A pilot study to determine whether machine learning methodologies using pre-treatment electroencephalography can predict the symptomatic response to clozapine therapy

Ahmad Khodayari-Rostamabada, Gary M. Haseyb,c,d, Duncan J. MacCrimmonb,c, James P. Reillya,* Hubert de Bruina,d

*Corresponding author. Tel.: +1 905 525 9140x22895; fax: +1 905 521 2922. E-mail address: reillyj@mcmaster.ca (J.P. Reilly).

Objective: To investigate whether applying advanced machine learning (ML) methodologies to pre-treatment electroencephalography (EEG) data can predict the response to clozapine therapy in adult subjects suffering from chronic schizophrenia.

Methods: Pre-treatment EEG data are collected in 23+14 schizophrenic adults. Treatment outcome, after at least one year follow-up, is determined using clinical ratings by a trained clinician blind to EEG results. First, a feature selection scheme is employed to select a reduced subset of features extracted from the subjects' EEG that is most statistically relevant to our treatment-response prediction. These features are then entered into a classifier, which is realized in the form of a kernel partial least squares regression method that performs response prediction. Various scales, including the positive and negative syndrome scale (PANSS) are used as treatment-response indicators.

Results: We determined that a set of discriminating EEG features do exist. A low-dimensional representation of the feature space showed significant clustering into clozapine responder and non-responder groups. The minimum level of performance of the proposed prediction methodology, tested over a range of conditions using the leave-one-out cross-validation method using the original 23 subjects, with further testing in an independent sample of 14 subjects, was 85%.

Conclusions: These findings indicate that analysis of pre-treatment EEG data can predict the clinical response to clozapine in treatment-resistant schizophrenia.

1. Introduction

Compared with other antipsychotic medications the atypical antipsychotic medication clozapine is recognized to have superior therapeutic effectiveness in the treatment of chronic medication-resistant schizophrenia (e.g., Essali et al., 2009). However, clozapine may produce serious side effects such as seizures, cardiac arrhythmias or bone marrow suppression with neutropenia (Young et al., 1998). According to a recent Cochrane review, about 34% of treatment-resistant patients respond to clozapine while 3.2% develop blood problems (Essali et al., 2009). As the hematological side effects can be life threatening, blood samples to monitor the white blood cell count must be collected as long as the drug is used, at weekly to monthly intervals. The logistic difficulties for the patient and the treatment team are substantial. A method that could reliably determine, before the onset of therapy, whether a given patient will or will not respond to clozapine would greatly assist the clinician in determining whether the risks and logistic complexity of clozapine are outweighed by the potential benefits.

Quantitative electroencephalography (QEEG or EEG) may offer some promise in this regard. EEG abnormalities in schizophrenic subjects and EEG changes due to clozapine therapy have been the focus of a number of clinical studies (see e.g., Guntner et al., 1993; Malow et al., 1994; Freudenreich et al., 1997; Hughes and
Based on findings in 17 schizophrenic subjects, Knott et al. (2000) found that the clozapine-induced improvement of psychopathology symptom ratings using the Positive and Negative Syndrome Scale (PANSS) was correlated with pre-treatment QEEG inter and intra-hemispheric spectral power asymmetry. Greater pre-treatment anterior to posterior asymmetry in the delta frequency range was associated with greater improvement in negative symptoms while greater pre-treatment anterior to posterior theta asymmetry predicted improvement of positive symptoms and global improvement. Larger inter-hemispheric asymmetry in the theta and beta frequencies in the central and anterior temporal regions were, respectively, predictive of greater improvement in positive and negative symptoms. Gross et al. (2004) also found that changes in the theta frequency in QEEG with clozapine treatment, particularly in the midline electrodes over the fronto-central scalp area, were a more sensitive indicator for the evaluation of clozapine treatment efficacy than the serum clozapine level. Though these methods reveal important relationships between QEEG variables and clinical outcome, a series of simple correlational analyses do not readily yield a “responder” or “non-responder” dichotomous categorization for an individual patient.

