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ABSTRACT

In this paper, we determine linear block precoders which asymp-
totically minimize the bit error rate (BER) of block-based commu-
nication systems employing minimum mean square error (MMSE)
equalization and threshold detection. The problem is solved by a
two-stage optimization procedure in which a lower bound on the
BER over its convex region is first minimized, followed by show-
ing that this lower bound is actually achieved by the solution ob-
tained in the first stage. Simulation results show that at moderate-
to-high signal-to-noise ratios (SNRs), the SNR gain for the pro-
posed design over the standard MMSE precoder, and several other
conventional systems such as orthogonal frequency division mul-
tiplexing (OFDM) and discrete multitone (DMT) modulation can
be several decibels (dB).

1. INTRODUCTION

The reception of data transmitted serially over a dispersive
medium is complicated by the presence of channel-induced inter-
symbol interference (ISI). Although many techniques for reduc-
ing the complexity of optimal reception have been proposed (e.g.,
decision feedback equalization), the receiver complexity can of-
ten be substantially reduced by transmitting the data in blocks.
Common schemes that employ this technique include orthogo-
nal frequency division multiplexing (OFDM) and discrete mul-
titone (DMT) modulation, both of which employ linear block-
by-block transmission and block-by-block reception. Recently, a
rather general class of linear block-by-block transmission schemes
has received considerable attention [1, 2]. In particular, linear
block precoders which minimize the mean square error (MSE)
of the equalized data have been determined for (linear) zero-
forcing (ZF) and minimum mean square error (MMSE) equaliza-
tion strategies [1]. Although these designs result in minimum
MSE, they do not necessarily result in minimum bit error rate
(BER). Following previous work on minimum BER precoders for
ZF equalization [3, 4], we will derive herein linear block precoders
for systems with (linear) MMSE equalizers and threshold detec-
tion which (asymptotically) minimize the BER as the size of the
transmitted block grows.

2. BLOCK TRANSMISSION

The block-based transceiver model used in this paper is shown
in Fig. 1. Special cases of this model can be used to describe
OFDM, DMT, CDMA and TDMA transmission schemes [1]. In
this model, within one time frame, a block ofM data symbols,

s(n), is processed by the precoder matrix,F 0, so that a block of
P data symbols,u(n), is transmitted over the channel. At the
receiver, a block ofM equalized data symbols,̂s(n), is recon-
structed from a received data symbol block,r(n). If M is greater
than the order of the channel,L, andP ≥ M + L, then the inter-
block interference (IBI) in̂s(n) is caused by the previous trans-
mitted data block,s(n− 1), only. By the use of zero-padded (ZP)
or cyclic-prefixed (CP) transmission, this undesirable IBI can be
eliminated. If we chooseP = M + L, then, in ZP transmis-
sion, the precoder matrix is of the formF 0 = [ F0 ], whereF is
M ×M , and the equalizer matrixG0 = G is M × P , [1]. With
the same choice ofP , IBI is eliminated in the CP case by choos-

ing F 0 =
h

[0,IL]
IM

i
F , andG0 = [0,G], whereF andG are

both M × M , [1]. In both schemes, the equalized signal can be
expressed as

ŝ = GHFs+Gv, (1)

wherev is a vector of additive noise samples at the receiver, and
we have dropped the explicit dependence on the time index,n. In
ZP schemes,H is aP×M tall Toeplitz matrix and in CP schemes
H is anM ×M circulant matrix. Throughout this paper, we as-
sume that both transmitter and receiver have perfect knowledge
of the channel, and the transmitted data are uncorrelated equi-
probable four-phase quadrature amplitude modulation (4-QAM)
symbols withE{ssH} = I. We also assume that the receiver
noise is zero-mean, white, circular, and Gaussian with covariance
matrixE{vvH} = σ2

I. The MMSE equalizer for this scenario is
given by

G = GMMSE = F
H
H

H(σ2
I +HFFH

H
H)−1. (2)

For notational simplicity, we will setG = GMMSE in the remaining
parts of the paper.

3. AVERAGE BIT ERROR RATE

With threshold detection applied independently on the real and
imaginary parts of each component of the received signal vector
ŝ in Fig. 1, the detected signal can be written as

ŝq = sgn
�
Re(ŝ)

�
+ jsgn

�
Im(ŝ)

�
, (3)

whereRe(·) andIm(·) take the real and imaginary part of a com-
plex vector, respectively, andsgn(·) quantizes the elements in the
signal vector to be±1. Similar to [3, 4], the average bit error rate,
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Fig. 1. Discrete-time baseband equivalent model of a block-based transceiver

Pe, is defined to be the average probability of receiving an erro-
neous bit in̂sq. Therefore,

Pe =
1

2M

MX
m=1

(Pe,r,m + Pe,i,m), (4)

wherePe,r,m and Pe,i,m represent the probability of error in the
real and imaginary part of themth element of the detected signal
vector, respectively. Notice that (1) can be expressed in the form

ŝ = Diag(GHF )s+
�
GHF −Diag(GHF )

�
s+Gv (5)

so that the desired signal, ISI and noise terms are distinguished.
Here,Diag(GHF ) is anM × M matrix with the diagonal ele-
ments ofGHF on its diagonal, and zeros elsewhere. The proba-
bilities Pe,r,m andPe,i,m can be awkward to compute directly be-
cause they each involve a sum over the4M−1 values which the
other elements ofs may take on. A standard approach to reduce
the complexity of evaluating these expressions is to determine an
approximate statistical model for the ISI in (5). To do so, we ob-
serve that single-user block transmission is algebraically equiva-
lent to a class of (synchronous) multi-user serial transmission sys-
tems. In particular, the ISI in (5) is algebraically equivalent to the
multiple-access interference (MAI) in the multi-user scenario. By
transforming the results in [5, 6] on the MAI distribution at the
output of a linear MMSE multi-user detector to the scenario in (5),
it can be shown that for a randomly chosen channelh(k) [of or-
derL] and a randomly chosenM×M precoderF , the distribution
of the ISI in each element of̂s in (5) converges almost surely to a
Gaussian distribution as the block size,M , increases. Therefore,
each element of̂s in (5) can (almost surely) be approximated by a
Gaussian random variable, and the accuracy of the approximation
improves asM increases. If we let[·]m denote themth element
of a vector and[·]`m denote the(`, m)th element of a matrix, then
the real and imaginary parts ofŝ are approximated as�

Re(ŝ)
�
m
≈ xr,m ∼ N

�
[GHF ]mm

�
Re(s)

�
m

, [C]mm

�
, (6)�

Im(ŝ)
�
m
≈ xi,m ∼ N

�
[GHF ]mm

�
Im(s)

�
m

, [C]mm

�
, (7)

whereC is the (covariance) matrix which satisfies

2C =
�
Re(GHF )−Diag(GHF )

�
× �Re(GHF )−Diag(GHF )

�T
+
�
Im(GHF )

��
Im(GHF )

�T
+ σ2Re(GGH). (8)

By following standard procedures for calculating the probabil-
ity of error in threshold detection of an antipodal symbol in Gaus-
sian interference (e.g., [7]), and using (6) and (7), we have

Pe,r,m = Pe,i,m ≈ 1

2
erfc

 
[GHF ]mmp

4[C]mm

!
, (9)

whereerfc(x) = 2√
π

R∞
x

exp(−z2)dz. An interesting property
of the MMSE equalizer is that

(GHF )(GHF )H + σ2
GG

H = GHF . (10)

Using (10), it can be shown that

2[C]mm = [GHF ]mm − �[GHF ]mm

�2
, (11)

and hence that the right-hand side of (9) is equal to

1

2
erfc

 �
2
h�

Diag(GHF )
�−1 − I

i
mm

�−1/2
!

. (12)

By substituting (12) into (4), the average probability of error can
be written as

Pe ≈ 1

2M

MX
m=1

erfc

 �
2
h�

Diag(GHF )
�−1 − I

i
mm

�−1/2
!

,

(13)

where the approximation converges (almost surely) as the block
size grows.

A key element of our design method is the following observa-
tion regarding the convexity in (13). Letf(x) = erfc( 1√

2x
) for

somex > 0. Then,

d2f(x)

dx2
=

1√
2π

exp

�
− 1

2x

�
x−5/2

�
1

2x
− 3

2

�
. (14)

From (14), ifx > 1
3
, then d2f(x)

dx2 > 0. Therefore,Pe is a convex

function of
h�

Diag(GHF )
�−1 − I

i
mm

if

[GHF ]mm ≥ 3

4
∀m ∈ [1, M ]. (15)

4. DESIGN OF MINIMUM BER PRECODER

Using the asymptotic BER expression in (13), we would like to
find a precoder which provides minimum BER, subject to an upper
bound on the (average) power used to transmit the data. Therefore,
the design problem for both ZP and CP systems can be written as

min
F

Pe

subject to tr(FFH) ≤ p0.
(16)

To ensure that the solution is globally optimal, only the convex
region of the BER is under consideration. Within the convex re-
gion, we can use the Jensen’s Inequality [8] to obtain the following
lower bound on the BER,

Pe ≥ 1

2
erfc

 
2

M

MX
m=1

�h�
Diag(GHF )

�−1−I
i

mm

�−1/2
!



=
1

2
erfc

0
@
 

2

M

�
tr
��

Diag(GHF )
�−1
�
−M

�!−1/2
1
A

4
= Pe,LB, (17)

where equality holds if and only if[GHF ]mm are the same for
all m ∈ [1, M ]. To solve (16) in the region in whichPe is convex,
we first minimizePe,LB subject to the transmitter power and con-
vexity constraints, and then show that the minimized lower bound
is achievable. Aserfc(·) is a monotonically decreasing function,
minimizing the lower bound onPe,LB is equivalent to minimiz-

ing tr
��

Diag(GHF )
�−1
�

. For convenience, we parameterize

F = VΦUH in terms of its singular value decomposition, and
write the eigenvalue decomposition of(HH

H)−1 asWΛWH ,
where the columns inW are arranged in such a way thatλii, the
diagonal elements ofΛ, are in descending order. The design prob-
lem in (16) in the region in whichPe is convex can then be written
as

min
V ,Φ,U

tr

��
Diag

�
UΓUH

��−1
�

(18a)

subject to tr(Φ2) ≤ p0, (18b)�
UΓUH

�
mm

≥ 3

4
∀m ∈ [1, M ], (18c)

whereΓ = (σ2Φ−1
V 1ΛV 1

HΦ−1 + I)−1, andV 1 = V
H
W .

Problem (18) is awkward to solve directly due to the constraint
(18c). Therefore, we will solve (18) by first dealing with (18c) for
any givenΓ and then solve the remaining problem. This may ap-
pear to be difficult at first, becauseU appears in both (18a) and
(18c). A key observation that we will make below is that, for
a fixedΓ, theU which maximizes the minimum satisfaction of
the constraint in (18c) (or minimizes the maximum constraint vi-
olation) also minimizes the objective in (18a). To facilitate the
derivation, letΓ = XΓ̃XH denote the eigenvalue decomposition
of Γ. By modifying Lemma 1 of [3, 4], it can be shown that, for a
fixedΓ

max
UUH=I

min
m

[UΓUH ]mm = tr(Γ)/M . (19)

Moreover, the maximum in (19) can be achieved by choosing
U = DX

H , whereD is a normalizedM ×M Discrete Fourier
Transform (DFT) matrix. (The result remains valid if we replace
D by DH , the corresponding normalized inverse DFT matrix.)
Therefore, iftr(Γ)/M ≥ 3/4, thenU = DX

H is a feasible
choice in (18). Otherwise, the feasible set of (18c) is empty, and
hence (18) has no solution. We will now show thatDXH is in
fact an optimal choice forU in (18).

To do so we consider the following relaxed version of (18):
minimize (18a) subject to (18b) in the absence of (18c). Since
the power constraint does not depend onU , for a fixedΓ, we can
find an optimalU for the relaxed problem, denoted byU rel,Γ, by
solving

min
UUH=I

tr
��

Diag(UΓUH)
�−1
�

. (20)

SinceΓ is positive definite, we can apply the arithmetic-geometric
mean inequality [9] to show that

tr
��

Diag(UΓUH)
�−1
�
≥ M�

ΠM
m=1[UΓUH ]mm

�1/M
. (21)

