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ABSTRACT

The design of a pulse shaping filter which provides maxi-
mal robustness to an unknown frequency-selective channel is
formulated as a convex optimization problem from which an
optimal filter can be efficiently obtained. Robustness is mea-
sured by the worst-case mean square error of the data esti-
mate over a class of deterministically bounded channels, and
the optimization is subject to a constraint on the bandwidth
of the filter. The design technique allows efficient explo-
ration of design trade-offs between bandwidth, performance
in an ideal channel and robustness to unknown channel dis-
tortion. It is used to design chip waveforms with superior
performance to the waveform specified in a recent standard
for digital mobile telephony.

1 INTRODUCTION

In digital communications, waveform coding is often per-
formed by linear pulse amplitude modulation (PAM) of
translated versions of a given waveform [1]. The choice of
waveform critically impacts many system performance crite-
ria, including spectral efficiency and mitigation of expected
channel imperfections. In applications in which an accu-
rate channel model is available, there are several established
techniques by which a waveform can be designed [1]. How-
ever, in some wireless applications the transmission environ-
ment may undergo substantial variations and it might not be
possible to obtain an accurate channel model. In that case,
one ought to design waveforms which provide robust perfor-
mance in the presence of channel uncertainty. In this paper,
an efficient technique for the design of such robust wave-
forms is presented. The technique is targeted at applications
in which waveform coding is performed by a baseband dig-
ital signal processor, and hence waveform design can be re-
duced to the design of a multi-rate finite impulse response
(FIR) filter. This framework ensures that the designed wave-
form can be easily implemented.

In this paper, the performance of the PAM scheme is mea-
sured in terms of the mean square error (MSE) of the data
estimate, and robustness is measured by the worst-case MSE
over a deterministically bounded class of channels. Our ob-
jective is to find a filter which minimizes this worst-case
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Figure 1: Discrete-time model of baseband PAM.

MSE, subject to a constraint on the MSE in an ideal channel
and a constraint on the spectral occupation of the transmit-
ted signal. Unfortunately, this objective and these constraints
are non-convex functions of the filter coefficients, and hence
direct design of an optimal filter may be complicated by the
presence of local minima. Inspired by recent work [2] on
the design of self-orthogonal (‘root-Nyquist’) filters for dis-
tortionless channels (and preceding work on the design of
standard FIR filters [3]), we will show that the design prob-
lem can be transformed into a convex cone programme [4,5]
in the autocorrelation sequence of the filter, from which a
globally optimal filter can be efficiently obtained. Using this
technique the design tradeoffs between bandwidth, perfor-
mance in an ideal channel, and robustness to channel uncer-
tainties can be efficiently evaluated. These trade-offs are par-
ticularly important in applications in which the channel may
vary (slowly, with respect to the pulse duration) but for which
equalization is deemed to be too expensive. In a design ex-
ample we will obtain a chip waveform with improved per-
formance over that specified in a recent standard for digital
mobile telephony.

2 PULSE AMPLITUDE MODULATION

Consider the discrete-time baseband PAM scheme illustrated
in Fig. 1. If the baseband equivalent channel does not vary
significantly (in time) over the duration of the waveform, the
error in the received data estimated̂[n] is

d̂[n]−d[n] = ∑
i

(
f [i]− δ[i]

)
d[n− i]+∑

k

g[k−Nn]η[k],

where f [i] = ∑k c[k]rg[k−Ni], rg[m] = ∑k g[k]g[k+m] is the
autocorrelation sequence ofg[k], andη[k] models the addi-
tive noise. For white data with zero mean and energyE per



symbol, and white noise with varianceN0, the MSE is

MSE= E∑
i

(
f [i]− δ[i]

)2 +N0rg[0]

= E∑
i

(
rg[Ni]− δ[i]+∑̀ce[`+Ni]rg[`]

)2 +N0rg[0],

wherece[k] = c[k]− δ[k] denotes the error channel. With the
normalizationrg[0] = 1, we have that

