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Motor imagery is the task most commonly used to induce changes in electroencephalographic (EEG) signals for
mental imagery-based brain computer interfacing (BCI). In this study, we investigated EEG patterns that were
induced by seven different mental tasks (i.e. mental rotation, word association, auditory imagery, mental
subtraction, spatial navigation, imagery of familiar faces andmotor imagery) and evaluated the binary classifica-
tion performance. The aimwas to provide a broad range of reliable and user-appropriate tasks tomake individual
optimization of BCI control strategies possible. Nine users participated in four sessions of multi-channel EEG
recordings. Mental tasks resulting most frequently in good binary classification performance include mental
subtraction, word association, motor imagery and mental rotation. Our results indicate that a combination of
‘brain-teasers’ – tasks that require problem specific mental work (e.g. mental subtraction, word association) –
and dynamic imagery tasks (e.g. motor imagery) result in highly distinguishable brain patterns that lead to an
increased performance.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

A brain–computer interface (BCI) translates the electrophysiological
signals of the brain into an output that reflects the user's intent and thus
provides a non-muscular channel for communication and control
(Birbaumer et al., 1999; Millán et al., 2004; Pfurtscheller et al., 2005;
Wolpaw et al., 2002). A BCI cannot only be beneficial to people with
severe motor disabilities, but BCI technology also becomes more and
more interesting for non-medical use (Nijholt et al., 2009; Venthur
et al., 2010; Zander and Kothe, 2011). There are different approaches
to improve the performance of BCIs. Most studies focused on signal
processing and classification aspects. However, BCI performance can
also be improved by optimizing the user's control strategies and deter-
mining user-appropriate mental tasks for control (Curran and Stokes,
2003). This study aimed to explore a broad range of mental tasks and
to investigate which pair of tasks can be reliably implemented for BCI
control so people can choose among them according to their
preferences.

BCI control can be realized by recording the changes in the rhythmic
activity of the brain's electrophysiological signals (event-related (de)
synchronization, ERD/S, Neuper and Pfurtscheller, 2001; Pfurtscheller
, Neuropsychology, University
+43 316 380 8493; fax: +43

V.C. Friedrich),
uni-graz.at (C. Neuper).

rights reserved.

t al., The effect of distinct m
i:10.1016/j.ijpsycho.2012.01
and Aranibar, 1977; Pfurtscheller and Lopes da Silva, 1999) by scalp-
recorded electroencephalography (EEG). ERD/S can be generated inten-
tionally (Pfurtscheller and Neuper, 1997) which makes them suitable
for BCI use. In most studies, users were asked – at least in the early
stage of training – to imagine moving a specific part of their body in
order to achieve BCI control by frequency band modulation (e.g.
Kübler et al., 2005; McFarland et al., 2010; Müller et al., 2008;
Pfurtscheller and Neuper, 2001; Royer et al., 2010). Motor imagery acti-
vates primary sensorimotor areas and (de)synchronizes oscillatory
components in specific frequency bands and thus is a valuable strategy
for learning to control a BCI (e.g. Halder et al., 2011; McFarland et al.,
2000; Neuper and Pfurtscheller, 1999; Neuper et al., 2005;
Pfurtscheller and Neuper, 1997, 2001). Several studies demonstrated
that motor disabled individuals are also able to control a BCI by motor
imagery (Kübler et al., 2005; Neuper et al., 2003; Pfurtscheller et al.,
2000).

In contrast, it is also known that about 20% of all people who want
to learn to control a BCI, are not able to attain effective control
(Allison and Neuper, 2010; Blankertz et al., 2010). Besides failures
due to methodical issues, it is possible that concentration, emotional
states, fatigue, distraction, motivation and intentions affect the ability
to gain and maintain voluntary control (Curran and Stokes, 2003;
Kleih et al., 2010). Furthermore, user acceptance, training of the
user, instructions and used mental strategies have a great impact on
performance. For every person, different mental strategies might be
more or less appropriate. Thus, motor imagery might not be the
best choice for every user. Especially for individuals with an impair-
ment of certain brain areas, a choice between different mental tasks
ental strategies on classification performance for brain–computer
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for BCI control is valuable. For example, if a person suffered a stroke in
the motor area, a mental subtraction task could be used rather than a
motor imagery task for BCI control. Furthermore, selective motor im-
agery defects in patients with locked-in syndrome in contrast to other
mental tasks were reported (Conson et al., 2008). As the best strategy
to modulate brain activity for users – disabled or able-bodied – might
be highly individually specific, a broader range of reliable BCI control
strategies and also user's evaluation of the different tasks in order to
evaluate user acceptance is crucial (Allison et al., 2010; Curran and
Stokes, 2003; Curran et al., 2003; Millán et al., 2002; Neuper et al.,
2005; Pfurtscheller et al., 2000).

Millán et al. (2004) and Galán et al. (2008) already implemented
asynchronous BCI protocols in which participants successfully con-
trolled a wheelchair, a robot or a virtual keyboard over several ses-
sions with three mental strategies of their choice out of the following:
relaxation, left and right hand (or arm) motor imagery, cube rotation,
subtraction and word association. This approach emphasized the
importance of individual control strategies for BCIs. Roberts and
Penny (2000) used a mental subtraction task together with a motor
imagery task to control a cursor on a computer screen. Besides these
online experiments, studies using offline classification of different
mental tasks exist (e.g. Obermaier et al., 2001). Keirn and Aunon
(1990) discriminated offline between five mental tasks and did not
find significant differences between them. They suggested investigating
other mental tasks as well and focusing on individual differences.
Curran et al. (2003) compared auditory imagery of a familiar tune and
spatial navigation imagery in a familiar environment to left and right
hand motor imagery. The results showed that not only classification
accuracy of the auditory and spatial imagery was best, but also that
user's evaluation indicated that the two non-motor tasks were easier
to perform and needed less concentration. Cabrera and Dremstrup
(2008) implemented a BCI with an auditory imagery and a spatial
navigation imagery task and confirmed these findings. De Kruif et al.
(2007) designed a BCI which was completely controlled by auditory
imagination: The classification discriminated between accented versus
non accented tones within an imagined rhythm. Dyson et al. (2010)
examined relevant electrode positions for various mental tasks. Of
course, there are many more possible mental tasks that have not been
used for BCI control yet. A strategy that might be very easy and enjoy-
able for the user could be the imagery of familiar faces (Başar, et al.,
2006; Özgören et al., 2005), for example. In the present study we
extended the above mentioned work and examined a broad range of
mental tasks in one controlled study over more sessions and not only
in respect of classification accuracy but also of user's evaluation and
neurophysiologic correlates of the tasks.

We chose tasks from different domains such as mental rotation (i.e.
figural), word association (i.e. verbal), auditory imagery of a melody
(i.e. musical), mental subtraction (i.e. arithmetic), spatial navigation
through a familiar environment (i.e. spatial), imagery of familiar faces
(i.e. social) and motor imagery of the right hand (i.e. motor). According
to the literature, these tasks can be expected to elicit different brain
activation patterns. Motor imagery of the right hand should lead to
ERD over the left central cortex (Neuper et al., 2005). The word associ-
ation task was reported to activate the left frontal area and the anterior
cingulate gyrus (Petersen et al., 1988). Mental calculation is a rather
complex process and can involve frontal as well as parietal processes
(Chochon et al., 1999; Burbaud et al., 2000). There is controversial liter-
ature if mental rotation tasks activate rather the left or right parietal
area (e.g. Alivisatos and Petrides, 1997; Papanicolaou et al., 1987;
Roberts and Bell, 2003). Spatial navigation tasks are generally consid-
ered a right hemispheric task (e.g. Cutmore et al., 2000; Kolb and
Wishaw, 1996). For auditory imagery tasks, a cortical activation of the
primary auditory cortex is suggested (Kraemer et al., 2005; Zatorre
and Halpern, 2005). The main center for imagery of familiar faces was
localized in the fusiform gyrus and prefrontal regions (e.g. Boly et al.,
2007; Haynes and Rees, 2006; Klopp et al., 1999).
Please cite this article as: Friedrich, E.V.C., et al., The effect of distinct m
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Based on thementioned literature, we hypothesized that our chosen
seven mental tasks demonstrate different ERD/S patterns and can be
classified successfully over several sessions. We chose to compare
each task with each other in order to be able to group the tasks into
categories and to find suggestions which of these categories are worth
implementing for future BCI applications. Therefore, we pursued three
research questions: First, we aimed to investigate which pairs of these
seven mental tasks can be classified most accurately and reliably over
sessions. Second, we wanted to underlie and explain the classification
results with neurophysiologic correlates of the mental tasks as to ERD/
S. Third, we evaluated which tasks were considered user-friendly
concerning the quality of imagery, task ease and enjoyment.

2. Methods

2.1. Participants

This study included 11 female volunteers who were initially naïve
to the tasks. All were right-handed, between 20 and 32 years old, and
without any diagnosed disability. Each participant gave informed
consent to the study which was approved by the ethical review
board of the University of Graz. Each volunteer participated in four
sessions on different days over a period of 2 weeks. Due to movement
artifacts in the EEG recordings, two participants had to be excluded
from further analyses. Thus, all results are based on 9 participants.

2.2. Task

Details on the experimental paradigm are summarized in Fig. 1.
Users were asked to perform the indicated mental task for 7 s while
staying relaxed and motionless. The mental tasks occurred in random-
ized order and included:

• (1) Mental rotation (ROT): visualize a 3-dimensional L-shaped figure
to rotate in the 3-dimensional space;

• (2) Word association (WORD): generate as many words as possible
that begin with the presented letter in your mother tongue (e.g.
B = bank, bold, buy, etc.);

• (3) Auditory imagery (AUD): imagine listening to a familiar tunewith-
out articulating the words but rather focusing only on the melody;

• (4)Mental subtraction (SUB): perform successive elementary subtrac-
tions by a presented fixed number (e.g. 105–6=99, 99–6=93, etc.);

• (5) Spatial navigation (NAV): imagine navigating through a familiar
house or flat from room to room, focusing on orientation rather
than on movement;

• (6) Imagery of familiar faces (FACE): imagine the face of the best
female friend;

• (7) Motor imagery of the right hand (MOTOR): imagine repetitive
self-pacedmovements of the own right hand in the form of squeezing
a ball without any actual movement.