Applying the arithmetic-geometric mean inequality again we have

�
ΠM

m=1[UΓUH ]mm

�1/M ≤ 1

M

MX
m=1

[UΓUH ]mm, (22)

and hence

tr
��

Diag(UΓUH)
�−1
�
≥ M2/tr(Γ). (23)

The inequalities in (21) and (22), and hence that in (23) hold with
equality if the diagonal elements ofUΓUH are all equal. Now,
defineU1 = DX

H , where, as above,Γ = XΓ̃XH is the eigen-
value decomposition ofΓ. ThenU1ΓU

H
1 = DΓ̃DH , which

implies that[U1ΓU
H
1 ]mm = tr(Γ̃)/M , because the magnitude

of each element ofD is 1/
√

M . Therefore,U = U1 achieves the
lower bound in (23); i.e.,

tr
��

Diag(U1ΓU
H
1 )
�−1
�

= M2/tr(Γ). (24)

Hence, an optimal solution to (20) isU rel,Γ = U1 = DX
H .

As shown in the previous paragraph, if the additional constraint
(18c) is satisfiable for the givenΓ, thenU1 is in the feasible set.
Therefore, for a fixedΓ, (i.e., fixedΦ andV ), an optimal choice
of U in (18) isU opt,Γ = U rel,Γ = DX

H .
Now that we have found the optimalU , what remains to be

done is to find theΦ andV which solve

min
Φ,V

tr

��
Diag

�
U opt,ΓΓUH

opt,Γ

��−1
�

(25a)

subject to tr(Φ2) ≤ p0. (25b)

Since
�
[U opt,ΓΓUH

opt,Γ]mm

�−1
= M/tr(Γ), minimizing (25a) is

equivalent to maximizingtr(Γ), which is, in turn, equivalent to
minimizing−tr(Γ). Now the mean square error of the equalized

symbols,E
nPM

m=1

�
[ŝ]m − [s]m

�2o
, is given by

MSE = tr
�
(GHF − I)(GHF − I)H + σ2

GG
H�. (26)

Using (10) and some properties of the trace function, we have
MSE = tr(I − ΓH) and hence minimizing−tr(Γ) is equiva-
lent to minimizing the MSE. Therefore, theΦ andV which solve
(25) are those which minimize the MSE of the equalized symbols.
Before we exploit that fact we recall that(HH

H)−1 = WΛW
denotes the eigenvalue decomposition of(HH

H)−1 with the di-
agonal elements ofΛ in descending order. If the signal-to-noise
ratio (SNR),ρ = p0

Pσ2 , satisfies

ρ ≥ 1

P

�
tr(Λ1/2)

√
λ11 − tr(Λ)

�
, (27)

then theV andΦ which solve (25) are [1, 10]

V MMSE = W , (28a)

[ΦMMSE]mm =

�
p0 + σ2tr(Λ)

tr(Λ1/2)

√
λmm − σ2λmm

�1/2

. (28b)

[The case of SNRs which do not satisfy (27) will be dealt with
in the next section.] In order forV MMSE in (28) to constitute a
feasible solution to the original problem in (18) we require that

tr(Γ)/M ≥ 3/4 (29)



so that there exists aU which satisfy (18c). (If this condition is
satisfied thenU = Uopt,Γ = DX

H will suffice.) By substituting
(28) into (29) we determine that (29) holds for SNRs satisfying

ρ ≥ 1

P

 
4
�
tr(Λ1/2)

�2
M

− tr(Λ)

!
. (30)

Therefore, if the SNR satisfies the bounds in (27) and (30) then a
precoder which minimizes the lower bound on the probability of
error isFmin, LB = WΦMMSEU opt,Γ, whereU opt,Γ = D because
Γ is diagonal in this case. An important property ofFmin, LB is that
the resulting diagonal elements ofGHF are all equal. Therefore,
Fmin, LB not only minimizes the lower bound on the probability of
error, but also achieves the lower bound. That is, for SNRs which
satisfy (27) and (30), a precoder which (asymptotically) minimizes
the BER is

FMBER = WΦMMSED. (31)

For comparison, the set of all MMSE precoders is of the form [1]

FMMSE = WΦMMSEŨ , (32)

whereŨ is an arbitrary unitary matrix. Comparing (31) and (32),
it is clear that our minimum BER precoder is an MMSE precoder
with a specially chosen unitary matrix. That is, the minimum BER
precoder also minimizes the MSE, but an arbitrary MMSE pre-
coder does not necessarily minimize the BER.

5. SUB-CHANNEL DROPPING SCHEME

The minimum BER precoder derived in Section 4 is valid if the
SNR satisfies

ρ ≥ ρc
4
=

1

P

�
max

n4
�
tr(Λ1/2)

�2
M

− tr(Λ),

tr(Λ1/2)
√

λ11 − tr(Λ)
o�

. (33)

This SNR threshold is a function of the channel impulse response
and the block size,M , only, and can be computed without hav-
ing to compute the minimum BER precoder itself. The threshold
guarantees the minimized lower bound in (18) is valid (i.e., the
BER expression in (13) is in its convex region), and the elements
of ΦMMSE are non-negative. In cases whereρ < ρc and in systems
in which the transmitter power cannot be increased, we can reduce
the threshold by closing some low-gain subchannels (and hence
reducing the block size), and re-allocating the transmitter power to
the surviving channels [11, 4, 3, 10]. Once the threshold has been
sufficiently reduced, we can obtain a minimum BER precoder for
the reduced system using a variation of (31) as we now outline:

1. LetM̄ = M , andΛ̄ = Λ.

2. Determine the reduced block sizēM : Calculateρ̄c using
(33) with M andΛ replaced byM̄ and Λ̄, respectively.
While ρ < ρ̄c, decreaseM̄ by 1, and set the first non-zero
diagonal elements of̄Λ to zero.

3. ConstructΦ̄MMSE using (28b) withΛ replaced byΛ̄, and
let W̄ denotes the last̄M columns ofW .

4. The minimum BER precoder for the reduced system is then

F̄MBER = W̄ Φ̄MMSED̄, (34)

whereD̄ is a normalizedM̄ × M̄ DFT matrix (or IDFT
matrix).

6. MBER PRECODERS FOR CP SYSTEMS

As indicated in Section 2, inter-block interference can be elim-
inated by zero-padding (ZP) or cyclic-prefix (CP) transmission
schemes. By constructing the channel matrixH differently, the
output data symbol block for both schemes can be described by
(1). In CP schemes, asH is circulant, the expression for the min-
imum BER precoder can be simplified. For CP schemes, we have

H = Hcp = D
H∆D, (35)

whereD is a normalized DFT matrix of sizeM , and∆ is an
M ×M diagonal matrix withith diagonal element

[∆]ii = H(ej2π(i−1)/M ) =
X

n

h(n)e−j2π(i−1)n/M . (36)

As the minimum BER precoder proposed in Section 4 is also appli-
cable for CP systems, the minimum BER precoder for CP systems
can be written as

F CP-MBER = D
H
P

T ΦMMSED, (37)

whereP is the permutation matrix that arranges the diagonal el-
ements of(∆H∆)−1 in descending order for the convenience
of sub-channel dropping, and the correspondingΛ in (28b) is
P

T (∆H∆)−1
P . As indicated in (37), the CP-MBER precoder

has a similar structure to the standard DMT precoder except that
the diagonal power loading matrix of DMT is replaced by the
MMSE power loading matrix post-multiplied by a DFT matrix.

7. SIMULATION RESULTS

In this section, the theoretical and simulated BER performance for
various ZP and CP schemes at different SNRs are evaluated for
a third-order FIR channel with zeros at0.7, 0.5 exp(j2π0.256)
and 0.3 exp(j2π0.141). The transmitter power,p0, is fixed
at 1. The block sizeM = 32 and the transmitted block size is
P = 35. In Figs 2, 3 and 4, the theoretical BER is indicated
by a solid line, and the simulated BER is represented by sym-
bols. In Fig. 2, the theoretical and simulated BER performance
of the proposed ZP minimum BER precoder is compared with the
MMSE [1] precoder, the identity precoder with zero-padding (de-
noted by ZP-TDMA), and ZP-OFDM [1] designs. In Fig. 3, the
BER performance of systems with the CP minimum BER pre-
coder, MMSE, and conventional OFDM is presented. (The free
unitary matrix in both the ZP and CP MMSE precoders is cho-
sen to be the identity matrix.) The minimum SNR required to
ensure the validity of our minimum BER solution before drop-
ping any subchannels ismax{10.21dB, 6.65dB} for the ZP case,
andmax{10.48dB, 6.60dB} in the CP case, where we have indi-
cated both thresholds in (33). Therefore, no subchannels dropping
has been performed for Figs 2 and 3. Fig. 4 shows the perfor-
mance of systems employing ZP and CP minimum BER precoders
and the conventional water-filling DMT system with subchannels
dropping at low SNRs. In general, when the block sizes are the
same, the ZP minimum BER precoder outperforms the CP mini-
mum BER precoder by a small amount. (In fact, the improvement
is slightly larger than shown, as the power used to transmit the
cyclic-prefix is ignored in our SNR definition.) However, ZP min-
imum BER precoders are more complicated to implement, as they
require the calculation of the eigen-vectors for different channels.
In contrast, for the CP minimum BER precoders, the eigen-vector



matrix is simply the normalized IDFT matrix (35), irrespective of
the channel coefficients.
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8. CONCLUSION

In this paper, linear precoders which minimize the asymptotic
bit error rate (BER) were derived for block-based communication
systems employing minimum mean square error equalization and
threshold detection. Analytic solutions for the minimum BER pre-
coder were obtained for two conventional schemes to remove inter-
block interference, namely, zero-padding and cyclic-prefix. These
solutions were valid at (moderate-to-high) SNRs above a thresh-
old which is dependent only on the channel impulse response and
the block size. Simulation results showed that the asymptotic BER
expression was quite close to the simulated BER, and that the SNR
gain for the proposed minimum BER precoders over the conven-
tional discrete multitone modulation and orthogonal frequency di-
vision multiplexing systems could be of the order of several deci-
bels.

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

ZP−MBER
CP−MBER
Water−filling DMT

Fig. 4. CP and ZP Precoders with subchannels dropping

9. REFERENCES

[1] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Redun-
dant filterbank precoders and equalizers Part 1: Unification
and optimal designs,”IEEE Trans. Signal Processing, vol.
47, no. 7, pp. 1988–2006, July 1999.

[2] A. Scaglione, S. Barbarossa, and G. B. Giannakis, “Filter-
bank transceivers optimizing information rate in block trans-
missions over dispersive channels,”IEEE Trans. Inform.
Theory, vol. 45, no. 3, pp. 1019–1032, April 1999.

[3] Y. W. Ding, T. N. Davidson, J. Zhang, Z. Q. Luo, and K. M.
Wong, “Minimum BER block precoders for zero-forcing
equalization,” Proc. Int. Conf. Acoust., Speech, Signal Pro-
cessing, May 2002.

[4] Y. W. Ding, T. N. Davidson, Z. Q. Luo, and K. M. Wong,
“Minimum BER block precoders for zero-forcing equaliza-
tion,” Apr. 2002, Submitted to theIEEE Trans. Signal Pro-
cessing.

[5] H. V. Poor and S. Verd´u, “Probability of error in MMSE
multiuser detection,”IEEE Trans. Inform. Theory, vol. 43,
no. 3, pp. 858–871, May 1997.

[6] J. Zhang, E. K. P. Chong, and D. N. C. Tse, “Output MAI dis-
tributions of linear MMSE multiuser receivers in DS-CDMA
systems,” IEEE Trans. Inform. Theory, vol. 47, no. 3, pp.
1128–1144, March 2001.

[7] J. G. Proakis,Digital Communications, McGraw Hill, fourth
edition, 2001.

[8] T. M. Cover and J. A. Thomas,Elements of Information The-
ory, Wiley, 1991.

[9] R. A. Horn and C. R. Johnson,Matrix Analysis, Cambridge
University Press, 1990.

[10] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and
H. Sampath, “Optimal designs for space-time linear pre-
coders and decoders,”IEEE Trans. Signal Processing, vol.
50, no. 5, pp. 1051–1064, May 2002.

[11] J. S. Chow, J. C. Tu, and J. M. Cioffi, “A discrete multitone
transceiver system for HDSL applications,”IEEE J. Select.
Areas Commun., vol. 9, no. 6, pp. 895–908, August 1991.


