other approximations of
is that the error term can be controlled quantitatively via (18) or
(20).

B. Formulations

To develop our convex formulation of the wavelet design
problem, we need to transform the objective and constrains
into convex functions of the design parameters. We do so in
Sections III-B1 and III-B2, respectively. The formulation itself
is provided in Section III-B3.

1) Transformation of the Objective Function: Employing
Lemma 1 and Proposition 1, we can approximate the original
nonconvex objective function by a convex one. Applying
Proposition 1 to the right-hand side of (13) leads to

(21)

where

(22)

and we have used the fact that . Substituting (21)
into (10) yields

(23)

where we have used the fact that ,
[30]. (An expression for appears in (77) in Ap-
pendix E.) The approximation error term satisfies

(24)

with

(25)

(26)

Note that is the th moment of the power spectrum
of , and, as such, is a measure of the “spread” of .

Since is bandlimited to , it is naturally bandlim-
ited to . Hence, it can be represented by samples taken
at integer multiples of 1/2, i.e.,

(27)

Let

(28)

(29)

As shown in Appendix C, we can use (27)–(29) to rewrite the
objective (23) as

(30)

where we have used the fact that and the symmetry of
and . The first term of (30) is a constant that depends

only on . The second term in (30) is a linear, and hence
convex, function of the autocorrelation sequence . How-
ever, the third term in (30) is an implicit function of the filter
coefficients, and its presence makes (30) a difficult function to
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minimize. However, we can alleviate this difficulty by replacing
by its upper bound in (24). Hence

(31)

where . Since we know , for a given , we can
calculate in (25) and, hence, in (26) analytically:

(32)
where the symbol represents the number of permutations
taking elements from elements. The details of the derivation
of (32) are provided in Appendix D. The corresponding expres-
sion for can be obtained by substituting (32) into (26). In
practice, the infinite sum in (32) will be approximated, leading
to an approximate value for . Amalgamating these results,
we obtain the following approximation of Problem 1.

Problem 3: Given a particular signal , which is bandlim-
ited to and integers , , and

, find a (orthonormal) scaling filter
, and a scalar that achieve

(33a)

subject to (1), (4)

for all (33b)

(33c)

If the term is removed from (33a), then Problem 3
is equivalent to Problem 2 with . However, Problem 3
has the advantage that it can be transformed into a convex op-
timization problem, as we will show below. Furthermore, by
including the term in (33a), we can explicitly bound
the difference between the value of in (10) achieved
by the scaling function corresponding to the optimal solution
to Problem 3 and the true optimal value of . The latter
value is, of course, the optimal objective value for Problem 1.
This bound is derived in Section III-C and decays to zero with
increasing .

2) Transformation of the Constraints: The key observation
in the transformation of Problem 3 into a convex optimization
problem is that the objective and constraints can be written as
convex functions of the autocorrelation of the filter (and ).1

This observation is straightforward in the case of the objec-
tive because (33a) is already expressed as a linear (and hence
convex) function of and . (Since the term does
not depend on or , it can be removed from the objective.)
The case of the constraints is a little more subtle, and we now
deal with each one in turn.

a) Regularity Constraint: In order to ensure that the re-
sulting wavelet has zero moments, we require that the scaling
filter satisfy the th-order regularity condition, i.e., it has a zero

1Similar observations have led to efficient design algorithms for other FIR
filter design problems [31]–[33], including the design of signal-adapted filter-
banks [16], [21].

of multiplicity at or, equivalently, that satisfies
(4). In the time domain, this condition is equivalent to

for (34)

Requiring to have zeros at is equivalent to
requiring its autocorrelation, which has a frequency response

, to have zeros at . This condition is equivalent to

for

(35)
However, since is symmetric, this is automatically true for
odd . Hence, (35) is equivalent to

for (36)

which is linear equality constraints on .
b) Orthonormality Constraint: In our design problem, we

require that the scaling function is orthonormal. A necessary
condition for this is that the scaling filter is orthonormal. This
is equivalent to (1). Since , it is easy
to express (1) in term of variables :

for (37)

where the symbol denotes the largest integer not exceeding
, and we have used the symmetry of . Equation (37) con-

sists of another linear equality constraints on
. In order to guarantee that the generated scaling function is

orthonormal and has at least continuous derivatives, we
enforce Daubechies’ sufficient condition (11) on , which
is equivalent to

for all (38)

where , and hence,
. Using (4), inequality (38) is

equivalent to

for all (39)

which is an infinite set of linear inequality constraints on :
one for each .

c) Normalization Constraint: We know from the theory
of wavelets [24, Sect. 6.2] that the normalization condition

and the orthonormality condition (1) on the
scaling filter ensure that the scaling function generated by
belongs to . This implies that , from which we
can obtain . This is essentially equivalent to
the original normalization condition because when performing
spectral factorization, we can require that . In
addition, note that the condition , which is a single
linear equality constraint on , is the consequence of the
first equation in (36) and the orthonormality condition (1) on
the scaling filter.
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3) Reformulations: To complete the reformulation of
Problem 3 in terms of instead of , we must add the
additional semi-infinite linear inequality constraint
for all , which is a necessary and sufficient condition
for to be factorizable in the form ,
[34]. Combining the above results, our design problem can be
cast as follows.

Formulation 1: Given a particular signal that is ban-
dlimited to and integers , ,
and , find the autocorrelation sequence
achieving

(40a)

over and subject to the following
constraints:

for

(40b)

(40c)

for (40d)

for all (40e)

for all

(40f)

(40g)

The constraints (40c), (40d), and (40e) guarantee that the low-
pass filter has multiplicity of zeros at . The
constraints (40b), (40e), (40f), and (40g) together ensure that
the scaling function generated by is orthonormal and has at
least continuous derivatives.

Formulation 1 has a linear objective and an infinite number
of linear constraints [constraints (40e) and (40f) each generate
one linear constraint for every ]. Although one could
attempt to solve this problem by discretizing constraints (40e)
and (40f) and applying linear programming techniques to that
discretized problem, such an approach is numerically awkward
in practice because (40e) requires that for all ,
but (40d) requires that has zeros at , that
is, that and for

. This causes the formulation to become numerically
ill-conditioned as increases. This problem can be alleviated
by enforcing (40d) analytically and reformulating the problem
in terms of , which is the autocorrelation sequence of
in (4).2 Using (4), we have that

(41)

2While this paper was being finalized, some independent and concurrent work
on a related design problem appeared in which this reformulation in terms of

was also used [35].

This is equivalent to

(42)

for . (Recall that and are sym-
metric.) Therefore, the orthonormality constraint (40b) on the
original filter is now equivalent to

(43)

for . Let

if
otherwise.

Then, (43) can be rewritten as

(44)
for . Now substituting (42) into the
right-hand side of (31) yields

(45)

where

(46)

(47)

for , and we have used the symmetry of
. Therefore, Formulation 1 can be restated in terms of

as follows.
Formulation 2: Given a particular signal that is ban-

dlimited to and integers , , and
, set , and find the autocorrelation

sequence of the filter that achieves

(48a)

over , and , subject to the following
constraints:

(48b)

for (48c)

for all (48d)

for all (48e)

(48f)
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Like Formulation 1, Formulation 2 has a linear objective and
linear constraints. The difference is that (40b) and (40c) in
Formulation 1 have been imposed analytically in Formulation
2, rather than numerically, and hence, Formulation 2 is far
better conditioned than Formulation 1. However, Formulation
2 remains awkward to solve because the constraints in (48d)
and (48e) are still semi-infinite. They produce one (linear) con-
straint on for each relevant frequency. One way to handle
semi-infinite constraints of this type is to approximate them
using discretization techniques [16]. An alternative approach is
to apply the positive real and bounded real lemmas (e.g., [33]
and [36]–[38]) to precisely transform the semi-infinite con-
straints in (48d) and (48e) into finite linear matrix inequalities.
In particular, (48d) holds if and only if there exists an
symmetric positive semidefinite matrix such that

(49)

and (48e) holds if and only if there exists an symmetric
positive semidefinite matrix such that

(50)

A symmetric matrix is said to be positive semidefinite if all its
eigenvalues are non-negative. This will be denoted by .
Using these two relationships, we obtain the following semidef-
inite program formulation of Problem 3.