MSE= N0 +E ∑
i 6=0

rg[Ni]2 +2E ∑
i 6=0

rg[Ni]∑̀ce[`+Ni]rg[`]

+E∑
i

(
∑̀ce[`+Ni]rg[`]

)2
. (1)

The first term in (1) is the MSE due to the noise, the second is
the MSE induced by the filters, and the third and fourth terms
capture the additional MSE induced by the distorting chan-
nel. If the error channelce[k] is known, then an optimal filter
can be found by minimizing (1). (Related design problems
have been well studied [1].) However, in the present paper,
we focus on the case wherece[k] is not known. In Section 3
we will provide a convex optimization problem whose solu-
tion minimizes the worst-case MSE over a class of determin-
istically bounded error channels.1 The optimization is sub-
ject to a constraint on the the spectral occupation of the trans-
mitted signal (the ‘bandwidth’). In this paper, that constraint
will be that the power spectrum ofs[k], Ss(ejω) ∝

∣∣G(ejω)
∣∣2,

must satisfy a relative spectral mask. A key observation in
our development is thatRg(ejω) = |G(ejω)|2, and hence that
Ss(ejω) is a linear function ofrg[m], whereas it is, in general,
a non-convex quadratic function ofg[k].

3 DESIGN OF ROBUST WAVEFORMS

Applying the triangle and Cauchy-Schwarz Inequalities to
the the right had side of (1) [see Appendix A for the details],

MSE≤ N0 +2E
((

γg + λ1B̃g
)2 + λ2

2B̃
2
g

)
. (2)

Here, γ2
g = 2∑i≥1 rg[Ni]2 is the MSE due to the intersym-

bol interference in an ideal channel (i.e., the ‘self-induced
MSE’), and B̃2

g = 1+ B2
g, whereB2

g = 2∑`≥0 rg[`]2, is the
MSE sensitivity coefficient for the error channel. The terms
λ2

1 = ∑i 6=0C2
i andλ2

2 = C2
0, whereC2

i = ∑L−1
`=−L+1ce[`+Ni]2,

capture the ‘size’ of the error channel. If the size and struc-
ture of the error channel are known (i.e., ifλ1 and λ2 are
known), then one could chooseg[k] to minimize the right
hand side of (2).2 However, if, as is often the case,λ1 andλ2

are not known, an appropriate design problem is to minimize
the sensitivity coefficient̃Bg (or equivalentlyBg), subject to
a upper bound on the self-induced MSEγ2

g ≤ ε2 and a spec-
tral mask onSs(ejω). Unfortunately,B2

g andγ2
g are quartic

1It has already been shown [7] that the minimization of the worst-case
‘peak intersymbol interference’ [1] over this class of channels can be for-
mulated as a convex optimization problem. The maximization of the ‘eye-
flatness’ can also be formulated as a convex optimization problem [6]

2That problem can be formulated as a convex optimization problem in
rg[m], but we will not do that here.

polynomials ofg[k] and the power spectrum is a non-convex
quadratic function ofg[k]. Therefore, a direct design algo-
rithm may be exposed to the intricacies of local minima.

However, the spectral mask constraint generates linear
constraints onrg[m], and B2

g and γ2
g are convex quadratic

functions ofrg[m]. To complete the formulation of this de-
sign in terms ofrg[m] instead ofg[k], we must add the semi-
infinite linear constraint:Rg(ejω)≥ 0 for all ω∈ [0,π], which
is a necessary and sufficient condition forrg[m] to be factoriz-
able in the formrg[m] = ∑k g[k]g[k+m], (by the Féjer-Riesz
Theorem). In order to avoid the intricacies involved in dis-
cretizing this semi-infinite constraint, we can apply the Posi-
tive Real Lemma (PRL), which states that satisfaction of the
semi-infinite constraint is equivalent the existence of a sym-
metric matrixP such that the following finite dimensional
linear matrix inequality (LMI) holds:

M(P ),
[

P −ATPA cT −ATPb(
cT −ATPb

)T
2d−bTPb

]
≥ 0, (3)

where

A =
[
0 IL−2

0 0

]
, b =

[
0
1

]
, (4a)

c =
[
rg[L−1], . . . , rg[2], rg[1]

]
, d = 1/2. (4b)

(See [2, 7, 8] for other applications of the PRL in FIR filter
design.). The pulse shaping filter design problem can now be
cast as the following convex cone programme:

Problem 1 Givenρ`(ω), ρu(ω), ε, N andL, find a filter of
lengthL achievingmin α overrg[m], m= 0,1, . . . ,L−1, P =
P T , W > 0 andα ≥ 0, subject torg[0] = 1, γg ≤ ε, Bg ≤ α,
the spectral mask

W10ρ`(ω)/10 ≤ Rg(ejω) ≤W10ρu(ω)/10, for all ω ∈ [0,π], (5)

and to the LMI in(3), or show that none exist.

Problem 1 consists of a linear objective, subject to a lin-
ear equality constraint (rg[0] = 1), linear inequality con-
straints (5), two second-order cone [5] constraints (γg ≤ ε
andBg ≤α), and an LMI. Hence, Problem 1 is a convex sym-
metric cone programme and can be efficiently solved using
interior point methods [9]. (SeDuMi [10] is a particularly effi-
cient MATLAB -based tool.) These methods obtain a solution
with an ‘accuracy’ ofδ in at mostO(

√
n log(1/δ)) iterations,

wheren is the number of variables. (In practice, a solution
is often obtained in far fewer iterations than this worst-case
complexity would suggest.) Once an optimalrg[m] has been
obtained, an optimal filter can be found by spectral factoriza-
tion (e.g., [11]).

Problem 1 has an intuitively appealing interpretation in the
frequency domain: Using Parseval’s Relation,

B2
g =

Z π

−π

(|G(ejω)|2−1
)2

dω/(2π), (6)

and hence minimizingBg is equivalent to making|G(ejω)| as
flat as possible (in a mean-square sense).
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Figure 2: The trade-off betweenBg andε (the bound onγg)
for the IS95 standard. The ‘×’ and ‘◦’ denote the positions
achieved by the IS95 filter and the robust filter in Fig. 3(b),
respectively.

We now demonstrate the effectiveness of this design tech-
nique by designing an improved chip waveform for the IS95
standard for digital mobile telephony [12].

Example 1 The filter specified for the synthesis of the chip
waveform in IS95 hasL = 48 andN = 4 and satisfies the
spectral mask specified in the standard, but it generates a
large self-induced MSE. To determine whether this filter can
be improved upon, Problem 1 was solved for various val-
ues ofε. (Each instance of Problem 1 was solved, using
SeDuMi [10], in about 25 seconds on a 400 MHz PENTIUM II
workstation.) In that way we efficiently determined the trade-
off between the self-induced MSE and the sensitivity coeffi-
cient for the channel-induced MSE shown in Fig. 2. It is
clear from that figure that the filter chosen in IS95 is some
distance from the optimal filters. The ‘floor effect’ in Fig. 2
is due to the fact that the low-pass nature of the spectral mask
limits the degree of spectral flatness which can be obtained.
In addition, by showing thatγg cannot be made arbitrarily
small, we reinforce an earlier result [2] that the shortest self-
orthogonal filter which satisfies the IS95 mask hasL = 51.
The spectra of the IS95 filter and a representative optimal fil-
ter are plotted in Fig. 3, from which the improved frequency
flatness in the passband of the designed filter is apparent.

To demonstrate the performance improvement of the ro-
bust filter, we simulated the ‘chip error rate’ (CER) for the
transmission of binary chips over a slowly-varying Rician
channel with additive white Gaussian noise and sign detec-
tion of the chips. The linear time-invariant ‘snap shots’ of the
channel were of length 41 and hence extend over 10 chips.
They were generated withc[0] = 1 and the remainingc[k]
being independent and Gaussian with zero mean and stan-
dard deviation 0.05. (Such channels exhibit a wide variety of
frequency selective effects.) The resulting CER curves, aver-
aged over 100,000 channel realizations, are plotted in Fig. 4,
from which the improved performance of the robust filter is
clear. 2

In addition to determining the maximal robustness for a
given level of performance in an ideal channel, one might
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Figure 3: Relative power spectra (in decibels) of the filters in
Example 1, with the spectral mask from IS95.
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Figure 4: Simulated chip error rates (CER) against signal-
to-noise ratio for Example 1. Legend—Dashed: IS95 filter;
Solid: robust filter.

also be interested in determining how much ‘smaller’ the
spectral mask can be made ifBg andγg are allowed to de-
grade. For certain mask parameters, this trade-off can be ef-
ficiently evaluated using a bisection-based search for the fea-
sibility boundary of a convex cone feasibility problem. (This
technique is similar to a technique used in [2] to design self-
orthogonal filters.) The feasibility problem which is evalu-
ated at each stage of the bisection search is a modified ver-
sion of Problem 1 in whichα is fixed. We now demonstrate
the effectiveness of this technique by evaluating the trade-off
between the stopband edge of a spectral mask of the form
specified in the IS95 standard and the self-induced MSE.

Example 2 Let fp and fs denote the passband and stopband
edges, respectively, of the IS95 spectral mask illustrated in
Fig. 3. For a given value ofε, the smallestfs such that there
exists a filter which satisfies the mask and hasγg ≤ ε can
be efficiently found by a bisection search on[ fp,0.5] for the
feasibility boundary of Problem 1. The resulting trade-offs
between the spectral occupation and the self-induced MSE,
both with and without the constraintBg ≤ BIS95, are illus-
trated in Fig. 5. The floor effect in Fig. 5 for largeε is due to
the lower bound component of the mask (and the constraint
Bg ≤ BIS95, if it is present). The level at which the curves
flatten for smallε is the smallestfs which can be achieved
by a root-Nyquist filter which satisfies the mask. (This level
is greater [2] than thefs specified in IS95.) Note that the
absence of a constraint onBg allows the power spectrum to
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Figure 5: Minimal stopband edge,fs againstε for the IS95
mask, with (solid) or without (dash-dot) the constraintBg ≤
BIS95. The ‘×’ denotes the position of the IS95 filter.

vary more substantially within the passband mask [c.f. (6)],
and hence allows a lower stopband edge to be achieved.2

4 CONCLUSIONS

In this paper, we have shown that the trade-offs between
bandwidth, performance in an ideal channel, and robustness
in the design of PAM waveforms can be efficiently obtained
using convex optimization techniques. Furthermore, the re-
sulting PAM schemes provide lower error rates than those
specified in recent standards. Attention was focussed on de-
terministically bounded models of channel uncertainty, and
robustness was measured in a worst-case MSE sense. Al-
though that results in a broadly applicable technique, it may
be conservative in terms of average performance if the worst-
case environments occur rarely. If an accurate statistical
model for the environment is available, an alternative ap-
proach would be to minimize the average MSE over that
model. Fortunately, that problem can also be formulated as
a convex optimization problem, and hence efficiently solved
(see [7] for a related problem).

A APPENDIX: DERIVATION OF (2)

Using the notation of Section 3, and applying the Cauchy-
Schwarz inequality, we have the following bounds:

(
∑̀ce[`+Ni]rg[`]

)2 ≤ B̃2
gC

2
i , (7)

∣∣∣∑
i 6=0

rg[Ni]∑̀ce[`+Ni]rg[`]
∣∣∣ ≤ γg

(
∑
i

(
ce[`+Ni]rg[`]

)2
)1/2

≤ γgB̃g

(
∑
i 6=0

C2
i

)1/2
(8)

Taking the absolute value of the right hand side of (1), and
applying the triangle inequality and (7) and (8),

MSE≤ N0 +E
(
γ2
g +2γgB̃gλ1 + B̃2

g(λ
2
1 + λ2

2)
)
,

and hence (2).
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