In all trials of every session, participants were asked to imagine the
same house or flat to navigate through, the same face and the same
tune. In the AUD task, four users chose children songs, two users imag-
ined jazz songs, two users imagined a classical music piece and one
participant chose the melody of a Christmas song. The subtractions for
the SUB task and the initial letters for theWORD task changed randomly
between trials. As the number of letters in the alphabet is limited, users
were asked to always think of newwords in case of repetition of letters.

Before users were asked to perform all described tasks mentally
(imagery runs), they completed an overt exercise run. In this exercise
run, participants actually had to physically carry out the seven tasks
instead of imagining them (i.e. actually rotate a 3-dimensional L-
shaped figure made of paper; speak out the words loud, hum amelody,
solve subtractions, describe navigating through the house, look at a
photograph of the best friend and squeeze a ball with the right hand).
The purpose of the exercise run was to familiarize the participants with
ental strategies on classification performance for brain–computer
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Fig. 1. Experimental paradigm. (A) At t=0 s, a fixation cross was presented on the screen (baseline). (B) At t=2.5 s, a beep was played. (C) At t=3 s, one out of seven symbols was
randomly presented for 1.25 s in the middle of the screen. In case of the word association or mental subtraction tasks, an initial letter or specific subtraction, respectively, was presented.
Users were asked to perform the indicated task for 7 s (imagery period highlighted with a bold black line). (D) At t=10 s, a second beep indicated the end of the trial, and the screen
remained blank for 2.5–3.5 s before the next trial started.
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the different tasks and to ensure that they performed them according to
the instructions. Furthermore, the frequency of how often the users per-
formed the subtasks in a trial (e.g. how many subtractions were solved
per trial) were collected with self-reports in order to provide more in-
sight in what participants were doing during the imagery periods.

2.3. Procedure, EEG recordings and evaluation of tasks

After the instruction, participants underwent a 1-h EEG measure-
ment. The EEGwas recorded from 30 Ag/AgCl sintered scalp electrodes:
AFz, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, CP4, P7,
P5, P3, P1, Pz, P2, P4, P6, P8, PO3, PO4, O1, and O2. Additionally, electro-
oculography (EOG) was recorded from the outer canthus of the left eye
and from above the nasion. Each electrode was referenced to the left
and grounded at the right mastoid. The data was filtered (0.5–100 Hz;
50 Hz notch filter), amplified and digitized (256 Hz). Each session
started with a 6-min exercise run followed by five 9-min imagery
runs with short breaks in-between.

After the EEG recordings, the users rated each mental tasks on a 5
point scale regarding the following three aspects: the quality of their
imagery (1 = ‘no image at all, you only ‘know’ you are thinking of the
object’ and 5 = ‘perfectly clear and as vivid as normal vision’), the
task ease (1 = ‘very exhausting and full concentration needed’ and
5 = ‘very relaxing and possible to perform also during major distrac-
tions such as activated television, visit of friends or in the traffic’) and
the enjoyment (1 = ‘no fun at all and very frustrating’ and 5 = ‘a lot
of fun and not frustrating at all’). The whole session (including the in-
struction, EEG montage, self-reports and the 1-h EEG recordings with
breaks in-between) lasted 2 h.

2.4. Classification

EEG signals were visually inspected and trials contaminated with
muscle or eye movement activity were removed. Two participants
had to be excluded from the study due to excessive muscle artifact.
For the nine remaining participants, a minimum of 25 out of the 30
trials per task and session remained.

Fisher's linear discriminant analysis (LDA, Duda et al., 2001) was
used to classify combinations of pairs of mental tasks. The method
of common spatial pattern (CSP, e.g. Blankertz et al., 2007; Müller-
Gerking et al., 1999; Ramoser et al., 2000) was used to compute
most discriminative features for classification. Two different offline
analyses were performed: First, the performance of mental tasks
within a session was tested (i.e. single-session classification). Each
session was analyzed independently to rank the discriminability of
the imagery pairs and evaluate the performance variability between
sessions. Second, a classification between sessions was performed.
The classifier was trained on sessions 1 and 2 and then evaluated on
unseen data from sessions 3 and 4 which should simulate a real-
Please cite this article as: Friedrich, E.V.C., et al., The effect of distinct m
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time BCI experiment in which the classifier was trained from data
from the screenings and then applied in the next sessions for online
control. Therefore, we train and evaluate the classifier only in a causal
way and call this classification between sessions ‘simulation’.

First, the classification within sessions (i.e. single-session classifi-
cation) is explained: The EEG was band pass filtered in the range of
8–30 Hz. To characterize the discriminatory power as function of
time the imagery period of trials (3–9.5 s after trial onset) was subdi-
vided into thirteen 1-s data segments with 0.5 s overlap (Müller-
Gerking et al., 2000; Scherer et al., 2008). For each time segment
and imagery pair, CSPs and LDA were computed by using a 10-times
10-fold cross-validation statistic. Ten-fold cross-validation means that
the dataset was divided into 10 segments: Nine segments were used to
compute CSP and train LDA and the remaining segment (test dataset)
was used to test the performance. In this way 10 different performance
estimates were computed. This procedure was repeated 10-times, i.e.,
ten random permutations of the data pool were computed. As result we
obtain 100 performance evaluations. The overall performance estimate
was the mean of the 100 evaluations. Since the numbers of trials per
task were uneven due to artifact screening, Cohen's kappa (κ) coefficient
was computed instead of the classification accuracy (Cohen, 1960;
Pfurtscheller et al., 2006; Schlögl et al., 2005, 2007). Kappa is computed
from the confusion matrix H that defines the relationship between the
known ‘true’ task label and the label predicted by the classifier. From H,
we can derive the classification accuracy ACC

ACC ¼ p 0 ¼ ∑iHii

N
ð1Þ

and the chance expected agreement

pe ¼
∑inoi×nio

N×N
ð2Þ

whereN ¼ ∑i∑iHii is the total number of samples, Hii is the elements
of the confusion matrix H on the main diagonal, and noi and nio are the
sums of each column and each row, respectively. Then the estimate of
the kappa coefficient κ is

κ ¼ p0−pe
1−pe

ð3Þ
and its standard error se (κ) is obtained by

se κð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
po þ p2e−∑i noi � nio � noi � nioð Þ½ �=N3

q

1−peð Þ
ffiffiffiffi
N

p ð4Þ

(Schlögl et al.; 2005).
ental strategies on classification performance for brain–computer
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Kappa ranges from 1 (perfect match) over 0 (chance level) to nega-
tive numbers. Kappa values were significant above chance level if all
values contained in the 95%-confidence interval were above
0 (κ±1.96*se(κ)>0). A κ>0.4 is considered a moderate/fair to good
agreement (Fleiss, 1981; Landis and Koch, 1977) and equals an accuracy
>70% given that the same number of trials for each class is available. An
accuracy of 70% is considered necessary for meaningful communication
with a 2-class BCI (Nijboer et al., 2008; Perelmouter and Birbaumer,
2000).

Second, the classification between sessions (i.e. simulation) is
explained: To evaluate whether CSP and LDAmodels can be transferred
between sessions (transfer from offline to online BCI), model parame-
ters were estimated from the first two sessions (50–60 trials) and
used to classify the data of sessions 3 and 4. CSP and LDA parameters
were computed and cross-validated according to the above scheme
from data of sessions 1 and 2. The CSP and LDA trained from the
segmentwith the highest κwas selected and appliedwithout any adap-
tation on the unseen data of sessions 3 and 4. Classification was com-
puted every 0.5 s.

2.5. ERD/S analyses and statistics

The artifact-free EEG (see first paragraph in Section 2.4.) was re-
referenced according to the common average reference method (CAR,
McFarland et al., 1997). ERD/S (i.e. percentage power decrease/increase
in relation to a reference interval) was calculatedwith amethod referred
to as inter-trial variance (Kalcher and Pfurtscheller, 1995) that removes
the evoked activity. The ERD/S values of the imagery period were calcu-
lated relative to the baseline between seconds 1 and 2 after trial onset
for the following four frequency bands: lower alpha (7–10 Hz), upper
alpha (10–13 Hz), lower beta (13–20 Hz) and upper beta (20–30 Hz).

For statistical comparisons (repeated-measurement ANOVAs),
Gaussianity was approved (except of 2 variables in the evaluation of
tasks) and Greenhouse–Geisser Epsilon was taken. The post-hoc
tests were conducted with the Newman–Keuls test (pb0.05).

3. Results

3.1. Single-session classification of mental tasks

In Fig. 2, the imagery pairs were arranged with descending mean
classification results. In the first columns, the mean kappa values,
Fig. 2. Single-session classification. In the first column, the imagery pairs are arranged with
and participants, and the corresponding best classification time points in s (tκmax) between 3
values at the best time point are plotted for every participant (I–D) and session (1–4). The
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averaged over participants and sessions, at the best classification time
point between 3 and 9.5 s after trial onset were summarized (Fig. 2A).
There was no difference in the kappa values between sessions
(κ=0.55–0.56, S.E.=0.03–0.04).WORDand SUBwere always included
in the first third of the 21 pairs (i.e. combinations with highest mean
kappa; κ=0.6–0.7, S.E.=0.02–0.03) and never in the last third (i.e.
combinations with lowest mean kappa; κ=0.41–0.53, S.E.=0.02–
0.03). Besides in combination with WORD and SUB, FACE always was
included in combinations with lowest mean kappa values. On an indi-
vidual basis, we plotted for every user and session the kappa values at
the best time point in Fig. 2B. The participants were arranged with des-
cending mean classification results. Besides user D, all reached a κ>0.7
with the peak at κ=0.94 (equals accuracies over≈95%) at their indi-
vidually best imagery pair stable over at least 3 sessions. Six users
reached a κ>0.4 in all imagery pairs of the first third of task combina-
tions with the highest kappa values at least in 3 sessions.

Fig. 3 shows that the reported maximal kappa values at the best
time point are not the only time segment in which classification
was possible. Kappa was at chance level before the cue at t=3 s
and then increased rapidly and remained high throughout the trial
with a slight descend toward the end of the trial.

3.2. Simulation of classification

The classifier was computed and trained only with data from ses-
sions 1 and 2 and then evaluated on the unseen data from sessions 3
and 4 (i.e. simulation, see Section 2.4). The combinations ROT/WORD,
ROT/AUD, ROT/SUB, ROT/MOTOR, WORD/SUB, WORD/MOTOR and
SUB/MOTOR reachedmean classification results of κ>0.4 in the simula-
tion which equals accuracies >70%. As can be seen in Fig. 4, individuals
showed a high variability in these combinations. Six users reached
kappa values over 0.7 peaking at 0.92 (≈85%– >95% accuracy) in
some of these imagery pairs and additionally in WORD/FACE, WORD/
NAV and AUD/NAV.

3.3. ERD/S patterns

Differences between the taskswere reflected in their ERD/S patterns.
To underpin these results, we computed repeated-measurement ANO-
VAs separately for each frequency band (7–10 Hz, 10–13 Hz, 13–20 Hz
and 20–30 Hz). The independent variables were the sessions, the men-
tal tasks and the regions of interest. For the regions of interest, we
descending mean kappa values. (A) The mean kappa values (κ), averaged over sessions
and 9.5 s after trial onset are indicated with standard errors (S.E.). (B) Individual kappa
participants are arranged with descending mean kappa values.

ental strategies on classification performance for brain–computer
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Fig. 3. Mean time course of relevant combinations of tasks. Kappa values are averaged over sessions and participants and plotted as a function of time.
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clustered the activation from electrodes in the following 8 regions: left
frontal (F7, F3, FC3), right frontal (F4, F8, FC4), left central (C3, CP3),
right central (C4, CP4), left parieto-temporal (P7, P5), left parieto-
occipital (P3, P1, PO3), right parieto-occipital (P2, P4, PO4) and right
parieto-temporal (P6, P8). We focused on the main effect sessions and
mental tasks and on the interactions mental tasks×regions of interest
(Table 1).

First, we computed the ANOVAs with the absolute power values of
the baseline (1–2 s after trial onset) as dependent variable and the
sessions, mental tasks and regions of interest as independent vari-
ables (see Table 1.1). No differences in the absolute power values of
the baseline between sessions or mental tasks and no interactions
were found in any of the frequency bands. Thus, a comparison of
the ERD/S values of the different mental tasks in the imagery period
is justified.

Second, we computed ANOVAswith the ERD/S values of the imagery
period as dependent variable and the sessions, mental tasks and regions
of interest as the independent variables (see Table 1.2). Therefore, we di-
vided the imagery period in four 1.5-s intervals from3.5 to 9.5 s after trial
onset and computed the ANOVAs separately for each time interval in
order to represent temporal changes in activation of the differentmental
tasks. No differences between sessions or interaction between sessions
andmental taskswere found in none of the frequency bands or time seg-
ments. However, there were significant differences between the
mental tasks as well as interactions with regions of interest in the
beta bands (see Table 1.2 and Fig. 5): First, therewas a significant differ-
ence between mental tasks and a significant interaction between tasks
and regions of interest in the lower beta range (13–20 Hz) in the time
period of 3.5–5 s (see Table 1.2 (A) and Fig. 5A). Both results indicated
that the WORD, ROT and SUB tasks showed generally more ERD than
the AUD, NAV and MOTOR tasks. In contrast, FACE showed most
Fig. 4. Simulation of classification. Boxplot of the kappa classification values for comput-
ing the classifier based on data from sessions 1 and 2 (white) and evaluating the classifier
on the distinct data set for sessions 3 and 4 (gray). Only the combinations of tasks with
κ>0.4 in the simulation are shown.
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significant differences in the regions of interest to SUB andNAV. Second,
the main effect of mental tasks was still significant in the lower beta
band in the following time period (5–6.5 s after trial onset) showing
significant synchronization (i.e. ERS) of the SUB task in comparison to
the ROT, FACE and MOTOR tasks (see Table 1.2 (B) and Fig. 5B). Third,
a significant interaction between mental tasks and regions of interest
in the same time period (5–6.5 s) in the upper beta band (20–30 Hz)
showed that SUB showed more ERS than WORD in parietal regions
and more ERS than MOTOR in central regions (see Table 1.2 (C) and
Fig. 5C). MOTOR showed more ERD than AUD left central and more
ERD than NAV right central. At the right parieto-temporal region, SUB
and NAV had more ERS than all other tasks (except of NAV was not
more synchronized than ROT).

3.4. Self-reports and evaluation of tasks

Users stated in the self-reports that they imagined per 7-s imagery
period of a trial on average 7 complete rotation of the figure around
its axis (S.E.=2.5), 5 words (S.E.=0.5), 1 verse of the tune
(S.E.=0.2), 4 subtractions (S.E.=0.5), navigation through 1 room
(S.E.=0.2), 4 aspects of the familiar face (S.E.=0.5) and 5 hand con-
tractions (S.E.=0.5).

Concerning the evaluation of tasks in respect of the quality of imagery,
task ease and enjoyment, no significant differences between sessions or
mental tasks were found. The tasks were rated on average as performed
with ‘a rather clear and vivid imagery’ (quality of imagery: MN=4.1,
S.E.=0.1), as ‘rather fun and hardly frustrating’ (enjoyment: MN=3.8,
S.E.=0.1) and between ‘not relaxing nor exhausting’ and ‘rather relaxing
and possible to do this task also during small distractions like background
noise’ (ease: MN=3.5, S.E.=0.2) (see Fig. 6). The WORD task
(MN=4.07, S.E.=0.1) was rated best, whereas, the SUB task
(MN=3.3, S.E.=0.2) was rated worst over all three aspects. The low
ratings of the SUB task in enjoyment and ease increased over the ses-
sions, whereas evaluation rather decreased in the FACE task. However,
Fig. 6 shows that there was a high variability in the task evaluation be-
tween users.

4. Discussion

The mental tasks investigated in the present study achieved mean
accuracies comparable to the standard task left versus right hand
motor imagery (e.g. Neuper et al., 2009) and thus can be considered
appropriate for BCI control. The high variability between participants
in classification performance and in task evaluation suggested that an
individual choice between several task combinations could enhance
BCI acceptance, user-friendliness and performance. However, the
only way to confirm the efficacy of our task combinations is to run
real-time feedback experiments, which is a high priority for future
research.

Before comparing our study to the literature, we have to keep in
mind that all studies used different methods for classification. Fur-
thermore, we have to compare accuracies as most studies report
ental strategies on classification performance for brain–computer
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Table 1
Statistical analyses of brain patterns. Repeated-measurement ANOVAs were computed separately for time intervals and frequency bands. The dependent variable is indicated as
‘DV’. The independent variables (IV) included the sessions, mental tasks and regions of interest. The table only shows the most relevant comparisons, i.e. the main effects ‘sessions’
and ‘mental tasks’ and the interaction (IV×IV) ‘mental tasks×regions of interest’. (1.1) ANOVAs were computed with the absolute power values of the baseline as DV. No significant
differences were found in any frequency band. (1.2) ANOVAs were computed with the ERD/S values of the imagery period as DV. The table only shows the ANOVAs that revealed a
significant result. (A) There was a significant difference between mental tasks and a significant interaction between tasks and regions of interest in the lower beta band (13–20 Hz)
in the time period of 3.5–5 s after trial onset. The tasks ROT, WORD and SUB showed more ERD (i.e. ‘>’) than AUD, NAV and MOTOR. (B) In the following time period (5–6.5 s), the
main effect of mental tasks was still significant in the lower beta band showing significant synchronization (i.e. ERS, ‘b’) of the SUB task in comparison to the ROT, FACE and MOTOR
tasks. (C) There was a significant interaction between tasks and regions of interest in the upper beta band (20–30 Hz) in the same time period.

Time Frequency 

band

DV IV IV IVxIV

1.1 Baseline Absolute 

Power

Sessions Tasks Tasks x Region s of interest

1−2s Lower alpha n.s. n.s. n.s.

1−2s Upper alpha n.s. n.s. n.s.

1−2s Lower beta n.s. n.s. n.s.

1−2s Upper beta n.s. n.s. n.s.

1.2 Imagery

period

ERD/S

Values

Sessions Tasks Tasks x Regions of interest

(A) 3.5−5s Lower beta n.s.

ROT, WORD, SUB > AUD, NAV, MOTOR

(B) 5−6.5s Lower beta n.s.

SUB <  ROT

FACE

MOTOR

n.s.

(C ) 5−6.5s Upper beta n.s. n.s.

SUB            <  WORD    parietal regions

MOTOR central regions

MOTOR     >  AUD        left central

NAV       right central 

SUB, NAV <  all tasks   right parieto-temporal

F2.8, 22.5=3.8, p<.05

F2.7, 21.6=3.9, p<.05

F5.9, 47.4=2.9, p<.05

F5.0, 40.3=2.6, p<.05
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accuracy instead of kappa values. However, kappa values make the
interpretation of the results easier if the number of trials is not iden-
tical in all tasks and sessions (Schlögl et al., 2007). The classification
stayed stable across the four sessions and showed a characteristic
slope within trials: Kappa was at chance level before the cue and
then showed a steep rise from the baseline to the maximum and a
slow decay until the end of a trial (Scherer et al., 2008). We used a
10-times 10-fold cross-validation statistic to compute the kappa
values for individual time segments. The use of an inner cross-
validation would allow an even better estimation of the true discrim-
inative power and thus of the best classifier, as the method intrinsi-
cally compares multiple classifiers (Varma and Simon, 2006).
According to our practical experience, however, the selected 10-
times 10-fold cross-validation procedure achieves a good generaliza-
tion and is less computationally demanding. The selected approach
furthermore allows a direct comparison of the kappa and the ERD/S
values over time. The ERD/S patterns confirmed the classification re-
sults, as the patterns were most distinguishable in the beta bands
(13–20 Hz, 20–30 Hz) shortly after cue onset. Both classification and
ERD/S results indicated that the mental tasks can be clustered in cat-
egories according to the actions the tasks require from the users. In
the following paragraphs, we will discuss the tasks and categories in
more detail and make suggestions which task categories might be
most promising to use for online control.

The WORD and SUB tasks require problem specific mental work
and therefore can be described as ‘brain-teasers’. They were included
in most of the best imagery pairs in terms of classification (see Figs. 2
and 4; Sections 3.1 and 3.2) and showed similar ERD/S patterns (see
Fig. 5; Section 3.3.). WORD showed a left hemispheric activation
which is in line with findings from literature (Indefrey and Levelt,
2004). The rather left hemispheric activation in the SUB task indicated
that participantsmight have used a linguistic strategy to solve themen-
tal calculations (Chochon et al., 1999; Burbaud et al., 2000). Also work-
ingmemory processesmight have been involved in these tasks (Delazer
et al., 2003; Kondo et al., 2004). For online control, brain-teasers could
Please cite this article as: Friedrich, E.V.C., et al., The effect of distinct m
interfaces, Int. J. Psychophysiol. (2012), doi:10.1016/j.ijpsycho.2012.01
impose additional work load on the user and might impair BCI control.
However, Galán et al. (2008) showed that users were able to control a
wheelchair with 3 mental tasks including a word association task and
Roberts and Penny (2000) showed cursor movement by means of a
mental subtraction task. Furthermore, users in this study indicated
that they could imagine using the WORD task under small distractions
(see Section 3.4). For the SUB task, the ease-scale showed an increasing
trend over sessions which indicates that practice might reduce the
workload also in the SUB task. As this was only a hypothetical question
of the ease-scale, the suitability of brain-teasers has still to be evaluated
in real-world applications.

The ROT task required a dynamic visualization of an object (i.e. dy-
namic visual imagery) and therefore, did probably not imply the same
kind of mental work as brain-teasers. However, the ROT task showed
very similar ERD/S patterns as the brain-teasers and was included in
most of the best imagery pairs in the simulation classification (see
Fig. 4; Section 3.2). Anderson and Sijercic (1996) also reported an over-
lap between a visual counting task – which would fall in the same cat-
egory as the ROT task – and an arithmetic as well as a verbal task.
Besides verbalization, also visualization could be a common feature of
these tasks (Curran and Stokes, 2003). In the study of Anderson and
Sijercic (1996) a mental rotation task was also included. However,
users had to study different complex figures before imagining rotating
them which made the task more complex than our ROT task in which
users always imagined the same 3-dimensional L-shaped figure. The
rather left than right hemispheric activation found in this study in the
ROT task could also be explained by the study of Roberts and Bell
(2003) who suggested that information processing resources from the
right hemisphere might not be required if the mental rotation task is
very easy and familiar. However, this finding was related to sex differ-
ences and stated for men. In this study, we aimed to keep the group ho-
mogeneous in respect of sex, age and handedness to be able to compare
the ERD/S patterns over the whole group.

The AUD, NAV and MOTOR tasks required dynamic imageries in-
volving one-self (i.e. dynamic first-person imagery). Neuper et al.
ental strategies on classification performance for brain–computer
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Fig. 5. ERD/S patterns averaged over users for the mental tasks. ERD (i.e. negative values) is indicated in red and ERS (positive values) is indicated in blue. The black dots represent the
electrode positions. (A) ROT, WORD and SUB showed more ERD than AUD, NAV and MOTOR in the lower beta band (13–20 Hz) in the time period of 3.5–5 s after trial onset (cue at
t=3 s). (B) SUB synchronized most (i.e. ERS) and ROT, MOTOR and FACE showed ERD in the lower beta at t=5–6.5 s. (C) SUB, AUD and NAV showed ERS and ROT, WORD and
MOTOR displayed ERD in the upper beta band (20–30 Hz) at t=5–6.5 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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(2005) already showed that there are differences in classification
and ERD/S patterns between visual imagery of movements and
motor imagery including one-self. The MOTOR task in this study
reached high classification results when combined with the WORD,
SUB or ROT task (see Figs. 2 and 4). This is in accordance with Millán
et al. (2004) and Galán et al. (2008) who demonstrated good online
control with these task combinations. Curran et al. (2003) compared
the first-person imagery tasks among each other and found that the
pair wise classification of spatial navigation and auditory imagery was
superior to any other combination with motor imagery. Furthermore,
they reported that users rated the non-motor tasks easier than the
motor tasks. In the presented study, there was no such trend in terms
of accuracy. In our ease-scale, NAV and AUDwere aswell rated descrip-
tively least demanding, but the MOTOR task was not rated more
Please cite this article as: Friedrich, E.V.C., et al., The effect of distinct m
interfaces, Int. J. Psychophysiol. (2012), doi:10.1016/j.ijpsycho.2012.01
difficult than non-motor tasks in general. In the study of De Kruif et al.
(2007), 2 of 4 participants gained control, and the best accuracy was
73% in one session. They used different accented tones in auditory imag-
ery, while we used tasks from very different domains (e.g. spatial,
motor, etc.) which seem to be better for classification. The ERD/S pat-
terns of the dynamic first-person imagery tasks revealed similarities
(see Fig. 5). The MOTOR task of the right hand showed an ERD focused
over left central/parietal regions (Neuper et al., 2005; Yuan et al.,
2010). The prominent left hemispheric activation was also found in the
other tasks. Besides the already mentioned verbalization, this left hemi-
spheric bias could be explained as well by involved motor components.
For example, Zatorre and Halpern (2005) stated that – at least in musi-
cians – auditory imagery is linked to motor imagery. Also in tasks like
NAV which is generally considered a right hemispheric task (e.g.
ental strategies on classification performance for brain–computer
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Fig. 6. Evaluation of tasks. All tasks were rated in three aspects concerning the quality
of imagery (white; 1 = ‘no image at all, you only ‘know’ you are thinking of the object’
and 5 = ‘perfectly clear and as vivid as normal vision’), the ease (striped; 1 = ‘very
exhausting and full concentration needed’ and 5 = ‘very relaxing and possible to per-
form also under major distractions such as activated television, visit of friends or in the
traffic’) and the enjoyment (dotted; 1 = ‘no fun at all and very frustrating’ and 5 = ‘a
lot of fun and not frustrating at all’). The boxplot shows that most ratings were in the
positive range above the midline (3 = ‘neither–nor’).
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Cutmore et al., 2000), rather left hemispheric activation was found. The
left hemispheric activation in the NAV task could also be explained
by gaining a more intellectual comprehension of the spatial relation-
ship and generating mental images according to descriptions (Kosslyn
et al., 1995). In contrast, the generation of mental images by precise lo-
cations in space is represented in the right hemisphere (Kosslyn et al.,
1995). Like in NAV –which involves many brain structures such as hip-
pocampus, parietal and premotor regions (Owen et al., 2006) – all men-
tal tasks involve various parts of the brain depending on the specific
strategy and exact processes involved. As the engaged regions also com-
municate with one another constantly, it makes it difficult in general to
isolate one or two regions which are activated during a certain mental
task (Holländer et al., 1997). In this study, we tried to ensure that all
persons were performing the tasks in the same manner and continu-
ously with careful instructions and supervised exercise runs.

The FACE task required a static visualization (i.e. static imagery) and
showed different activation than the dynamic tasks (see Fig. 5) which is
in accordance with Pfurtscheller et al. (2007) who also reported differ-
ences between dynamic and static imagery tasks. FACE did only show
good classification performance when combined with brain-teasers
and showed a decreasing trend in quality of imagery, task ease and
enjoyment (see Section 3.4). FACE might also not be the optimal task
for EEG measurement as fMRI or PET studies localized the main center
for faces in the fusiform gyrus when watching or imagining familiar
faces (e.g. Boly et al., 2007; Haynes and Rees, 2006).

To conclude, this study aimed to provide user-appropriate task com-
binations that can be reliably implemented for BCI control. Therefore,
we investigated mental rotation, word association, auditory imagery,
mental subtraction, spatial navigation, imagery of familiar faces and
motor imagery tasks in respect of (1) pair wise classification, (2) ERD/
S patterns and (3) users' task evaluation. All of our tasks can be volun-
tary produced, were rather clear and vivid to imagine and enjoyable.
The ERD/S patterns demonstrated that the beta bands (13–20 Hz, 20–
30 Hz) could discriminate significantly between the mental tasks
within 3.5–6.5 s after trial onset (cue at t=3 s) and were stable across
the four sessions on different days within 2 weeks. Also task classifica-
tion stayed stable across the four sessions and showed a characteristic
slope with the maximum classification accuracy shortly after the cue
onset of a trial. The tasks word association, mental subtraction, mental
rotation andmotor imagery resultedmost frequently in good classifica-
tion performance. Both, classification results and ERD/S patterns indi-
cated that a reliable and stable BCI implementation of these tasks is
possible. On individual basis, kappa of specific combination of mental
tasks reached over 0.9 (≈>95% accuracy) in single-session and
Please cite this article as: Friedrich, E.V.C., et al., The effect of distinct m
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simulation classification. This suggests that individually chosen control
strategies from the investigated range of mental tasks might improve
performance substantially. Of course, the onlyway to confirm the effica-
cy of our task combinations is to run real-time feedback experiments,
which is a high priority for future research. Furthermore, these results
still have to be evaluated with disabled individuals. Depending on the
specific impairment, disabled individuals might show differences in
their task classification, ERD/S patterns as well as evaluation of tasks.
However, our study was an important step toward demonstrating that
there are good alternatives tomotor imagery,whichmight be especially
beneficial for severely motor impaired individuals. Our results suggest
that the use of brain-teasers — tasks that require problem specific
mental work (e.g. mental subtraction, word association) - and a
combination of brain-teasers and dynamic imagery-tasks (e.g. motor
imagery) represents a promising choice for future online BCI
implementations.
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