Formulation 3: Given a particular signal that is ban-
dlimited to and integers , , and

, set , and find the autocorrelation
sequence , scalar , and the positive semidef-
inite symmetric matrices and , which achieve

(51a)

subject to (48b), (48c), (48f), (49), and (50) (51b)

Formulation 3 consists of a linear objective function, subject
to linear equality constraints [(48b), (48c), (49), and (50)],
linear inequalities (48f), and the semidefinite constraints

. Hence, it is a (convex) semidefinite programming
(SDP) problem [39] and can be solved in a highly efficient
manner using interior point methods [40]. Several generic SDP
solvers are available, including the MATLAB-based SeDuMi
package [41]. (There are also early indications [38], [42],
[43] that special-purpose SDP solvers that exploit the specific
algebraic structure of (51) may be able to solve Formulation
3 substantially faster than a generic solver.) Once the optimal
autocorrelation has been found, we can find an optimal

using standard spectral factorization techniques [31], [44].
We can then find an optimal using the following time
domain equivalent of (4):

(52)

TABLE I
PERFORMANCE OF OUR DESIGN METHOD IN EXAMPLE 1 FOR VARIOUS AND

. IN THIS EXAMPLE , AND WE PROVIDE THE PERCENTAGE
REDUCTION IN THE SQUARE ROOT OF SQUARED PROJECTION ERROR

OVER THE STANDARD DAUBECHIES LENGTH 20 FILTER

Fig. 1. Our scaling function for (solid) and that generated by the standard
length-20 Daubechies filter (dashed).

C. Bound on the Approximation Error

Our efficient design method for signal-adapted wavelet de-
sign is based on minimizing an upper bound (31) on the objec-
tive in Problem 1. The following proposition, which is
proved in Appendix E, shows that the value of achieved
by solving Problem 3 is guaranteed to be close to the true op-
timal value.

Proposition 2: Let denote an optimal solution to
Problem 1, and let denote the scaling function corre-
sponding to an optimal solution to Problem 3. Then

(53)

where is the number of vanishing moments of the corre-
sponding wavelet function.

Proposition 2 states that if is chosen so that the
right-hand side of (53) is small, then the solution to Problem
3 achieves a value of that is close to the true optimal
value. Furthermore, as long as the signal is such that

, the bound on the right-hand side
of (53) approaches zero as increases. For such signals, a
solution to Problem 3 is asymptotically optimal for Problem
1 as increases. The condition
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TABLE II
OUR FOR WITH , AND , ALONG WITH THE

STANDARD DAUBECHIES LENGTH 20 SCALING FILTER

is satisfied for a broad class of signals. In particular, for (ban-
dlimited) signals with bounded power spectra, i.e., for signals
for which , we have that

with equality holding if and only if . Hence, for
this (large) class of signals, the right-hand side of (53) decays
to zero as gets large.

Since , solutions to Problem 3 remain suboptimal
for Problem 1 for finite length filters. However, for a given ,
one can choose such that

(54)

and, hence, that the value of achieved by a solution
to Problem 3 is sufficiently close to its minimal value. The ex-
pression in (54) also provides some guidance as to the signals
for which the objective in Problem 1 can be tightly bound. Re-
call that is the th moment of the power spectrum
of , and, as such, is a measure of the extent to which
is concentrated around . Functions with spectra that are
concentrated around will tend to have smaller moments
and, hence, will tend to require only small values of to sat-
isfy (54). In contrast, functions with spectra that are dispersed
across the whole band will tend to have larger moments
and, hence, may require larger . Recall that all previous design
methods also approximate the objective in Problem 1. A feature
of our method is that the approximation error can be explicitly
controlled.

IV. DESIGN EXAMPLES

In the section, we demonstrate the performance, flexibility,
and efficiency of our design method using three examples.

Example 1: We first consider the signal ,
which has a rectangular spectrum (of unit “height”) on .

Fig. 2. Magnitude spectra of scaling functions in Fig. 1. The solid line shows
the magnitude spectrum of our scaling function for , and the dashed line
shows that of the scaling function generated by the standard Daubechies length
20 filter.

Fig. 3. Frequency responses of the scaling filters in Example 1. The solid line
shows the frequency response of our scaling filter for , and the dashed line
shows that of the standard length 20 Daubechies scaling filter.

As pointed out in Section III-C, this function results in an
instance of Problem 1, which is quite difficult to approximate
using our method. The performance of a number of length
20 filters designed by our method is compared with that of
the standard length 20 Daubechies scaling filter, which has

, in Table I. (In the table, was approximated by
in (15) with .) As can be seen from Table I,

our method can provide a substantial reduction in the projection
error , when compared with the standard Daubechies
design. Moreover, our design technique is flexible and efficient.
As shown in Table I, it lends itself to the investigation of the
tradeoffs between the number of vanishing moments , the
number of derivatives that are guaranteed to be continuous ,
and the (achieved) projection error.

To study the characteristics of filters designed by our method
in more detail, we select the case where and ,
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Fig. 4. Scaling functions for . The solid line shows our designed scaling
function, and the dashed line shows the scaling function designed in [11]. These
functions are almost indistinguishable at the scale of the figure.

which results in a 26% reduction in the value of over
the Daubechies filter. As can be seen in Fig. 1, the scaling func-
tion generated by our filter has a similar shape to that generated
by the Daubechies filter, even though the coefficients of the fil-
ters are substantially different; see Table II. However, the differ-
ences between scaling functions are quite clear in the frequency
domain, as shown in Fig. 2. The differences are perhaps most
clear when plotting the frequency response of the scaling fil-
ters, as we have done in Fig. 3, in which it is clear that our filter
has used its extra degrees of freedom (it has , whereas
the Daubechies filter has ) to provide a narrower tran-
sition band than the Daubechies filter. It has done so by placing
two extra zeros in its frequency response (at and

) in addition to those at . The tradeoff for this
narrower band is a peak in the passband and slightly higher side-
lobes in the stopband of the filter. The improved transition band
of our filter clearly manifests itself in the improved transition
performance of our scaling function (see Fig. 2).

Example 2: In this example, we demonstrate the accuracy
of the approximation that led to our convex design method
(Problem 3) by comparing the performance our method to
that of Gopinath’s method [11]. Gopinath’s method involves
solving the nonconvex optimization problem in Problem 2 in
the absence of (11). We have chosen the signal from Example
2 in [11] as the signal of interest:

for

and zero otherwise. This signal is almost, rather than absolutely,
bandlimited, but it was chosen because a scaling filter designed
using Gopinath’s method [11] is available. To compare our
method with Gopinath’s, we will consider a length 8 filter
with two vanishing moments, i.e., and . Our
scaling filter and Gopinath’s scaling filter [11] are given
in Table III, along with the corresponding projection errors.
(The projection error for Gopinath’s filter reported in Table III
is slightly different from that reported in [11] because we have
used a higher sampling rate in the discretization of .) The

Fig. 5. Magnitude spectra of scaling functions in Fig. 4. The solid line shows
the magnitude spectrum of our designed scaling function for , and the
dashed line shows that of the scaling function designed in [11].

Fig. 6. Frequency responses of the scaling filters. The solid line shows the
frequency response of our designed scaling filter for , and the dashed line
shows that of the scaling filter designed in [11].

corresponding scaling functions and their magnitude spectra
are shown in Figs. 4–6, respectively.

The analysis in Section III-C guarantees that the performance
of our filter will approach the performance of an optimal filter
as grows. Even though we only have in this example,
it is clear from Table III that our scaling filter is very close
to that obtained in [11]. As a result, the scaling functions
and magnitude spectra are quite similar (see Figs. 4–6). The
filter designed in [11] provides a slightly lower projection
error, due to the more accurate approximation of
used in [11]. However, the design of that filter requires the
solution of a nonconvex optimization problem. This typically
involves the rather computationally costly task of generating
a sufficiently large number of locally optimal solutions from
sufficiently diverse class of “starting points” in order to have
a reasonable degree of confidence that the best solution of
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TABLE III
SCALING FILTERS FOR .

Fig. 7. (Time-averaged) power spectral density of the speech signal used in
Example 3.

those obtained is sufficiently close to the global optimum. In
contrast, any locally optimal solution to our formulation is
globally optimal, and such solutions can be efficiently obtained
using, for example, interior point methods.

Example 3: In this example, we apply our design method to
a signal consisting of several English sentences spoken by a fe-
male speaker. The (time-averaged) power spectral density of the
speech signal is shown in Fig. 7. By invoking the version of our
design method for a stochastic signal [see (12)], we designed
a scaling filter for this signal with and . Our
filter and the root mean square (RMS) value of the projection
error that it achieves are provided in Table IV, and the resulting
scaling function is provided in Fig. 8. In both Table IV and
Fig. 8, our filter is compared with the standard Daubechies filter
of length 12. Our filter achieves an RMS projection error that is
more than 15% smaller than that achieved by the Daubechies
filter. It can be seen from Fig. 8 that the shapes of our scaling
function and the Daubechies scaling function are quite similar
in the time domain, which is an observation we also made in Ex-
ample 1. However, in the frequency domain, there are significant
differences between our scaling function and that of Daubechies
(see Fig. 9). As was the case in Example 1, the differences are
most obvious in the frequency response of the scaling filter (see
Fig. 10). Our scaling filter has a zero in the middle of its stop-
band, whereas the Daubechies filter has all its zeros at . As
a result, our scaling filter provides a faster transition between its

Fig. 8. Our scaling function for the speech signal in Example 3 (solid) and that
generated by the standard length-12 Daubechies filter (dashed).

Fig. 9. Magnitude spectra of the scaling functions in Fig. 8. The solid line
shows the magnitude spectrum of our scaling function for the speech signal in
Example 3, and the dashed line shows that of the function generated by the
standard length 12 Daubechies filter.

passband and stopband. As can be seen from Fig. 9 and Table IV,
this leads to improved transition behavior in the spectrum of the
corresponding scaling function and a reduced mean square pro-
jection error.

V. CONCLUSIONS

In this paper, we provided a flexible, efficient design
technique to find compactly supported wavelet bases that are
“matched” to a given bandlimited signal in a least square
sense. This design technique complements the efficient design
techniques that are currently available for “matching” filter-
banks to signals with particular properties. All conventional
approaches to this problem involve approximations because
the objective function is only an implicit function of the
parameters. An important advantage of our approximation over
previous approximations is that the resulting design problem
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Fig. 10. Frequency responses of the scaling filters in Example 3. The solid line
shows the frequency response of our scaling filter, and the dashed line shows that
of the standard length 12 Daubechies scaling filter.

TABLE IV
OUR FOR THE SPEECH SIGNAL IN EXAMPLE 3 WITH AND ,

AND THE ROOT MEAN SQUARE PROJECTION ERROR THAT IT ACHIEVES,
ALONG WITH THE STANDARD DAUBECHIES LENGTH 12 FILTER AND

ITS PROJECTION ERROR

can be transformed into a convex optimization problem from
which a globally optimal solution can be efficiently obtained.
Our method also allows explicit control over the error incurred
in the approximation of the objective, and constraints on the
smoothness of the wavelet can be efficiently incorporated into
the design. Using our formulation, good wavelet bases can be
efficiently designed, without the need for delicate management
of the local optimal solutions. Furthermore, the flexibility of
the method provides an opportunity (which we explored in
Example 1) to demonstrate some of the tradeoffs between
the “matching” of a wavelet basis to a given signal and the
properties of the wavelet, such as its number of vanishing mo-
ments and its smoothness. In closing, we recall the discussion
following Problem 1 (and that in Example 3) in which we
argued that although our design method was developed for
matching the wavelet basis to a given bandlimited deterministic
signal in a least squares sense, it can be directly applied to the
design of wavelet basis matched, in a mean square sense, to a
given bandlimited stochastic signal.

APPENDIX A
PROOF THAT

It follows from (4) that

(55)

Setting in (55) yields , where we
have used the fact satisfies (1), and hence,

. Therefore, a necessary condition for
to hold for all is . That
is, .

APPENDIX B
PROOF OF PROPOSITION 1

We begin the proof of Proposition 1 by proving a lemma
that is slightly more general than the first statement in
Proposition 1. To state that lemma succinctly, we define

.
Lemma 2: Let satisfy (4) with . If ,

we have that

(56)

where

(57)

Proof: Using the dilation equation in (2), we obtain

(58)

Performing the discrete time Fourier transform on both sides of
(58), we can deduce that

(59)
On the other hand, using the inequality
and parameterization of in (4), we obtain for

(60)

Let

(61)

Then, (59) can be rewritten as

(62)

where

(63)
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Now, if we recursively apply the above procedure to on
the right side of (62) times, we have that

(64)

where with satisfying

(65)

Now, we see that if , then the series
converges, and

(66)

Therefore, the series is absolutely and uniformly
convergent. Let . Then, combining
(65) with (66) gives

(67)

Finally, note that the first term in (64) tends to as goes
to infinity since , cf. (13) and the sentence preceding
(13). This completes the proof of Lemma 2.

The proof of Proposition 1 is as follows: Since is or-
thonormal, we have that , [30].
Since satisfies the conditions of Lemma 1, , and
hence, . Equation (18) is then obtained by substituting

into (57).
Since satisfies the conditions of Lemma 1, is or-

thonormal, and hence

(68)

is an interpolating scaling function [45], i.e., .
Therefore, for all real , . Now,

. Applying Lemma 2 to completes the
proof of Proposition 1.

APPENDIX C
DERIVATION OF (30)

By taking the continuous-time Fourier transform of the
right-hand side of (27), we have that

otherwise
(69)

and, hence, that

otherwise.
(70)

The above formulae remain valid even though we know that
for .

We also have that

(71)

and, hence, that

(72)

Since we know that for

(73)

where, in the last step, we have used (70), (72), and the fact
that . Equation (30) then
follows by substituting (73) into (23).

APPENDIX D
CALCULATION OF

Using (25), we have that

(74)

Since is bandlimited to , we have that
. Hence

where was defined in (29). In other words, the power spec-
trum of can be written in terms of the autocorrelation of its
“Nyquist-rate” samples. Hence

APPENDIX E
PROOF OF PROPOSITION 2

To simplify the notation, we define

where was defined in (29), and is the autocorrelation
of , cf. (28). Using (24), we have that

(75)

where , and
. If we let denote an optimal scaling filter
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for Problem 1 and let and denote an optimal solution
to Problem 3, then

(76)

Here

(77)
Since is orthonormal, we have that ,
[24, p. 132]. Hence, , and therefore, .
Using this result, we have that

(78)

Now, since and are optimal with respect to Problem 3,
we have that

(79)

and hence

(80)

Combining (78) and (80), we have that

(81)

The proposition now follows by observing that for any scaling
filter satisfying (4) and (11), .
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