The above analyses employed standard statistical methods. On the other hand, a more mathematically sophisticated analysis including pattern recognition and dimensionality reduction methods (which together may be categorized as machine learning techniques) can perform a more comprehensive data analysis. Machine learning techniques are finding increasing application in psychiatry, particularly when multi-dimensional, noisy, highly complex data or multi-modal data sets are analyzed together, (see e.g., Gallinat and Heinz, 2006). For example, support vector machine (SVM) techniques that select spectro-temporal patterns from multichannel magnetoencephalogram (MEG) data collected during a verbal working memory task have been used to distinguish schizophrenic control subjects (Ince et al., 2008). Machine learning algorithms using structural brain magnetic resonance (MRI) images (Fan et al., 2007), functional MRI (fMRI) data (Guo et al., 2008; Kim et al., 2008) and combined genomic and clinical data (Strief et al., 2008) have been employed to separate schizophrenic, bipolar and healthy control subjects.

Machine learning approaches have also been applied to prediction of clozapine treatment-efficacy. Lin et al. (2008) describes a study in which a feed-forward multilayer perceptron network (with a back-propagation error training technique) is employed using clinical and pharmacogenetic data to predict clozapine response in schizophrenic subjects. Five pharmacogenetic variables and five clinical variables (including gender, age, height, baseline body weight, and baseline body mass index) were collated from 93 schizophrenic subjects taking clozapine, including 26 responders. Using this method, they obtained an overall prediction accuracy rate of 83.3%.

Guo et al. (2008) describes a Bayesian hierarchical model using pre-treatment fMRI and positron emission tomography (PET) information coupled with patient characteristics (e.g., medical or family history and genotype) as training data to predict changes in brain activity in 16 schizophrenic subjects following treatment with two atypical antipsychotics (risperidone or olanzapine). The authors postulated that predicting drug-induced changes in brain activity would assist the clinician in determining optimal drug choice.

However, the clinical utility of these previous approaches is negatively impacted by the expense and unavailability of complex methods such as fMRI, PET, genetic screening and MEG. In contrast, electroencephalography (EEG) is an inexpensive, non-invasive technique widely available in smaller hospitals and in community laboratories. Therefore, predictive algorithms dependent on EEG measurements are more practical. Furthermore, since the required EEG data is acquired during the resting state, only minimal cooperation is required from the patient. Thus, an EEG based method of predicting treatment response would have many advantages over imaging methods such as MRI, PET or MEG.

The goal of the present pilot study is to examine the utility of machine learning (ML) methods for processing EEG signals to predict the response of schizophrenic subjects to clozapine.

2. Methods

2.1. Quantitative EEG recordings

We collected pre-clozapine resting EEG data from chronically ill, treatment-resistant schizophrenic subjects prior to beginning clozapine therapy. The data were collected without change to the patient’s current medication regimen. EEG was recorded with the patient in a semi-recumbent position in a sound attenuated, electrically shielded room by an experienced technician who prompted patients on signs of drowsiness. Sessions were arranged in the mornings and patients were requested to avoid coffee, drugs, alcohol and smoking immediately prior to the recording. A maximum of ten and a half minutes of eyes-closed (EC) and of eyes-open (EO) data respectively were collected in up to three separate 3.5 min runs using a QSI-9500 system, giving a total of 3 EO and 3 EC files. Electrodes were placed in the 10/20 configuration referenced to linked ears with impedances below 5 kΩ. The signals were band pass filtered between [0.5 and 80 Hz] and notch filtered at 60 Hz by the QSI system during the recording. Data were digitized at a rate of 204.8 Hz. Since our selected features were either intra- or inter-hemispherical, we discarded the data from the midline electrodes (FZ, CZ, PZ, and OZ) in the interests of saving computational resources. The 16 remaining EEG electrodes used in our study were Fp1, Fp2, F3, F4, F7, F8, T3, T4, C3, C4, T5, T6, P3, P4, O1 and O2.

For de-artifacting, the data were partitioned into segments of 1 s duration. If the input signal on any electrode saturated the acquisition hardware at approximately plus or minus 160 µV, the entire segment was rejected. The signals were then digitally bandpass filtered after recording between 4 and 42 Hz to partially mitigate the effects of eye movement and muscle artifacts. For each EEG file, the first 60 segments of the de-artifacted part of the 3.5 min of data were used, since several segments were heavily artifactual, leaving only this number of segments that were uncorrupted on all electrodes. The selected data in each of the three files for both the EO and EC cases were divided into 2 epochs of 40 s duration with 50% overlap, to give a nominal 12 epochs per subject. These epochs were used to extract statistical quantities (such as absolute powers, power spectral densities, coherences, etc.) that became the candidate features as described below. When estimating these statistical quantities, each epoch was divided into overlapping 1 s windows with 60% overlap between adjacent windows. The respective statistical quantity was then calculated over each window and the desired result obtained by averaging over all windows. In the experimental results which follow, all EO and EC epochs were combined, to make maximum use of the available data.

2.2. Description of subjects and the clinical assessment procedures

Subjects, comprising both in-patients and out-patients, were recruited from the schizophrenia program at St. Joseph’s Hospital, Centre for Mountain Health Services, Hamilton, Ontario. All subjects met both DSM-IV criteria for schizophrenia and the Kane
Table 1
Demographic information of the 23 subjects (denoted Group A) who participated in the study. The lower 4 items in the table are scales related to the PANSS clinical rating score.

<table>
<thead>
<tr>
<th>Information</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at start of treatment [years]</td>
<td>Average = 41.2, std = 8.4, min = 28.8, max = 57</td>
</tr>
<tr>
<td>Gender: Male</td>
<td>12 (52%)</td>
</tr>
<tr>
<td>Female</td>
<td>11 (48%)</td>
</tr>
<tr>
<td>Educational Level(^1)</td>
<td>Average = 3.1, std = 1.4, min = 2, max = 7</td>
</tr>
<tr>
<td>Age at symptom onset [years]</td>
<td>Average = 21.2, std = 5, min = 14, max = 32</td>
</tr>
<tr>
<td>Total # of hospitalizations (Pre-clozapine)</td>
<td>Average = 9.7, std = 13, min = 0, max = 63</td>
</tr>
<tr>
<td>Duration total of hospitalization (Pre-clozapine) [days]</td>
<td>Average = 615.7, std = 928, min = 0, max = 3789</td>
</tr>
<tr>
<td>Chlorpromazine equivalents (Pre-clozapine) [mg/day]</td>
<td>Average = 726.6, std = 636, min = 40, max = 2485</td>
</tr>
<tr>
<td>Clozapine dose [mg/day]</td>
<td>Average = 344.6, std = 157, min = 50, max = 600</td>
</tr>
<tr>
<td>Post-treatment Positive Symptoms Scale</td>
<td>Average = 17.8, std = 3.4, min = 11, max = 24</td>
</tr>
<tr>
<td>Post-treatment Negative Symptoms Scale</td>
<td>Average = 23, std = 3.9, min = 12, max = 32</td>
</tr>
<tr>
<td>Post-treatment General Symptoms Rank (GR)</td>
<td>Average = 46.3, std = 5.7, min = 32, max = 56</td>
</tr>
<tr>
<td>Post-treatment Total Rank (PSS + NSS + GR)</td>
<td>Average = 87.2, std = 10.9, min = 58, max = 101</td>
</tr>
</tbody>
</table>

\(^1\) Education level rating: 1: grade 6 or less, 2: grade 7 to 12 without graduating, 3: graduated high school, 4: part college, 5: graduate 2 years college, 6: graduate 4 years college, 7: part graduated/professional school, 8: completed graduated professional school.

discussed a hypothesis test on the means, assuming the QCA data points are independent and normally distributed, and that the variances of the R and NR groups are identical. It is straightforward to show that the respective likelihood ratio is F-distributed. In this case, df = 10, 11 for the numerator and denominator, respectively, with F = 1.1056 and p = 0.43. Thus, there is no evidence to suggest the pre-treatment QCA means of the two groups are significantly different.

Group B subjects are defined as responders to clozapine therapy if there is an improvement of at least 25% between the pre- and post-QCA scores. This level of relative change represents a clinically significant improvement in symptom severity considering the fact that all the subjects in our study were in the treatment-resistant population (Leucht et al., 2005). See e.g., Kane et al. (1988) who used a 20% relative change as response indicator.

2.3. Overview of the machine learning process

We now present a brief overview of the machine learning process used for prediction of clozapine response. A necessary component of this process is the collection of a training set. In our case, the training set consists of \(M_0 \) EEG epochs from each of \(M \) subjects, for a total of \(M_0 \) epochs altogether. In our experiments\(^2\), \(M_0 = 12 \) and \(M = 270 \). The training set also includes the set of response outcomes \(y_i, i = 1, \ldots, M \), corresponding to each epoch; i.e., if the subject corresponding to the \(i \)th EEG epoch is a responder (non-responder), then the value of \(y_i \) is R (NR), determined by the response criterion discussed previously.

There are three phases in a machine learning procedure. These are the design, operational and evaluation phases, as outlined in Fig. 1. The design phase, which consists of the feature extraction, feature selection and classification components, is now described.

The Design Process is depicted in Fig. 1(a). The first step is to extract candidate features from each epoch of pre-treatment EEG data. In our study, these features are statistical quantities including coherence\(^3\) between all electrode pairs at various frequencies, correlation and cross-correlation coefficients, mutual information between all sensor pairs (Cover and Thomas, 2006), absolute and relative power levels at various frequencies\(^4\), the left-to-right hemi-
feature vector x_i maps into the R region if the subject corresponding to the i-th epoch is a responder, and into the NR region otherwise. In practice however, the clusters overlap somewhat, so that feature vectors from a few epochs of the R subjects map into the NR region, and vice versa. As we demonstrate in Section 3, these miss-located points result in a prediction error for that subject. An example of such clustering behaviour (shown in only two dimensions) for the current prediction problem is shown in Fig. 2, where it is seen that the feature vectors corresponding to the R and NR subjects indeed lie in distinct (although slightly overlapping) regions of the feature space. The selection of “better” features; i.e., features with greater statistical dependence on the outcome variable, leads to the formation of tighter clusters with smaller variances and with greater separation between the means of the clusters of different classes, resulting in improved performance.

We normalized feature values to improve performance. Certain feature values, such as coherence and correlation, are inherently limited to an interval $[-1, 1]$ and so normalization is not required in these cases. However, for other feature values, such as e.g., spectral power levels, etc., normalization is desirable. In this study the “z-score” normalization method was used. The EEG data of 91 normal (or healthy) adult subjects were measured and the means μ_l and standard deviations σ_l, $l = 1, \ldots, N_c$ for each feature are calculated over the healthy subject sample. Then for schizophrenic subjects, the corresponding l-th feature value x_{il} is replaced with its normalized z-score value $z_{il} = \frac{x_{il} - \mu_l}{\sigma_l}$ before being fed to the feature selection and classifier processes.

Because many of the candidate features are highly correlated, there are many possible subsets of features that may be selected by our proposed feature selection algorithm, resulting in approximately equivalent prediction performance. The set of selected features is dependent on the normalization method used, the feature selection process, the response criterion and the definition of the target values y in the training data.

The next step in the design phase of the prediction process is the specification of the classifier. The job of the classifier is to input a reduced feature vector x and output the corresponding predicted response value y, which has a discrete value corresponding to either R or NR. In this way, the classifier output gives us the predicted response of the subject to the clozapine therapy. In this study, the classification process was implemented using a kernelized partial least squares regression (KPLSR) procedure (Rosipal and Kramer, 2006). The kernel matrix required by the KPLSR method was chosen to have a Gaussian structure. The KPLSR method determines a regression function using the available training data that approximates the value 1 over the region of the feature space corresponding to non-responders (i.e., the non-responder cluster), and the value 2 over the responder cluster. (The numerical values 1 and 2 are chosen arbitrarily). In the proposed method, all available M_p reduced feature vectors corresponding to the epochs available

Table 2
Available demographic information of the 14 subjects denoted by Group B.

<table>
<thead>
<tr>
<th>Information</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at start of treatment [years]</td>
<td>Average = 35.7, std = 10, min = 22, max = 55.5</td>
</tr>
<tr>
<td>Gender:</td>
<td>8 (57%)</td>
</tr>
<tr>
<td>Male</td>
<td>6 (43%)</td>
</tr>
<tr>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>Educational level1</td>
<td></td>
</tr>
<tr>
<td>Age at symptom onset [years]</td>
<td></td>
</tr>
<tr>
<td>Total # of hospitalizations (Pre-clozapine)</td>
<td>Average = 21.3, std = 5.28, min = 15, max = 31</td>
</tr>
<tr>
<td>Duration total of hospitalization (Pre-clozapine) [days]</td>
<td>Average = 6.43, std = 6.9, min = 0, max = 18</td>
</tr>
<tr>
<td>Chlorpromazine equivalents (Pre-clozapine) [mg/day]</td>
<td>Average = 470.8, std = 627, min = 0, max = 1879</td>
</tr>
<tr>
<td>Clozapine dose [mg/day]</td>
<td>Average = 628, std = 404, min = 40, max = 1169</td>
</tr>
</tbody>
</table>

1 See Table 1 for definition.
for a given subject are fed into the regression function, which outputs values $y_j, j = 1, \ldots, M_p$. Ideally, these quantities are exactly 1 or 2, but in practice, they only approximate these values. The mean of these y-values is evaluated and then quantized to the closest integer 1 or 2, to yield the corresponding NR or R prediction value.

The operational phase is depicted in Fig. 1(b). Once the machine learning prediction process is designed, it may be applied e.g., in an operational mode in a clinical setting, or, in this context, on Group B subjects. Here, EEG recordings are taken from the patient, and the set of reduced features identified in the design phase are computed from the EEG data, to give a sequence of feature vectors $x_j, j = 1, \ldots, M_p$. These feature vectors are fed into the classifier or regression function which is specified from the classifier parameters determined in the design phase. The classifier outputs the predicted response of the subject to the proposed clozapine treatment, in the manner described above.

In the current situation however, we are interested in evaluating the performance of the machine learning prediction procedure resulting from the design phase, using the available training data. This is the evaluation phase, depicted in Fig. 1(c). In this respect, a leave-one-out (L1O) cross-validation procedure is used, where the data from one subject at a time is sequentially removed from the training set. The feature selection and classifier design processes are then executed using all remaining data. The resulting machine learning structure is then tested using the omitted subject. The classifier output is then compared to the known response of the subject, and a performance tally is recorded. The process repeats, each time omitting a different subject, until all subjects have been omitted once. The overall performance figure for the prediction process is then the aggregate performance over all iterations (or folds) of the L1O cross-validation process. With this method, we test over all available data and in each trial we use the largest possible training set. Further, the method is “fair”, since the tested data is not part of the training set used in the design phase. The number of latent variables in the KPLSR approach and the variance parameter associated with the Gaussian kernel are determined using a simple multi-dimensional grid search optimization within the cross-validation loop, in a manner consistent with the methodology of (Varma et al., 2006).

Since in effect a different training set is used in each L1O iteration, the set of selected reduced features may vary from one
iteration to another. In the operational phase discussed above, we need a single set of \(N_r\) features that best represents the entire training set. We could identify a single set of reduced features simply by applying the feature selection process once on the entire training set. The difficulty with this approach however, is that it is possible that the data from a subset of subjects can dominate the feature selection process. A convenient method of avoiding this possibility is, at each L1O iteration, to select a list of \(k \cdot N_r\) features, where \(k\) is a constant greater than unity, typically greater than 3 in our experiments. Then the desired single set of \(N_r\) features is chosen as those which occur most frequently amongst the lists generated over all L1O iterations. In this way, the features are selected on an equitable basis from different combinations of the data. To find a proper value for \(k\), this procedure is repeated with increasing values of \(k\), until at least \(N_r\) common features (out of the available \(k \cdot N_r\) features) can be found among all iterations of the L1O test.

For optimal performance of the proposed scheme, the classifier must operate in an \(N_r\) - dimensional feature space, where in our experiments the value of \(N_r\) is 8. However, if we wish to visualize the feature space on a plane, it is necessary to compress the feature space. It is readily verified that an optimal linear basis for dimensionality compression is the set of principal components of the feature space, obtained by principal component analysis (PCA). Better visualization performance can sometimes be obtained through a nonlinear principal component method, in which case kernelization techniques (Muller et al., 2001) are applied to PCA. We refer to the nonlinearized version of PCA as kernel PCA (KPCA). In our study, the KPCA method is used only for the purposes of displaying the clustering results, as in Figs 2 and 3, and is not used in the prediction process.

3. Results

3.1. Treatment-efficacy prediction performance

The first set of results uses data from Group A which consists of 23 subjects. The set of candidate features were extracted from the pre-treatment EEG data and then reduced into a set of \(N_r = 8\) most-relevant features using the available training set data, as discussed in Section 2.3. The prediction performance was then evaluated using the leave-one-out cross-validation procedure discussed previously. The performance evaluation results using the combined EO and EC EEG data sets together for the 23 subjects, for a response threshold value \(d_0 = 88.5\) and \(N_r = 8\) are summarized in Table 3(i), where it is seen that the overall prediction performance is 87.12%. When \(d_0\) is reduced to 83.5 corresponding to a 30% responder rate, the overall performance becomes 89.7%. Two major latent variables are used for the kernel PLSR method. These results indicate that it is indeed possible to predict the response to clozapine therapy using the proposed methods. Further experiments were performed using a range of \(d_0\) from 83.5 to 92.5; prediction performance was above 85% in all cases.

We now present results using data from both subject groups A and B. For this second experiment, we train the classifiers using the R and NR groups is clearly evident.
only Group A as training data, and then test the prediction performance over Group B. A group B responder in this case is defined as a subject having an improvement of at least 25% between the pre- and post-QCA scores. The average treatment-efficacy prediction performance for this experiment was 85.7% as reflected in Table 4. This shows a satisfactory prediction performance under different conditions when the classifier is trained on one set, and then tested on another independent set.

We now show an example illustrating the clustering behaviour for the proposed scheme, using Group A data. Fig. 2 shows a scatter plot containing 270 points corresponding to the $M_i = 270$ available epochs of EEG data from the Group A subjects. This figure was generated using the kernel PCA method with a Gaussian kernel. Filled circles correspond to responders and squares to non-responders. In this figure, there are nominally 12 points associated with each subject; however, there are 2 subjects that have only 10 or 8 points. The number written beside each point is the corresponding subject index, which is assigned arbitrarily. Averaging the location of all points corresponding to each subject results in Fig. 3, in which each subject is shown with one point. The clustering between the R and NR groups is clearly evident in this figure. The clustering performance shown in this figure is indicative that the proposed machine learning procedure will perform well, as the results of Table 3 suggest.

3.2. A list of discriminating features

We show a list of 20 most relevant EEG features of interest in Table 5. These are the features that are most strongly discriminative of response to clozapine. Each of the features listed in the table is selected at least once over all L10 iterations. Fig. 4 is a depiction of the most-relevant features selected in Table 5. A connection between two electrode sites in the figure corresponds to a selected feature which involves those two locations. It roughly indicates any relations between EEG sensors that convey relevant information for our prediction problem. This figure depicts how the selected features could give clues about the locality and interconnection of neurological mechanisms associated with a positive response to clozapine. Further investigation of this matter remains a promising topic for future work.

4. Discussion

Our findings support the potential utility of machine learning methods in clinical psychiatry. In the current example we have been able to predict, in advance of the first dose, whether a treatment-resistant patient will or will not respond to a powerful but potentially toxic medication. In various experiments, we evaluated the performance of advanced prediction models in conjunction with kernelization methods to analyze pre-treatment EEG to predict the responsiveness to clozapine. These results support the idea that resting EEG data contains embedded salient information related to clozapine treatment-outcome that can be extracted using machine learning techniques.

We can provide some further evidence of the validity of the proposed prediction method, as follows. First, the clustering behaviour shown in Fig. 3 shows clean separation of the clusters, which is a strong indication that the reduced features can indeed discriminate long-term response. Also, with the L10 cross-validation procedure, different test and training samples are used in each iteration, and yet overall, a reasonable performance level is attained. This suggests the proposed machine learning procedure is consistent across variations of the input data. A final argument to suggest validity of the proposed method is with regard to the results of Table 4. Here, the prediction procedure is trained on Group A data and tested on a completely independent set of Group B data. Even though performance degrades somewhat, the resulting performance of 85.7% is still quite satisfactory.

We can further examine the integrity of the proposed prediction procedure by evaluating the probability that our demonstrated prediction performance would have been due to chance alone.

Table 3

Performance results predicting the response to clozapine therapy in Group A subjects using $N_x = 8$. Subjects with a post-treatment PANSS score of less than or more than δ_i are considered responders (R) and non-responders (NR), respectively.

<table>
<thead>
<tr>
<th>(i), $\delta_i = 88.5$ (corresponds to 52% response rate)</th>
<th>Predicted R</th>
<th>Predicted NR</th>
<th>% Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual R</td>
<td>10</td>
<td>2</td>
<td>83.33% = Sensitivity</td>
</tr>
<tr>
<td>Actual NR</td>
<td>1</td>
<td>10</td>
<td>90.91% = Specificity</td>
</tr>
</tbody>
</table>

Table 4

Independent test performance using subjects in group A as training data (with $\delta_i = 88.5$ and $N_x = 8$), and Group B as test subjects. Response to clozapine therapy is defined as more than a 25% improvement in the QCA score. Subjects with a post-treatment QCA score of less than or more than δ_i are considered responders (R) and non-responders (NR), respectively.

<table>
<thead>
<tr>
<th>Predicted R</th>
<th>Predicted NR</th>
<th>% Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual R</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Actual NR</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Average = 85.7%
though Knott et al. (2000) were successful at identifying features before this potentially toxic treatment is initiated. Further, even to the clinician as prediction is possible using EEG data collected. EEG data was required. Our methodology is more potentially useful changes in EEG features correlated with outcome, post-treatment gated in other studies. Although Gross et al. (2004) found that responding figures are 0.0039 and 0.0211 for the R and NR groups, respectively. Thus we see that these figures are negligibly small.

By employing more advanced analytical models, the present study was designed to extend and improve upon the utility of the EEG in predicting the responsiveness to clozapine as investigated in other studies. Although Gross et al. (2004) found that changes in EEG features correlated with outcome, post-treatment EEG data was required. Our methodology is more potentially useful to the clinician as prediction is possible using EEG data collected before this potentially toxic treatment is initiated. Further, even though Knott et al. (2000) were successful at identifying features which were indicative of response, they did not incorporate their findings into a quantitative prediction algorithm. We have therefore been able to extend their work by accomplishing this purpose.

Our proposed feature selection method is novel in the respect that a small number of maximally discriminative features are automatically identified from a very large list of candidate features. This is in contrast to the previous approaches, which inherently require a trial-and-error procedure. The previous approach consists of hypothesizing that a single feature may be discriminative, and then verifying or rejecting the hypothesis by experiment. Thus our method can identify salient features that could easily be missed using previous methods.

It is gratifying to note that our proposed feature selection procedure did select some features that were identified from previous studies. This serves as a verification of our method and provides a useful connection with the previous research. Nevertheless, the mathematical structure produced by our ML methods was created from the training data alone without an a priori model or previous research findings (e.g., regarding QEEG differences between responders and non-responders). As such it has the advantage of not being constrained by the theoretical constructs derived from previous studies. Without devaluing previous work, or discounting the importance of replication, limiting feature selection to only a group made up of those reported to be useful in previous studies decreases the probability that new and highly salient features will be discovered. Also we have not employed traditional EEG frequency bands and instead used frequency components individually within a 1 Hz resolution window. This maximizes the possibility of detecting potentially important EEG features that might otherwise be obscured when power is integrated over a broad range of frequencies in a given band, e.g., a 10 Hz signal might be lost in the 8–12 Hz alpha band.

The goal of this paper is to propose a new clinical data analysis method and derive an empirical set of EEG features predictive of response to clozapine, not to derive neurological information regarding the pathophysiology of schizophrenia. Nevertheless the clustering of relevant EEG features in the tempo-parietal area of the dominant hemisphere, as seen in Table 5 and in Fig. 4, may be of some interest to those studying regional brain activity patterns in patients with schizophrenia. Others have described bilateral reduced grey matter volume in the temporal lobes (e.g., Okugawa et al., 2002) and electrophysiological abnormalities in the left tempo-parietal region on EEG (e.g., Faux et al., 1987) in schizophrenic patients.

This retrospective study suffers from some weaknesses. Most notably our QCA clinical rating is based on chart review and therefore likely to be less accurate than a standardized PANSS. However, our raters were clinicians expert in the treatment of schizophrenia and familiar with the subjects being evaluated. The QCA would therefore have reasonable clinical validity. The high predictive accuracy of our algorithm in both Group A and B subjects even in the face of this source of outcome variance may speak to the robustness of this methodology. As QCA and PANSS ratings were completed years before this project they could not have been influenced by the machine learning assignment into responder and non-responder groups.

It must be noted the results of this pilot study are derived using a relatively small quantity of data. Our findings must be replicated in a much larger sample of training and test subjects before they can be accepted with confidence. Notwithstanding these issues, our data suggest that machine learning methods of analyzing EEG signal may be employed to create a useful psychiatric management tool. Furthermore, the methodology described in this paper could be extended to construct models that predict the response to various other treatments available for patients with schizophrenia or with other psychiatric conditions. Finally, it may be possible to incorporate a range of other clinical and laboratory data beyond EEG measurements, such as personality inventory scores, personal and demographic information and treatment history to improve clustering behaviour and prediction performance.

An additional topic for future consideration is to investigate the minimum number of channels needed to yield adequate prediction performance. It may be that a reduced configuration of electrodes concentrated over the left side (as suggested by Fig. 4), will still yield an acceptable level of performance, but at a reduced cost.

5. Appendix A. The QCA clinical rating procedure

The QCA clinical rating procedure was devised in the context of an un-related earlier naturalistic retrospective un-published clinical study of treatment-resistant schizophrenic patients being considered for clozapine treatment. The subjects in the present study were included in this previous study. An experienced clinician reviewed all the available clinical descriptive information of the patient’s symptomatology prior to beginning a course of clozapine.
Reported symptoms, corresponding to those described in the PANSS, were rated as: present, moderate or severe on a one to six point scale. