
7
ELECTRICAL STIMULATION

OF EXCITABLE TISSUE

In designing systems for stimulation, a qualitative understanding together with mathematical
descriptions of responses to stimulation are essential. The response of excitable cells to naturally
occurring or artificial stimuli is a subject of great importance in understanding natural function of
nerve and muscle, because most stimuli are produced by the natural system itself. Both electric and
magnetic field stimulation are used in research investigations and in clinical diagnosis, therapy,
and rehabilitation. This chapter focuses primarily on responses to electrical stimuli, which are
more frequent, and examines several biological preparations.

The core idea of stimulation is the following: A current, arising from an external stimulator or
natural source, is introduced into a cell or its neighborhood. The current creates transmembrane
voltage in nearby membrane. The membrane responds passively (i.e., with constant membrane
resistance), so long as the voltage produced is below a threshold level. When the threshold level
is reached, the membrane responds with an action potential, or some other active response.

From the perspective of the analysis of the effects of stimulation, critical issues revolve
around what strength and time duration of a stimulus is required for the stimulus to cause the
tissue to move through its initial, passive state to reach the threshold level for active response.1

The answers depend, as one would expect, on a number of variables, importantly including the
geometry of the tissue being stimulated, its electrical characteristics, and the location of the
stimulus electrodes.

Analysis of stimuli focuses especially on mathematical relationships between the current
applied as the stimulus and the resulting transmembrane potentials. Such knowledge, when
quantitative, then allows one to draw quantitative conclusions about the strength and duration of
stimuli that will result in transmembrane potentials above the threshold level in new or future
situations, as well as those already explored experimentally.2

The initial sections of this chapter provide the simple mathematics giving the transmembrane
voltages produced by a constant current stimulus, in a spherical cell. These current–voltage
equations then are manipulated to produce strength–duration curves. A few real cells can be
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idealized as spherical, and the idealization is useful and interesting because, in a spherical cell,
the response to stimulus depends only on time.

In other words, the spherical cell has a geometrical uniformity that avoids the additional
complexity of spatial variation. Thereby the results for a spherical cell serve as a relatively
simple beginning point and reference for more complicated cellular structures. As might be
expected, more complicated cell structures lead to a correspondingly more complicated space–
time behavior. That is, though idealized and relatively simple, the spherical cell analysis shows
most clearly many of the fundamental concepts of stimulation, and also introduces most of the
terminology used in stimulation.

The main part of the chapter considers fibers. Here fibers are idealized as having cylindrical
geometry. Initially, the mathematical expressions relating currents to voltages along the fiber
are established. Using these relationships in one spatial dimension, we then evaluate a stimulus
just outside the membrane, initially just the steady-state response. Thereafter, the time evolution
response (also called the transient response) for an intracellular electrode is found.

With one-dimensional analysis completed, the chapter moves on to field stimulation, a three-
dimensional situation as the stimulus electrodes may be moved away from the fiber surface. With
field stimulation, we examine both subthreshold and transthreshold situations. Fiber simulations
under transthreshold conditions evaluate circumstances where stimuli may lead to propagating
action potentials. Such simulations permit an evaluation of the classical concept of threshold,
revealing conditions where it is not dependable.

Most fibers evaluated in this chapter are assumed to be infinitely long. That obviously is an
approximation, as often a real fiber is much longer than the region affected by a stimulus. To
examine it more carefully, however, in the final section, we examine the differences in behavior
of a fiber that has a finite rather than infinite length.

7.1. SPHERICAL CELL STIMULATION

We begin with the study of the spherical cell, as illustrated in Figure 7.1. While the spherical
cell’s shape is a poor model for most biological cells, the simplicity of its electrical behavior
makes it of interest. It is interesting because one can analyze the cell’s response to a stimulus
in a thorough way, taking into account all the central factors. Since the same central factors are
present for a much broader set of cell shapes and circumstances, the response of the spherical
cell serves as a guide to those also.

An analysis of the response of a spherical cell to an intracellular subthreshold stimulating
current shows that the intracellular region is isopotential, to a good approximation. If one pictures
the cell placed within an extensive extracellular region, then the extracellular volume also will
be virtually isopotential. Consequently, all points on the cell membrane elements will have
very nearly the same transmembrane potential. (The transmembrane potential has to be uniform
because all intracellular potentials are nearly the same, and all extracellular potentials are nearly
the same).

Consequently, the response of any patch on the cell’s membrane will be the same as any
other patch, and the entire membrane will behave synchronously.
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Figure 7.1. Top: A stimulator (left) applies a current I0 to the center of a spherical
cell. Current flows symmetrically outward (arrows) through the membrane (solid circle).
Current is collected symmetrically at the periphery of the surrounding extracellular bath
(dashed sphere). Bottom: A current step of magnitude Io is applied (lower left) by the
stimulator between the intracellular and extracellular electrodes. The stimulus current
continues indefinitely during time t. The current produces a rising transmembrane voltage,
vm (solid curve), that does not have the step waveform of I0. Even though the stimulus
current I0 continues on, the rise of vm approaches limiting level vm = S. Level S is
called the “strength” of the stimulus. Of particular interest is the time T required to reach a
“threshold” voltage level VT = L (short lines crossing vm curve at lower right). The vm
curve is sketched as the response if membrane resistance Rm is constant. Furthermore,
the concept of this simplified view of stimulation is thatRm will change abruptly once vm
reaches threshold voltage level L, as an active membrane response will occur thereafter.

7.1.1. Spherical Cell’s Response to a Current Step

What is the response of an spherical cell to the application of a stimulating subthreshold
current step? The arrangement is depicted in Figure 7.1.

Because the intracellular and extracellular regions are essentially isopotential, all membrane
elements are electrically in parallel. Thus the entire cell in Figure 7.1 can be represented by a
single lumped-RC circuit, and both R and C will be constant under subthreshold conditions.

The corresponding electrical circuit is illustrated in Figure 7.2, where, for a membrane surface
area A, we have from (2.57)

R =
Rm
A

(7.1)
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Figure 7.2. Equivalent Electrical Circuit for the Ppreparation of Figure 7.1. The membrane
resistance of the cell as a whole is R, and the capacitance of the cell is C. The stimulator
(box on left) creates a stimulus current I(t) that is a function of time. In particular, the
stimulus current is a current step of magnitude I0 starting at time zero. Analysis is done
forR and C constant. (However, in a real cellR will change when the cell becomes active
and ion channels open.) The spherical symmetry of the cell in Figure 7.1 allows this simple
electrical equivalent.

and (2.54)
C = CmA (7.2)

Here, Rm is the specific leakage resistance (Ωcm2), Cm is the specific membrane capacitance
(μF/cm2), while R and C are the total membrane resistance (Ω) and capacitance (μF).3

The transmembrane potential developed in the cell of Figure 7.1 is readily found from the
equivalent circuit in Figure 7.2 and is

vm = I0R(1− e−t/τ ) (7.3)

Rewriting (7.3) for a stimulus just strong enough and long enough to reach a threshold voltage
level VT with stimulus duration T , we have

VT = S(1− e−T/τ ) (7.4)

In Eq. (7.4) time constant τ = RmCm = RC and stimulus strength S = I0R. Note that
parameter S is the steady-state voltage approached by vm as t → ∞. The quantity S can be
thought of as a measure of the depolarizing strength of the applied stimulus current I0; in fact,
it is the maximum depolarization that can be produced passively by I0. We also note that the
time constant τ is independent of A (the cell area). Finally, in (7.3) we use vm (rather than Vm)
since the quantity of interest is the change in the transmembrane potential caused by the stimulus,
relative to its baseline.

7.1.2. Strength–Duration

It is well known experimentally and theoretically that as stimulus strength S is increased, a
shorter stimulus duration T is needed to reach a particular transmembrane voltage. To examine
the correspondence mathematically, suppose that the transmembrane voltage threshold needed
for initiate activation is fixed at vm = VT ,4 and a stimulus strength S greater than VT is used. The
consequence by (7.4) will be that membrane voltage VT will be reached with a shorter stimulus
duration, T , than T →∞.
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What stimulus duration T is necessary? Rearranging (7.4) to isolate the term containing T ,
one gets

eT/τ =
1

(1− VT /S)
(7.5)

By taking the natural log of (7.5), one can find either T or τ if the other parameters are known.
Thus, where log is the natural logarithm,

T = τ log(
1

(1− VT /S)
) = τ log(

S

(S − VT /S)
) (7.6)

A more subtle use of (7.5) occurs when one wishes to find τ from two pairs of values of S
and T . In this case one can solve for τ by writing (7.5) twice, and taking the ratio before taking
the log.

Weiss–Lapicque equation

Rearranging (7.4) in a different way, one sees that the relationship between stimulus strength
S and threshold voltage VT can be written as

S = VT /(1− e−T/τ ) (7.7)

Division on both sides of (7.7) by the membrane resistance R leads to

Ith =
IR

(1− e−T/τ )
(7.8)

Eq. (7.8) often is called the Weiss–Lapicque equation.5 There is a specialized terminology used
in connection with this equation, as discussed in the next section.

Rheobase

In (7.8) IR is named the rheobase, while Ith is the minimum current required to reach
threshold with stimulus duration T .

From (7.8) one sees that the rheobase, IR, is the minimum stimulus intensity that still produces
a threshold value of transmembrane voltage, as the stimulation duration grows long (conceptually,
as T → ∞). VT is the strength at rheobase, or rheobase voltage. The colorful terminology of
rheobase and chronaxie was introduced by Lapicque [2].6

A plot of S versus T for fixed VT is given in Figure 7.3. The curve depicts the strength–
duration relationship for a threshold stimulus. The curve shows an exponential decay to the
rheobase voltage, and divides all strength–duration combinations into two groups. Those in
region A produce transmembrane voltages that exceed threshold. Combinations precisely on the
line VT = L produce transmembrane voltages exactly equal to threshold. Strength–duration
combinations in region B produce transmembrane voltages less than threshold. Of these, the
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Figure 7.3. Strength–Duration Curve. Line VT = L shows the combinations of stimulus
strength S (on the vertical axis) and stimulus duration T (on the horizontal axis) that
are just sufficient to reach the threshold level. Combinations on side A of line L are
above threshold and may lead to action potentials, while combinations on sideB are below
threshold. Rheobase is the value of stimulus current that is just sufficient to reach L with
a long stimulus duration T . Chronaxie is the stimulus duration required to reach L if the
stimulus current is set to twice rheobase.

graph makes clear that stimuli with a strength less than the rheobase voltage will never reach
threshold, whatever their duration.

Chronaxie

The pulse duration when the stimulus strength S is twice rheobase is called chronaxie. From
(7.7) chronaxie, Tc, can be found analytically, since at chronaxie S = 2VT . Multiplying through
by the term in parentheses, we have

VT = 2VT (1− e−Tc/τ ) (7.9)

Equation (7.9) can be simplified to
e−Tc/τ = 1/2 (7.10)

so after inverting, taking the natural log, and solving for Tc one has

Tc = τ ln 2 = 0.693τ (7.11)

Chronaxie is significant as a practical time period required to reach the threshold voltage when
using a practical stimulus strength. In a comparison of different membranes or the same membrane
under different conditions, chronaxie provides a nominal measure of excitability.
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7.1.3. Stimulus Theory vs Experimental Findings

When the previous analysis is compared to experimental studies the results are modestly
in accord, both qualitatively and quantitatively. The agreement is good enough to be useful in
providing a qualitative understanding of the way experimental results change, as one or more
experimental variables change. For example, the theory provides a guide to understanding why
a greater stimulus current can create an action potential despite a shorter stimulus duration, or
understanding why a sufficiently low stimulus current never creates an action potential, whatever
the stimulus duration.

Even so, significant differences between the simple spherical-cell theory and experimental
findings also are evident. Some reasons for such differences are as follows:

1. We assumed that the network in Figure 7.2 was valid up to threshold transmembrane
potentials, while from Figure 5.6 we know that linearity holds up to 50% of threshold (if
that much). Beyond 50% the assumption is at best a weak approximation.

2. The spherical cell stimulated with an intracellular electrode is a special case. In general,
stimulating electrodes are extracellular and produce a response which depends on elec-
trode location as well as the cell geometry. These parameters all affect the distribution and
extent to which various membrane elements are depolarized, the conditions that ensue
following termination of the stimulus, and hence the outcome regarding the initiation of
an action potential. An example will be considered toward the end of this chapter. Some
improvements in the model have been suggested based on a time-varying threshold, but
even this possibility seems sensitive to the specific geometry and stimulus waveform.

3. A fixed threshold fails to account for its increase with time when the stimulus duration
is comparable to the time constant of the inactivation parameter h (i.e., τh). The effect
is described quantitatively by the Hodgkin–Huxley model based on the change in h with
depolarizing or hyperpolarizing stimuli. This phenomena is known as accommodation
and conflicts with the idea of a fixed threshold. For example, if the stimulus waveform
were a ramp that reaches “threshold” after a time delay comparable to τh, then a diminished
value of h at that point would require a yet higher stimulus. The “threshold,” in other
words, is now elevated. A slowly rising ramp could be chasing an ever elusive threshold
and excitation fail to be elicited even though very high values of voltage are reached.

4. For stimuli with durations that are short (less than the sodium activation time constant
τm), stimulation will grow more difficult, in that threshold vm will rise (a fact noted
by Lapicque [2]). Because the regenerative activation process will not be initiated at
termination of the stimulus, even the transmembrane voltage that would be threshold, if
the stimulus was longer, the stimulus may fail to produce a response. In this situation one
must investigate whether the effective RC membrane can retain an adequate depolarizing
voltage following the brief stimulus to continue opening sodium channels to the point
that activation occurs. This question will be considered later on in this chapter with an
example using an active membrane.

The above reasons are not a rationale for discarding the theory. Rather, they simply say that
the theory has to be used with recognition that it is an approximation.
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7.2. STIMULATION OF FIBERS

In the preceding section we considered the subthreshold response of a spherical cell, where
all parts of the cell membrane were affected or changing in the same way, all the time. Now we
examine the response to stimulation of a fiber.

At first we examine the behavior of the fiber under subthreshold (electrotonic) conditions,
as was the case for the sphere. In fibers we expect subthreshold behavior that is similar to that
of spherical cells in some respects, but we also expect that there will be some major differ-
ences.

One kind of difference occurs because of the length of fibers. Events at different sites along
the fiber will occur at different times, because of the capacitance in the fiber’s membrane. A
second kind of difference is the corollary of the first: Adjoining segments of the fiber often are
responding to a stimulus to different degrees and thus have differing transmembrane voltages, with
the result that there are currents flowing within and along the fiber. Finally, fibers are evaluated
using stimuli placed in different locations, which may be inside or outside the membrane, or
distant from the whole fiber.

All of these aspects of fiber stimulation may occur in real fibers. Because of their number
and complexity, addressing these aspects requires a number of the sections that follow.

When the excursion in transmembrane voltage is sufficiently small, the corresponding mem-
brane current can be found from a passive admittance. Such subthreshold conditions are referred
to as linear or electrotonic. For nerve (and approximately for muscle), the membrane can then be
characterized electrically with a parallel RC network with constant values of R and C. This passive
description is in contrast with the nonlinear behavior beyond threshold, where the potassium and
sodium conductances are no longer independent of vm.

An examination of membrane properties under linear (subthreshold) conditions is important,
since these are frequently present in clinical and experimental studies. Furthermore, in the case of
a propagating action potential, regions ahead of the activation site, where critical depolarization
is taking place (e.g., region C in Figure 6.5), will be subthreshold during a critical initial interval.
In addition, in the design of a stimulator, the membrane may often be considered as linear up to
the point of activation.

7.2.1. Fiber Equations

It is immensely valuable in subsequent sections (and in analyzing fibers in general) to have
available some basic equations for relationships among voltages and currents at points along the
fiber. Thus we develop some of those here. They are of interest in their own right but will prove
to be essential starting points in later sections.

Under subthreshold conditions, we have

im =
vm
rm

+ cm
dvm
dt

(7.12)
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where rm is the membrane resistance times unit length (Ωcm), cm is the capacitance per unit
length (μF/cm), and im is the transmembrane current per unit length (mA/cm). (At transmembrane
voltages above threshold (7.12) still applies, but it is less useful because rm must be treated as a
variable.)

An interesting and useful result can be found from (7.12) if one recalls from the cable
equations (6.11) that

∂2vm
∂x2 = (ri + re)im + reip (7.13)

Substituting (7.12) into (7.13) gives

λ2 ∂
2vm
∂x2 − τ

∂vm
∂t
− vm = reλ

2ip (7.14)

where we have defined the following normalizing parameters:

λ =
√

rm
ri + re

τ = rmcm (7.15)

For steady-state conditions (∂/∂t = 0), Eq. (7.14) simplifies to

λ2 d
2vm
dx2 − vm = reλ

2ip (7.16)

When the stimulus current is zero (ip = 0), Eq. (7.16) becomes simply

λ2 d
2vm
dx2 − vm = 0 (7.17)

[which is also the homogeneous form of equation of (7.16)]. The solution of (7.17) is

vm = Ae−x/λ +Bex/λ (7.18)

where A and B are arbitrary constants. Rather than introducing the stimulating current ip explicitly
in (7.16) to obtain the particular solution, we can, instead, impose boundary conditions on the
solution for the region where ip = 0, namely, |x| > 0. But this solution is that given by (7.18).
The boundary conditions at x = 0 and x = ∞ will serve to evaluate the constants A and B in
(7.18). This approach is illustrated in the following sections.

7.2.2. Space and Time Constants

In the previous section we introduced the constants λ and τ (7.15). These quantities are
referred to as the space (or length) constant and time constant of a fiber, respectively. Both are
important parameters that characterize the response of a fiber to applied stimuli.

Under steady-state conditions λ is the distance over which the voltage and current change
by the factor e, as identified in Eq. (7.18). For spherical-like cells only, τ is the time for the
transient response to a current step to differ from its steady-state magnitude by the factor 1/e, as
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seen in (7.4). For a fiber, we will presently show that τ is a measure of the time it takes for the
transient response to a current step to reach a particular fraction of its steady-state value, where
the fraction depends on the distance from the site to the point of stimulation.

Constants λ and τ are important because, frequently, they can be measured directly. Fur-
thermore, λ and τ have a consistent meaning for many different fiber structures, so they may be
used for characterization and comparison.

For circular cylindrical axons with constant membrane properties and with re ≈ 0,

λ =
√

rm
ri + re

≈
√
rm
ri
. (7.19)

(The condition re ≈ 0 applies when the extracellular space is large.) Converting ri to Ri and rm
to Rm, by using (2.55) and (2.52), gives

λ =

√
Rm/2πa
Ri/πa2 (7.20)

When simplified this equation becomes

λ =
√
aRm
2Ri

(7.21)

where a is the fiber radius. Note that λ varies directly as the square root of fiber radius.

7.3. FIBER STIMULATION

The stimulus currents to be discussed are introduced into a biological preparation with the
goal of changing the transmembrane voltage. In most situations, the electrode or electrodes
through which the current is injected are outside the target fiber(s).

If injecting current extracellularly changes the transmembrane potential, by how much does
it do so? And where? The following material examines these questions in an idealized geometry,
but one that nonetheless includes the essential elements needed for insight into a experimental
and clinical situations.

7.3.1. Extracellular Stimulus, Steady-State Response

Suppose a single small electrode is placed in the bounded extracellular space just outside
a cylindrical fiber, while a pair of electrodes to remove the current lie extracellularly at ±∞.
Suppose the fiber is at rest, infinitely long, the location of the proximal electrode identifies the
coordinate origin (x = 0), and the fiber structure satisfies the assumptions of the core-conductor
model. Note that this arrangement imposes symmetry between positive and negative regions.
Also, we expect that a portion of the injected current will enter and flow within the intracellular
space of the fiber; it will be constrained to flow longitudinally along the x axis.

With the above arrangement, where will current go? As a first guess it might seem that the
injected current would remain in the extracellular space until removed by the distal electrodes.
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This would be the case if the membrane was a perfect insulator. But for biological membranes it
is reasonable to expect current to cross the membrane, particularly if the fiber is long (since the
effective leakage resistance can become very low given an adequate axial distance).

With increasing x, this inflowing transmembrane current builds up the total intracellular
current, Ii, while the extracellular current decreases by an equal amount. An equilibrium is
reached for large enough x, where riIi = reIe. At this point the spatial rate of decreasing
voltage is the same in both intracellular and extracellular space so, from a Kirchhoff loop, the
transmembrane voltage and hence transmembrane current is zero. (Thus for x→∞ there is no
further change in either Ie or Ii.)

In summary, one can expect the transmembrane current to be greater in the region near the
stimulus site and to diminish to essentially zero at sites more distant from the stimulus. In the
limited region where the stimulus produces a transmembrane current it must also produce an
associated transmembrane potential. Thus we conclude somewhat intuitively that stimuli from
extracellular electrodes can be used to create hyperpolarizing or depolarizing potentials over an
extent of fiber near the stimulus electrode.

We now move to examine these expectations quantitatively. The current entering the prepa-
ration from the electrode can be idealized as a spatial delta-function source, that is,

ip = I0δ(x) (7.22)

where δ(x) is a unit delta function.

The definition of δ(x) has three parts:

δ(x) = 0 forx �= 0
δ(0) = ∞∫ ∞

−∞
δ(x)dx = 1 (7.23)

Note that the delta function is zero except at the origin, where it is infinite, but its integral is finite
(equal to unity) provided the interval of integration includes the origin.

From (7.22) and (7.23) we can identify I0 as the total applied current while ip(x) is the current
density (current per unit length); the latter is zero except at the origin, where it is infinite. If the
delta-function source is used in the equations governing vm under subthreshold and steady-state
conditions, we have from Eq. (7.16)

λ2 d
2vm
dx2 − vm = reλ

2I0δ(x) (7.24)

Now we seek the solution to the differential equation in (7.24). A good strategy is to first find
the solution to the corresponding homogeneous equation, as that solution will apply to all points
other than x = 0. Then, with that solution viewed as a boundary-value problem, we evaluate
undetermined coefficients through the boundary conditions at the origin (which result from the
introduction of the applied current at this point). We will follow that strategy in the following
section.
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Boundary conditions around the stimulus site

To establish the boundary condition at the stimulus site, the origin, suppose Eq. (7.24) is
integrated from x = 0− to x = 0+, i.e., from just to the left of the origin to just to the right of it.
The result is

λ2 dvm
dx

∣∣∣
x=0+

− λ2 dvm
dx

∣∣∣
x=0−

− [vm(0+)− vm(0−)]Δx = reλ
2I0 (7.25)

where Δx = 0+ − |0−|. As distance Δx approaches zero, the middle term goes to zero, since
(on physical grounds, at least) vm is continuous. Note that the term on the right-hand side no
longer contains the δ function (whose integral was replaced by unity).

Rewriting (7.25) we obtain

λ2
(
dvm
dx

∣∣∣
x=0+

− dvm
dx

∣∣∣
x=0−

)
= reλ

2I0 (7.26)

and we note that ∂vm/∂x is discontinuous at x = 0. The discontinuity, furthermore, is propor-
tional to the strength of the current source I0.

We will use this result below and evaluate derivatives near the stimulus site, to get the
boundary condition needed there.

The homogeneous solution at steady state

For sites along the fiber away from the origin there are no applied currents, so the homoge-
neous equation (7.17) applies, namely,

λ2 d
2vm
dx2 − vm = 0 (7.27)

Equation (7.27) has the solution

vm(x) = Ae−x/λ +Bex/λ (7.28)

Thus one sees that vm at all points along the fiber can be found from (7.28) once values for
constants A and B are determined from the boundary conditions.

We now consider the appropriate choices of constants A and B. The choices must satisfy the
conditions imposed by the source at x = 0 and also the requirements when |x| → ∞.

The necessary outcomes are summarized in Table 7.1. The choice of A = 0 for x < 0 and
B = 0 for x > 0 is necessary because the solution for vm caused by applying a finite current I0
must go to zero as the distance from the stimulus becomes large. Because vm must be symmetric
about the origin, there being no physical difference between the positive x side versus the negative
side, it is also concluded in Table 7.1 that both A and B are equal to the same constant, C.
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Table 7.1. Boundary Conditions

x range A B

x < 0 0 C
x > 0 C 0

These choices ofA andB are required
for the transmembrane potential to de-
cline to zero far from the stimulus site.

Imposing these conditions results in equal but opposite axial currents at symmetric points
about the origin, an outcome that is consistent with the symmetry. Thus Eq. (7.28) can be
written as

vm(x) = Cex/λ x ≤ 0
vm(x) = Ce−x/λ x ≥ 0 (7.29)

A more compact form of (7.29) is

vm(x) = Ce−|x|/λ (7.30)

Imposing the boundary condition at the origin

The coefficient C in (7.30) can now be found, since the solution must also satisfy (7.26).
To impose this boundary condition at the origin dvm/dx is first evaluated from Eq. (7.29). The
result is

dvm
dx

=
C

λ
ex/λ x < 0

dvm
dx

= −C
λ
ex/λ x > 0 (7.31)

Substituting (7.31) into (7.26) gives

(
−C
λ
e−x/λ

∣∣∣
x=0+

− C

λ
ex/λ

∣∣∣
x=0−

)
= reI0 (7.32)

The solution for C from (7.32) is

C = −reλI0
2

(7.33)

The steady-state solution

Using the value of C obtained in (7.33) and substituting into (7.30) gives the desired solution,
namely,

vm = −reλI0
2

e−|x|/λ (7.34)
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Inspection of Eq. (7.34) provides a quantitative response to the questions and speculations
posed at the beginning of this section. These are summarized below.

1. The stimulus clearly affects the transmembrane potential, since vm is nonzero for all
values of x.

2. The effect of the stimulus varies markedly with x. The largest change in transmembrane
potential occurs at the site of the stimulus, where x = 0. As one moves away from the
stimulus site, vm decreases exponentially, falling by a factor of e every length λ.

3. For a given stimulus current I0, the magnitude of the change in transmembrane potential
increases as extracellular resistance re increases.

4. Note from the sign of (7.34) that a positive current injected at the origin leads to a
more negative transmembrane potential. That is, membrane under an anode becomes
hyperpolarized as a result of current influx into the intracellular region.

5. Note that the space constant λ may also be regarded as a measure of the distance from a
source (at the origin) to which the disturbance in vm essentially extends.

7.3.2. Intracellular Stimulus, Time-Varying Response

We now turn our attention to an investigation of the temporal transient behavior under the
same stimulus condition, rather than the steady-state response evaluated above.

Determining transient behavior requires a solution to the general expression of (7.14). As
before, we first seek a solution to the homogeneous equation and introduce the applied current
through a boundary condition at the origin. We consider an unbounded extracellular medium and
assume that the stimulus current is introduced intracellularly.

This geometry permits introducing the simplification that re ≈ 0. The resulting equation is

λ2 ∂
2vm
∂x2 − τ

∂vm
∂t
− vm = 0 (7.35)

The space constant λ and time constant τ are as defined in (7.15). (If the applied current is intro-
duced extracellularly, the solution obtained here can be converted to this condition, as described
in a later section.)

A simplified notation results from introducing the normalized spatial and temporal variables
(X,T ), defined by

X =
x

λ
and T =

t

τ
(7.36)

Hence (7.35) becomes
∂2vm
∂X2 −

∂vm
∂T
− vm = 0. (7.37)

We seek the transmembrane potential, vm, arising from the introduction of a current step at the
origin.
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Reduction to one variable by the Laplace transform method

We proceed by taking Laplace transforms with respect toT of each term in (7.37). The Laplace
transform of ∂vm/∂T is svm − vm(0, X), where the overbar indicates a Laplace transform.

The initial condition of vm at t = 0, namely vm(0, X), is assumed to be zero. It is initially
zero because we consider the response of a resting cable to an applied current that starts at t ≥ 0.
Consequently, we get

∂2vm
∂X2 − (s+ 1)vm = 0 (7.38)

The advantage of introducing the Laplace transform is that the partial differential equation (7.37)
in X and T has been converted into an ordinary differential equation in X (7.38).

The solution to (7.38) is

vm = Ae−X
√
s+1 +BeX

√
s+1 (7.39)

Because vm cannot increase without bound for x→∞, B = 0 (for the infinite cable). Thus

vm = Ae−X
√
s+1, X ≥ 0 (7.40)

The boundary condition at the origin

At x = 0, the site of introduction of the current I0 into the intracellular space, because of
symmetry, I0/2 flows into the positive x region and I0/2 into the region x < 0.

This applied current as a function of time is in the form of a step that we designate u(t), the
unit step function. This function is described by u(t) = 0 for t ≤ 0 and u(t) = 1 for t ≥ 0.
There is a discontinuity at t = 0. Applying Ohm’s law in the intracellular space at x = 0, we
have

∂Φi
∂x

∣∣∣
x=0

= −I0u(t)ri
2

. (7.41)

For the extracellular space at x = 0 there is no longitudinal current (it begins to appear when
x > 0), so

∂Φe
∂x

∣∣∣
x=0

= 0 (7.42)

If we subtract (7.42) from (7.41) and then note from (7.36) that ∂/∂x = (1/λ)∂/∂X,7 we
get

∂vm
∂X

∣∣∣∣
x=0

= −I0u(t)riλ
2

(7.43)

Taking the Laplace transform of both sides of (7.43), where the Laplace transform of u(t) is
included as 1/s, gives

∂vm
∂X

∣∣∣∣
x=0

= −I0riλ
2s

(7.44)
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We also can evaluate the left-hand side of (7.44) from (7.40). So doing gives

∂vm
∂X

∣∣∣∣
X=0

= −A
[
(s+ 1)1/2e−X(s+1)1/2

]
X=0

= −A√s+ 1 (7.45)

One obtains an equation for A by equating (7.45) and (7.44). This yields

A =
riλI0

2s
√
s+ 1

(7.46)

Substituting (7.46) into (7.40) gives vm as a function of s, namely,

vm =
I0riλ

2s
√
s+ 1

e−X
√
s+1, X > 0 (7.47)

Time-varying response to stimulus

The desired solution for the time-varying response is found by taking the inverse transform
of (7.47). Finding the inverse transform is most readily accomplished by consulting a table of
Laplace transforms,8 which demonstrates that

vm(X,T ) =
riλI0

4

{
e−X

[
1− er f

(
X

2
√
T
−
√
T

)]

− eX
[
1− er f

(
X

2
√
T

+
√
T

)]}
(7.48)

This result is for an infinite cable, based on the introduction of I0 at X = 0, and describes
conditions for x > 0 (those for x < 0 can be found by symmetry). One can also replace x by |x|,
which gives the expected symmetry and an expression valid for all x. On restoring the original
coordinates x and t, (7.48) becomes

vm(x, t) =
riλI0

4

{
e−|x|/λ

[
1− erf

( |x|
2λ

√
τ

t
−
√
t

τ

)]

−e|x|/λ
[
1− erf

( |x|
2λ

√
τ

t
+
√
t

τ

)]}
(7.49)

In (7.47) and (7.48), erf is the error function defined by

erf(y) =
2√
π

∫ y

0
e−z

2
dz (7.50)

Note that erf (∞) = 1 and erf (−∞) = −1. The result in (7.49) tacitly assumes sinks of strength
−I0/2 at x = ±∞.9

7.3.3. Examination of Temporal Response

For a given value of time the spatial behavior is exponential-like but not exponential. For
t >> τ (i.e., for the temporal condition approaching the steady state), vm(x) tends toward a
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Table 7.2. Temporal Morphology at Different Values of x

Steady-state fraction
x at t = τ

0 0.843
λ 0.632
2λ 0.372
3λ 0.157
4λ 0.0453
5λ 0.00862

Stimulus: current step at x = 0.

true exponential in x, as shown in (7.34), and also as obtained from (7.49). The presence of the
membrane leakage resistance is responsible for a continuous decrement of vm with increasing x
while λ describes the rate of this effect.

In the temporal behavior of vm(x, t) given by Eq. (7.49), τ characterizes this behavior.
Thus as noted, when t > τ the response rapidly approaches steady-state values. Figure 7.4
plots families of curves derived from Eq. (7.49), which expresses the above ideas graphically.
These results show that time is required to reach steady state owing to the presence of membrane
capacitance and resistance, and this membrane time constant is a measure of that time. Further,
the response is spatially confined to a region near the site of the stimulus and λ is a measure of
its extent.

For a fixed x, the temporal behavior is not a true exponential; its shape is not readily apparent
by inspection of (7.49). If we determine from (7.49) the fraction of steady-state amplitude reached
at t = τ as a function of x, the data in Table 7.2 are obtained. The rapid decrease in value seen
in Table 7.2 also reflects a temporal waveform that is not exponential. Only at x = λ does the
magnitude of the fraction of steady-state amplitude reached at t = τ equal that obtained with an
exponential waveform (i.e., 1− 1/e).

7.4. AXIAL CURRENT TRANSIENT

Questions: How much axial current does the stimulus generate? Does the axial current start
quickly? Where? Current is injected intracellularly, so does it all flow down the intracellular
volume, or does some go outside? Is the current flow pattern quickly established, or does it take
a long time to reach equilibrium?

Stimuli often are used to manipulate the actions of excitable tissue, so understanding a
fiber’s response to stimuli as a function of the magnitude or position of the stimulus site has a
natural interest and utility. As an example of the mathematical results developed to this point,
let us evaluate the response of a semi-infinite fiber with a bounded extracellular space to such a
stimulus. In particular, let us consider the application of an intracellular current step, of magnitude
I0, at the coordinate origin (x = 0) at t = 0. (To simplify the consideration, we assume that the
remote electrode is at +∞.)
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Figure 7.4. Theoretical Distribution of Potential Difference across a passive nerve mem-
brane in response to onset (a and c) and cessation (b and d) of a constant current applied
intracellularly at the point x = 0. (a) and (b) show the spatial distribution of potential dif-
ference at different times, and (c) and (d) show the time course of the potential at different
distances along the axon. Time (t) is in time constants, τ , and distance (x) is in space con-
stant, λ. From Aidley DJ. 1978. The physiology of excitable cells. Cambridge: Cambridge
UP. After Hodgkin AL, Rushton WAH. 1946. The electrical constants of a crustacean nerve
fiber. Proc R Soc London, Ser B 133:444–479. Reprinted with permission of Cambridge
University Press.
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To find quantitative answers to the questions, first we examine the given parameters and
observe that

At t = 0, vm = 0 everywhere since the membrane capacitances have yet to receive any
charge from the applied current.

Because vm ≡ 0 signifies a short-circuited membrane, the applied current, at t = 0,
divides instantaneously between intracellular and extracellular space in inverse proportion
to the axial resistances [i.e., Ii = (re/(ri + re))I0 and Ie = (ri/(ri + re))I0].

Because extracellular space is assumed bounded re is not negligibly small.

Now for x >> λ and at steady state, (7.34) describes vm ≈ 0, so riIi = reIe.

Also, because Ii + Ie = I0, then Ii = reI0/(ri + re), and Ie = riIe/(ri + re), hence
approximating their initial values.

This close approximation to the initial values suggests that at large x there is a transient of
negligible magnitude. It further suggests that the axial current response to a step is essentially
instantaneous. We will examine this hypothesis quantitatively by deriving and evaluating an
expression for the axial intracellular steady-state current. That is,

Ii =
re

ri + re
I0 when x→∞

so at a more proximal site (smaller x) Ii will be greater than this limiting value. It will be greater
by an amount equal to the total outflow of transmembrane current between x and infinity.

That is, for finite values of x

Ii(x) =
re

ri + re
I0 +

∫ ∞
x

imdx (7.51)

Equation (7.34) gives the steady-state vm for a current I0 applied extracellularly at the origin
of an infinite fiber; I0/2 is removed at ±∞. In view of the intracellular–extracellular symmetry,
we obtain a similar expression for a current applied intracellularly by interchanging subscripts i
and e; also, there is a change in sign (since transmembrane current is oppositely directed).

Using this reasoning, and since we are now taking I0 to be the total current in the positive x
direction rather than I0/2 in (7.34) (since this is a semi-infinite cable), we get

vm = riλI0e
−|x|/λ (7.52)

At steady state the transmembrane current is entirely through rm (i.e., there is no capacitive
current), so im = vm/rm. With this relationship and using (7.52), Eq. (7.51) becomes

Ii(x) =
re

ri + re
I0 +

∫ ∞
x

riλI0
rm

e−x/λdx (7.53)
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where 0 < x <∞. Performing the integration and simplifying the results leads to the expression

Ii(x) =
re

ri + re
I0(1 + αe−x/λ) (7.54)

where α = ri/re. Note that Ii(0) = I0, while Ii(∞) = (re/(ri + re))I0, as expected. For
muscle bundles and for cardiac tissue, experimental data support α = 1 for estimates of Ii.

It also is informative to use Table 7.2 to examine issues related to the temporal response:

For values of x equal to 2λ or less, the transient amplitude becomes large (> 13%). For
this x range, as shown in Table 7.2 the transient time is on the order of τ .

At x = 5λ we have the result that Ii(5λ) changes its relative magnitude from t = 0
to t = τ by only 0.862%. From (7.49), we can determine that the time required to
achieve 65% of steady state (an effective time constant) is roughly 3τ , hence fairly long.
Nevertheless, since the change is so small, so that the time required to achieve it may not
matter.

For x = 10λ achieving steady state will take much longer (≈ 5τ ), and the change in
magnitude during this transient will be even smaller (0.005%). Under many circumstances
these changes are insignificant.

7.5. FIELD STIMULUS OF AN INDIVIDUAL FIBER

In this section we examine the subthreshold membrane response of a single fiber of infinite
length. The fiber is assumed to be lying in an unbounded conducting medium. The stimulus field
arises from an external point current source. We picture our goals as follows:

The site of the stimulus may be away from the fiber, so an expression is to be derived for
the induced transmembrane potential given the source–fiber distance, h. Also known is
the current magnitude, I0, and fiber and medium properties.

We wish to find an expression that will permit an examination of the relationship between
induced transmembrane potential and the stimulating source field.

The analysis and thus the result depend on the assumption of linearity (subthreshold
conditions) and that a/h << 1, where a is the fiber radius.10

In the subsequent sections the same physical arrangement is considered, but under transthresh-
old stimulus levels. This additional analysis permits an examination of threshold and a determi-
nation of its constancy as various parameters are changed.
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Figure 7.5. Geometry of Source and Fiber. A single current point source of magnitude I0 is
placed at a distance h from a circular cylindrical fiber of length 2L. The extracellular region
is unbounded, uniform, and has a conductivity σe. The fiber radius is a and its intracellular
conductivity is σi. The fiber’s centerline lies along the coordinate z axis. The length is
divided into elements Δz for numerical calculations.

7.5.1. The Electric Field from a Point Source

Let us consider the response of an unmyelinated fiber lying in an unbounded conducting
medium due to an applied electric field of a point current source. The field, φa, has the form
described in (2.21):

φa = I0/(4πσer) (7.55)

In (7.55) I0 is the current strength, and σe the conductivity of the medium, where the extracellular
space being designated with subscript e, and r is the distance from the source to an arbitrary field
point. A description of the geometry is given in Figure 7.5.
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Under many circumstances the perturbation of the extracellular field resulting from the pres-
ence of the fiber itself can be ignored when the fiber diameter is small compared to its distance
from the (point) source [5].11 This condition for small perturbation is generally satisfied under
the usual conditions of fiber stimulation.

As a consequence, the extracellular electric field along the fiber is essentially the applied
field. Use of the unmodified field is a particularly important simplification for the evaluation of
fiber excitation.

The linear core-conductor equation for transmembrane current im per unit length of unmyeli-
nated fiber is, from (6.13),

riim = ∂2φi/∂z
2 (7.56)

where ri is the intracellular resistance per unit length, and z now denotes the axial variable. This
current must also equal the intrinsic ionic plus capacitive current of the membrane, as discussed
in obtaining (6.31). The membrane current is described by iion + cm∂vm/∂t, where cm is the
membrane capacitance per unit length.

With these substitutions and some rearrangement, (7.56) may be written as

ri
∂vm
∂t

=
1
cm

(
−iionri +

∂2vm
∂z2 +

∂2φe
∂z2

)
(7.57)

where φi is replaced by vm + φe.

7.5.2. The Activating Function

Rattay [7] considered the activation of an isolated fiber as quantified by (7.57). He noted
that at t = 0 the membrane is at rest. At rest several conditions apply:

vm ≡ 0
∂2vm/∂z

2 = 0
iion = vm/rm = 0. (7.58)

Using these resting conditions with (7.57), he established that, initially upon application of the
stimulus,

ri∂vm/∂t = (1/cm)∂2φe/∂z
2 (7.59)

Initial change follows activating function

Rattay argues that (7.59) provides a foundation for the following conclusions: Where acti-
vation may occur corresponds to the region where ∂2φe/∂z

2 is positive, since having ∂2φe/∂z
2

positive will make ∂vm/∂t > 0 initially. Conversely, the region that will hyperpolarize (i.e.,
where ∂vm/∂t < 0 for small t) is where ∂2φe/∂z

2 is negative, according to (7.57), and this
region will not initiate activation. Because of the role played by

A(x) = ∂2φe/∂z
2 (7.60)

Rattay named the function the activating function.
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For subthreshold linear conditions the ionic current may also be evaluated by vm/rm, where
rm is the fiber membrane resistance per unit length. Under steady-state conditions (∂vm/∂t = 0)
and with iion = vm/rm, (7.57) becomes

∂2vm
∂z2 −

vm
λ2 = −∂

2φe
∂z2 (7.61)

where, of course, λ =
√
rm/ri. Since the axial applied electric field, Ez , is the negative z

derivative of φe, Eq. (7.61) can also be written as

∂2vm
∂z2 −

vm
λ2 =

∂Ez

∂z
(7.62)

Equation (7.62) describes the effect of the applied field on the target fiber through the solution
for vm, the induced transmembrane potential. The axial derivative ofEz is seen as the applied or
“forcing” function in the differential equation for vm. For a fiber of infinite length, the response
as described by vm(z) should correspond, more or less, to the applied function.

Thus the peak depolarization, of particular interest in clinical design, could be expected to
be located where ∂Ez/∂z attains its maximum values. To the extent that such a correspondence
is true, the activating function is a valuable tool since a possibly complex solution for the actual
vm is avoided.

The activating function is only the beginning

The activating function is not the solution for Vm(t), but only its initial rate of change. Vm(t)
changes over time during and after the stimulus interval, and it is clear that the vm arising from
∂Ez/∂z depends in some way on the entire function Ez , not just the location and magnitude of
its initial values or its peak values.

Furthermore, the vm response can be expected to depend in some way on the fiber properties,
as perhaps described simply by the parameter λ. In addition, for finite fibers, boundary conditions
must be introduced into the solution of (7.62) and the boundary conditions may have an important
influence on the morphology of vm.

7.5.3. The Vm Response over Time

From a formal point of view the activating function has the role of an applied function in the
differential equation (7.62). While the form of vm(x) may evolve to become similar to that of
the forcing function, another possibility is that vm(x) will not be the same in important respects.

Consequently, more mathematical results are needed to know what the stimulus does, quan-
titatively. Thus we now proceed to find a solution for vm. When that solution is obtained, there
will be the opportunity to compare it to the activating function to see what looks the same, and
what looks different.

The following mathematical development will show that the transmembrane potential re-
sponse, over time, can be found by means of a convolution. The convolution shows the interaction
between the effects of the external field on the fiber, and the response of the fiber to that field.
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In particular, we are considering the case where the stimulus is sufficiently small, so that
the membrane behavior is linear and may therefore be described by a parallel resistance and
capacitance (rm in Ωcm and cm in μF/cm). Equation (7.62) may then be written as

ricm
∂vm
∂t

+ ri
vm
rm
− ∂2vm

∂z2 =
∂2φe
∂z2 u(t) (7.63)

where iion = vm/rm and u(t) is a unit step (included here to signify that the activating function
is switched on at t = 0).

Initial rate of change of Vm

Examining (7.63), one sees that if a stimulus is initiated when the fiber is at rest, then both
vm and ∂2vm/∂z

2 are zero. Thus, rearranging (7.63), one has an equation for the initial rate of
change of vm along the fiber as

ricm
∂vm
∂t

=
∂2φe
∂z2 u(t) (7.64)

That is, ∂vm/∂t is proportional to the activating function, as noted above. The proportionality
coefficient is determined by characteristics of the fiber, specifically its time constant ricm.

Transformations to find Vm response

We will find it useful here to have the fiber response to a unit intracellular point source.
Thus, using (7.63) we seek the solution of

λ2 ∂
2vm
∂z2 − τ

∂vm
∂t
− vm = −riλ2δ(z)u(t) (7.65)

where δ(x) is a unit Dirac delta function (7.23). We see that the desired solution to (7.65) is the
solution found for (7.35).

We assume that the extracellular medium being unbounded supports the assumption that
re ≈ 0.12 An examination of (7.65) is facilitated by introducing normalized variables defined by

X =
z

λ
and T =

t

τ
(7.66)

where τ = rmcm and λ =
√
rm/ri. Substituting (7.66) into (7.65) results in

∂2vm
∂X2 −

∂vm
∂T
− vm = −riλ2δ(z)u(t) (7.67)

which is essentially (7.37), except that in (7.67) the stimulus current is included explicitly.

The solution to (7.67) is given in (7.48). Since we seek a unit impulse response which divides
into the positive and negative z directions, we require I0 = 1 in (7.48). Hence

G(X,T ) =
riλ

4

{
e−X

[
1− erf

(
X

2
√
T
−
√
T

)]

−eX
[
1− erf

(
X

2
√
T

+
√
T

)]}
(7.68)
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Function G thus gives the transmembrane voltage produced by a unit current at position X and
time T .13

Transmembrane potential’s response to stimulus

We now wish to extend the results found for a delta function source to find results from a
distributed source. Applying (7.67) to (7.63) yields

∂2vm
∂X2 −

∂vm
∂T
− vm = −λ2 ∂

2φe
∂X2 u(t) (7.69)

Comparison of (7.69) and (7.67) shows that they differ only in the forcing function (the terms
on the right). Additionally, the one equation (7.67) provides the impulse response while the other
equation (7.69) is for a continuous forcing function (namely, ∂2φe/∂X

2).

Moreover, the system is linear, since we are restricting consideration to passive membrane.
Thus the solution to (7.69) is the convolution of ∂2φe/∂X

2 with the fiber impulse response.

If we take into account the additional factor ri in (7.67) as well as the normalized coordinates,
we obtain

vm =
λ

ri

∫ ∞
−∞

f(ξ)G(X − ξ, T )dξ (7.70)

where ξ is a dummy variable for X and f(ξ) = ∂2φe/∂z
2|z=ξ. The coefficient λ in (7.70) arises

from the change in variable, where dz = λdξ.14

The interpretation of Eq. (7.70) is a follows. Function f(ξ) comes from the field stimulus,
as it affects the fiber. Function G(X − ξ) is the fiber’s response to a stimulus given at one point
along the fiber. The convolution integrates (in effect, it adds up) the fiber’s responses to the stimuli
created along the fiber by the external field.

Equation (7.70) is an application of linear systems theory, where the output to an arbitrary
input is expressed in terms of the impulse response (system function). A similar expression
appropriate for myelinated fiber stimulation was derived by Warman et al [10].

Note that any stimulus may be considered a sequence of impulse functions.

7.5.4. Isolated Single Fiber and a Point Current Source

The problem at hand is described in Figure 7.5, but with L = ∞. In other words, the point
current source is located at a distance h from the unmyelinated fiber of infinite extent. The foot
of the perpendicular determines the origin of the coordinate system. The desired solution is given
formally by Eq. (7.70).

Again we consider the subthreshold response. This response can be evaluated using the
Fourier transform. Now the Fourier transform of a convolution is the product of the Fourier
transform of each convolving function.
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Thus if F denotes the Fourier transform and F−1 the inverse transform, then (7.70) can be
expressed as

vm(X,T ) =
λ

ri
F−1[F [f(X)]F [G(X,T )]] (7.71)

The applied field arising from the point current source, (7.55), is simply given by

φe(z) =
I0

4πσe
√
h2 + z2

(7.72)

The spatial second derivative of Φe, in the direction of the fiber’s axis, is

f(z) =
∂2Φe
∂z2 =

I0
4πσe

2z2 − h2

(h2 + z2)5/2 (7.73)

Consequently, where H = h/λ,

f(X) =
I0

4πσeλ3

2X2 −H2

(H2 +X2)5/2 (7.74)

Accordingly, substituting (7.68) and (7.74) into (7.71) gives [5]

vm(X,T ) =
λ

ri
F−1

{
I0

16πσeλ
× F

[
2X2 −H2

(H2 +X2)5/2

]
×

F

[
e−X

(
1− erf

(
X

2
√
T
−
√
T

))

− eX
(

1− erf
(

X

2
√
T

+
√
T

))]}
(7.75)

7.5.5. Activation Function’s Prediction versus Response

With the results above, we now can compare the activating function with the actual membrane
response. It is helpful to visualize the results. To this end, the transmembrane potential created by
(7.75) for one example is plotted in Figure 7.6 at three times following the onset of the stimulus.
The example has a point cathodal stimulus at distance h from a fiber, with details given in the
Figure caption.

At the first of the three times plotted, 0.01 msec after the start of the stimulus, the wave
shape of the activating function is a good approximation to that of the transmembrane potential.
Recall that the impulse response, G(X,T ), for small T, is approximately a delta function (see
Figure 7.4). The consequence is that the early transmembrane potential response has a shape like
that of the activating function, consistent with the convolution equation (7.70). Thus for a very
short stimulus (short in comparison to the time constant), the activating function is a good predictor
of the resulting transmembrane potential and correctly shows the regions of depolarization and
hyperpolarization produced by the stimulus.
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Figure 7.6. Time Evolution of the Induced Transmembrane Voltage along a Fiber. The
response is that from a field stimulus, and the three lines shown the response at three times
following stimulus onset, i.e., Vm(x) at 0.01, 0.10, and 1.00 msec after the start of a
stimulus. The point current stimulus is at distance h = 0.02 cm from a fiber described
in Figure 7.5. [Other parameters are λ = 0.86 mm. τ = 1.5 msec, σe = 33.3 mS/cm,
and I0 = −0.44 mA.] In the top panel (A), the vertical axis plots Vm on a normalized
scale to facilitate comparison of the plots. (A value of 1.0 on the normalized scale is
approximately 30 mV.) In the lower panel (B), three horizontal bars show the extent of the
depolarized region. The horizontal axis (bottom) applies to both (A) and (B). Distances
along the horizontal axis are given in millimeters from the point directly under stimulus and
thus also are approximately the distance in space constants. (Only one half of the spatial
response is shown, because the two sides are symmetric.) The activating function has a
wave shape similar to that of the 0.01 msec curve. Adapted from Plonsey R, Barr RC.
1995. Electric field stimulation of excitable tissue. IEEE Trans Biomed Eng 42:329–336.
Copyright c©1995, IEEE.

It would be convenient if what happened at later times were simple multiples of the result
for 0.01 msec. However, such is not the case. Thus the limitations of making estimates using the
activating function are seen when examining the true response as the stimulus grows longer, as
shown in the plots for 0.10 and 1.00 msec. The result of a longer stimulus is that the transmembrane
potential grows larger in magnitude, but not linearly. Thus the peak vm for the 0.10-msec plot is
roughly three times that of the plot for 0.10 msec, and the plot for 1.00 msec is roughly two times
that of 0.10 msec, even though the stimulus has 10× the duration. Finally, the peak amplitude
never increases much beyond that for 1.00 msec (for this example), even for much longer stimuli.

The transmembrane potential response also grows wider. As the stimulus gets longer, the
extent of the fiber that is depolarized by the stimulus grows larger, as seen explicitly in Figure 7.6B,
where the extent of the depolarized region is identified by a horizontal line for each time. Further,
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the portion of the fiber depolarized changes from a small fraction of a space constant (at 0.01
msec) to substantial fractions (at 0.10 and 1.00 msec). Such a change can be critical to the
initiation of a propagated response.

In summary, in this example, the activating function locates the site of maximum depolar-
ization and is a good indicator of how the fiber responds at the start of the stimulus, showing
depolarizing and hyperpolarizing regions. However, it fails to delineate the extent of the region
of depolarization for realistic stimulus durations and provides only a weak basis for estimates of
their peak magnitude. The extent of the depolarized region grows rapidly as the stimulus duration
increases, while the activating function corresponds to the initial conditions. Thus the activating
function is not a good predictor of the magnitudes or the regions of the fiber that are depolarized
and hyperpolarized, for most stimuli used in practice.

7.6. STIMULUS, THEN SUPRATHRESHOLD RESPONSE

In this section we again consider the response of a fiber from a point current stimulus (as de-
scribed in Figure 7.5). Here the active membrane properties are included to admit a suprathreshold
stimulus. The Hodgkin–Huxley membrane model, described in Chapter 5, is chosen to describe
these membrane properties. Since the evaluation was carried out numerically, specific electro-
physiological and dimensional values were chosen to reflect realistic conditions.

7.6.1. Numerical Methods for Finding Vm

As in the previous section, the fiber and source geometry is specified in Figure 7.5. The fiber
is assumed to be circular cylindrical with radius a = 0.002 cm. A stimulus current of magnitude
I0 is located a distance h from the fiber. The duration of the stimulus is denoted by td and is
varied, as is h.

The stimulus threshold was determined for various combinations of h and td by repeated
trials. Threshold was judged by the presence or absence of a propagating action potential at sites
several space constants, λ, from the site of excitation. The threshold stimulus was such that a
10% increase resulted in propagation. (It was the largest stimulus for which propagation did not
result.)

7.6.2. Results of Space-Clamped and Field Stimulation

Space-Clamped Threshold. For a reference, threshold was determined for a transmembrane
stimulus under space-clamped conditions. A space clamp can be achieved by considering an
axially uniform transmembrane potential stimulus. The result is plotted in Figure 7.7 (inset) [1].
One sees that with a space clamp the threshold is nearly independent of stimulus duration and
requires 7 mV of depolarization.

Field Stimulation. An examination of Figure 7.7 shows that for field stimulation, the threshold
voltage is no longer independent of stimulus duration, in general. The degree of deviation from
the space-clamped result is seen to depend on both the stimulus–fiber distance h and the stimulus
duration td.
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Figure 7.7. Threshold Values of vm versus Stimulus Duration for a Point Stimulus. (Inset:
results for patch geometry for comparison.) The transmembrane voltage at the end of the
stimulus is shown for a stimulus condition that is just below threshold. Patch data are for
the condition of no spatial variation. All potentials shown are relative to a baseline of−57
mV. Outer: Each curve is for a different source–fiber distance as shown (h given in cm).
Results shown are for z = 0, the shortest fiber–stimulus distance. Membrane properties are:
EK = −72.1 mV,ENa = 52.4 mV, gNa = 120 mS/cm2, gK = 36 mS/cm2, gl = 0.30
mS/cm2. Fiber properties are: Rm = 0.148 Ωcm2, λ = 0.086 cm, Cm = 1.0 μF/cm2.
From Barr RC, Plonsey R. 1995. Threshold variability in fibers with field stimulation of
excitable membranes. IEEE Trans Biomed Eng 42:1185–1191. Copyright c©1995, IEEE.

The highest thresholds were measured for the smallest duration and smallest value of h. Thus
for td = 0.04 msec and h = 0.01 cm, a threshold value of 118 mV was obtained. In contrast, for
long stimulus duration and large source–fiber distance, results were obtained that are similar to
those for the patch. For example, when h = 0.5 cm, the threshold value of 8 mV corresponds to
stimulus durations of 0.04–4.0 msec. (One could have anticipated such a result, since the axial
variation of the applied field is increasingly uniform, approaching space-clamped conditions, for
increasing h.)

Temporal Transmembrane Potential Waveforms. The temporal response following a just
subthreshold stimulus is given in Figure 7.8 and is helpful in interpreting all results shown in
Figure 7.7. For the shortest durations of 0.01 msec, we see that a transmembrane potential of 118
mV marks the threshold voltage. This elevated voltage is required to maintain a large enough
voltage following the termination of the stimulus to open sufficient sodium channels, since the
activation gate time constant τm is several tenths of a millisecond.

The effect of stimulus decay based on the membrane time constant is a contributing factor
in Figure 7.7. But a second contributing factor affecting the membrane decay depends on the
source–field distance. To understand this effect, a plot of the spatial transmembrane potential
vm(z) is given in Figure 7.9. Here, we note that the central depolarized region is flanked by
hyperpolarized regions.

Thus the depolarized membrane decay is also accelerated by longitudinal current flow into
the hyperpolarized regions. This current will be enhanced for smaller values of h, which reduces
the distance to the peak hyperpolarized position (in Figure 7.9 it is at around 0.15 cm).
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Figure 7.8. Transmembrane Potential as a Function of Time for stimuli that are just below
and just above threshold. Inset: Curve A is for a just transthreshold stimulus and B for
a just subthreshold stimulus. The source–fiber distance is 0.01 cm. Stimulus magnitudes
were 1.40 (A) and 1.30 mA (B). Outer: Temporal responses for just subthreshold stimuli
for stimulus duration as shown (in msec). From Barr RC, Plonsey R. 1995. Threshold
variability in fibers with field stimulation of excitable membranes. IEEE Trans Biomed Eng
42:1185–1191. Copyright c©1995 IEEE.

Figure 7.9. Spatial Distribution of Transmembrane Potential, vm(z), at the End of the
Stimulus. Each curve is labeled with the duration of the stimulus. The source–fiber distance
is 0.10 cm. In each case the stimulus magnitude is for a just subthreshold response. From
Barr RC, Plonsey R. 1995. Threshold variability in fibers with field stimulation of excitable
membranes. IEEE Trans Biomed Eng 42:1185–1191. Copyright c©1995 IEEE.
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This factor explains the very large threshold requirements for small values of h, seen in
Figure 7.7. For h = 0.5 cm, the depolarized region is so broad that the behavior is similar to that
shown for the patch (membrane decay is entirely due to the RC component alone).

7.6.3. Comments on the Concept of Threshold

For the design of a practical stimulator, it is highly desirable to specify a target threshold that
can be relied on to achieve fiber activation. Specifying a target threshold allows one to use linear
analysis to estimate stimulus parameters. Other factors that arise in a practical stimulator design
are introduced in Chapter 12.

What is clear here is that the actual threshold value that exists at the end of just a transthreshold
stimulus may range from 7 to 118 mV, depending on the stimulus duration and the distance from
the stimulus electrode to the fiber. If a value of h ≈ 0.5 cm or h ≈ 0.1 cm and td ≈ 0.5 msec is
consistent with other design criteria, then a fixed threshold of around 8 mV can be assumed for
an HH membrane. Otherwise, an elevated threshold value must be initially assumed in a linear
treatment. In every case, a nonlinear membrane analysis is eventually desired to be followed by
appropriate animal and human measurements.

7.7. FIBER INPUT IMPEDANCE

Many questions about the electrical properties of fibers can be framed in terms of the input
impedance. For example, the effects of cable length are examined in the section below by
comparing the input impedance for realistically short lengths with that of infinite lengths.

The input impedance, Z0, is defined to be

Z0 = vm/Ii (7.76)

and is evaluated at the point where the stimulus is applied. This evaluation requires both polarizing
electrodes to be at the origin with one in the intracellular and the other in the extracellular space;
the subthreshold applied current, Ii, and the resulting voltage, vm, enter (7.76) to evaluate the
input impedance. Note that the transmembrane voltage appearing in (7.76) is compared to the
longitudinal intracellular current Ii.

We note first that the assumed stimulus satisfies the condition under which (7.76) is derived,
namely, that ip = 0 for 0 < x <∞. Consequently, using (7.30), we have

vm = Ce−|x|/λ (7.77)

Assuming re = 0 permits (6.9) to be expressed as

Ii = − 1
ri

∂Vm
∂x

= − 1
ri

∂vm
∂x

(7.78)
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Substituting (7.77) in (7.78) results in15

Ii =
C

riλ
e−|x|/λ (7.79)

Since λ ≈√rm/ri when re ≈ 0,

Ii =
C√
rmri

e−|x|/λ (7.80)

and Z0 (at x = 0+) is given by

Z0 =
Ce−|x|/λ
C√
rirm

e−|x|/λ
(7.81)

or
Z0 =

√
rirm (7.82)

So, for an infinitely long cable with re ≈ 0, the input impedance is the square root of the product
of membrane and intracellular resistance.

7.7.1. Cables of Finite Length

Much of the above analysis has been based on the assumption of an infinitely long cable.
Of course, no cables are infinitely long. In this section, the consequences of this discrepancy are
examined. Specifically, the differences in the steady state are compared for cables of finite and
infinite lengths.

The overall strategy used here is based on the cable input impedance. We have seen that for
an infinitely long cable, Z0 is

√
rmri. Now we consider the input impedance Zin of a cable of

arbitrary length, L, terminated by an arbitrary impedance, ZL.

For the specific case of a fiber of length L terminated in a short circuit (ZL = 0), the input
impedance, Zin, will be of interest. This is because the extent to which Zin corresponds to
Z0 provides a quantitative measure of the extent to which the finite cable approaches the input
behavior of the infinite length cable.

There are a number of important applications. One arises in an examination of the behavior
of a network of neurons, such as found in the central nervous system. This is shown to depend in
part on the impedance behavior of short fibers (neurons). Interest in neural networks is not limited
to neurophysiologists but to those working on artificial neural networks as computer processors.
Further material on both topics is given in [3, 6, 11].

7.7.2. Finding Zin for a Finite Length Cable

Consider an axon in an extensive extracellular medium (re ≈ 0), of finite length (x = L),
and terminated with an arbitrary load impedance ZL. Assume an input voltage to the cable of
vm = v0 applied at x = 0. For x > 0, ip = 0, so the homogeneous form of (7.16) applies,
namely, (7.17) or

λ2 ∂
2vm
∂x2 − vm = 0 (7.83)
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The solution of (7.83) has already been given as (7.18)

vm(x) = Ae−x/λ +Bex/λ (7.84)

Note that since the cable is finite in length we can no longer set B = 0 based on the boundary
condition at infinity. Now the relationship between vm and Ii is available from the cable equations.
Since ip = 0, except at the origin, (7.78) is valid, and we rewrite it here for convenience as

Ii =
1
ri

∂vm
∂x

(7.85)

Substituting (7.84) into (7.85) and evaluating Ii gives

Ii(x) =
1
Z0

(Ae−x/λ −Bex/λ) (7.86)

where Z0 =
√
rmri from (7.82).

At x = 0 we have Zin = V (0)/I(0), so from (7.84) and (7.86) Zin is given by

Zin = Z0

(
A+B

A−B
)

(7.87)

For a cable of infinite extent, we must set B = 0 to avoid a potential that grows indefinitely,
and consequently from (7.87), Zin = Z0, which corresponds to earlier results (i.e., the input
impedance of an infinite cable is Z0).

For cables of finite length and arbitrary termination the input impedance requires the eval-
uation of A and B in (7.87). This evaluation is facilitated by an evaluation of a factor involving
the terminal impedance known as the reflection coefficient. In the next section we define the
reflection coefficient and show how it introduces the boundary condition at the load located at
x = L.

Reflection coefficient: Now at x = L,ZL = Vm(L)/Ii(L), so dividing (7.84) by (7.86) for
x = L gives

ZL = Z0

(
Ae−L/λ +BeL/λ

Ae−L/λ −BeL/λ
)

(7.88)

We define the reflection coefficient, Γ, as

Γ =
ZL + Z0

ZL − Z0
(7.89)

Substitution of (7.88) in (7.89) and simplification of the resulting expression yields the following
relationships:

Γ =
Ae−L/λ

BeL/λ
(7.90)

ZL =

[
Ae−L/λ
BeL/λ

+ 1
Ae−L/λ
BeL/λ

− 1

]
Z0 = Z0

(
Γ + 1
Γ− 1

)
(7.91)
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Table 7.3. Normalized Input Impedance of Finite Length Cable

L/λ Zin/Z0

0.1 10.0
0.5 2.16
1 1.31
2 1.04
3 1.01

By substituting (7.90) into (7.87) we obtain an expression for Zin in terms of Γ:

Zin = Z0

(
Γe2L/λ + 1
Γe2L/λ − 1

)
(7.92)

The name “reflection coefficient” comes about from similar definitions used in the study
of traveling electromagnetic waves, where the wave may by reflected in whole or in part from
discontinuities in a cable, such as at its termination.

For example, when ZL = Z0 the termination is equivalent to an infinite cable and conse-
quently the finite cable itself behaves as the proximal element of an infinite cable. In this case
nothing will be “reflected,” of course. From (7.89), a termination of ZL = Z0 results in Γ =∞.
In contrast, if ZL = 0 (short circuit) or ZL = ∞ (open circuit), then Γ = ±1, and the termina-
tion introduces a maximum discontinuity (everything “reflected”). This outcome is recognized
in (7.92) with both Γ = ±1 and small L/λ.

While the present nomenclature has been utilized due to a superficial analogy with EM waves,
the physical situation is, of course, quite different.16

7.7.3. Zin for an Open Circuit Termination

A finite cable with a sealed end can be regarded as a cable that ends in an open circuit. That
is, ZL =∞ and Γ = 1. For a cable of length L with such a termination, we have from (7.92)

Zin = Z0

(
e2L/λ + 1
e2L/λ − 1

)
= Z0 coth

(
L

λ

)
(7.93)

Equation (7.92) confirms that Zin = Z0 when Γ =∞, while when Γ = ±1, Zin depends on L/λ
[e.g., Zin = Z0 tanh(L/λ) for Γ = −1]; further details are found in the next section.

Table 7.3 shows the result of evaluating (7.93) numerically to find Zin/Z0. It indicates that
for short cables, defined by L < λ, there are substantial deviations in behavior from that of
an infinite cable. On the other hand, Table 7.3 also shows that as L increases beyond λ, the
input rapidly becomes indistinguishable from that of an infinite cable. In particular, the input
impedance is within 1% of Z0 if L is 3λ or more.
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7.8. MAGNETIC FIELD STIMULATION

For an applied time-varying magnetic field, Faraday’s law describes an induced (free-space)
electric field, namely, ∮

E · dl = − d

dt

∫
s

μ0H · dS (7.94)

where μ0 is the permeability (normally taken as free space) and H the magnetic field. Induced
secondary sources at conductive discontinuities (in particular, the torso–air interface) must be
included in a realistic evaluation ofH and hence the induced electric field at human nerve/muscle
from applied external magnetic fields. The electric field at nerve/muscle fibers, once obtained,
follows all principles described in this chapter. An overview of magnetic field applications can
be found in Stuchly [9], and some theoretical considerations in Plonsey [4].

7.9. NOTES

1. The concept of a voltage threshold as a fixed point of sudden transition to an active response, a classical conceptual
starting point, does not hold up consistently when examined in detail.

2. It is worth noting that the behavior of the tissue after it crosses threshold and becomes active (which often means
once the sodium channels open) is not usually a focus of the analysis of stimuli. That is because most of the time the
active response depends primarily on the tissue’s intrinsic membrane response and cellular structure rather than on
external stimuli. However, active response also is affected if the external stimulus is large enough and long enough,
e.g., in cardiac defibrillation.

3. Often Rm and Cm are used directly, and Io is converted to Amperes/cm2.

4. Later in the chapter we examine critically the classical notion that activation is automatically achieved once the
transmembrane potential reaches a critical transmembrane voltage.

5. One sees Eq. (7.8), sometimes with alternative variable names, used to relate threshold current and rheobase in many
contexts. For example, in Chapter 12 the same equation is used in connection with functional electrical stimulation.

6. Lapicque gave the equation i = α/(1 − e−βt), where i was intensity, t was duration, and α and β were two
constants.[2]

7. If the current had been applied extracellularly, then ∂Φi/∂x = 0 at x = 0 and ∂Φe/∂x = −I0u(t)re/2 at x = 0.
In this case we would replace (7.43) by ∂vm/∂X = I0u(t)reλ/2 (i.e., replace −I0ri by I0re). From symmetry,
we interchange subscripts i and e and, in addition, change the current sign to reflect it being oppositely directed. These
expressions, however, assume a limited extracellular space where currents are essentially axial and a one-dimensional
Ohm’s law applies.

8. One can use Eq. 30 in Appendix V of Carslaw HS, Jaeger JC. 1959. Conduction of heat in solids. Oxford: Oxford
UP.

9. If the current were introduced into (a bounded) extracellular rather than intracellular space, then the coefficient on the
right-hand side of (7.49) would equal −reλI0/4, and one can confirm that this expression reduces to (7.34) when
t→∞. Note that (7.49) applies even if re = 0 for a fiber in an unbounded extracellular region. For an extracellular
applied current, it is required that re �= 0 to invoke the aforementioned symmetry.

10. The importance of the subthreshold case is the following: even if the goal of the stimulation is to bring the fiber above
threshold, it must pass through a subthreshold state first. Thus the results are broadly applicable.

11. The assumption of a thin fiber and relatively large source–fiber distance assures that the azimuthal potential variation
is relatively small compared with the axial variation. For the azimuthal potential behavior, the fiber roughly doubles
the values of the applied field at the nerve periphery; these potential variations are relatively small for a thin fiber at
a large distance from the source, compared to variations along the axis. The secondary field arising from the axial
variations can be shown to be negligible [6].

12. The stimulating current, I0, is relatively large in order that the field it generates in the extracellular volume conductor,
given by (7.55), can induce subthreshold or suprathreshold depolarization of the target fiber. When considering the
response of the fiber itself to an intracellular unit impulse current, its behavior is little affected by the relatively
small extracellular field when the extracellular medium is unbounded. The linear core-conductor equation therefore
describes the intracellular fields correctly with re = 0; the large extracellular point source and its field are zero in
this situation.

13. Exercise: what are the units for G?
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14. Exercise: give the units for each quantity on the right side of (7.70) and show that they combine to give the units
needed on the left side.

15. The reason why Eq. (7.79) differs from (7.54) might not be apparent. However, this arises because in deriving (7.54)
we assumed an intracellular applied current I0 located at x = 0 with the removal of this current at infinity (whether
it is removed intracellularly or extracellularly will have no effect in the region 0 < x < L so long as L is finite). In
(7.79), the electrode pair carrying I0 into the intracellular space and out of the extracellular region are both at x = 0.

16. Propagation of microwave energy along cables or waveguides results from the injection of energy at the proximal
end; this energy diminishes with distance due to losses. For nerve/muscle, only a trigger to initiate a propagating
action potential is assumed at the proximal end; the energy is derived and expended all along the fiber and there is no
attenuation. An analogy to the biological case (regarding energy) is the behavior of a fuse, except that the fuse can
be used only once.

7.10. REFERENCES

1. Barr RC, Plonsey R. 1995. Threshold variability in fibers with field stimulation of excitable membranes. IEEE Trans
Biomed Eng 42:1185–1191.

2. Lapique L. 1909. Definition experimentale de l’excitation. C R Hebd Seanas Acad Sci 67:280–283.

3. Partridge LD, Partridge DL. 1993. The nervous system, its function and integration with the world. Cambridge: MIT
Press.

4. Plonsey R. 1981. Generation of magnetic fields by the human body. In Biomagnetism. Ed SN Erné, HD Halbohm, H
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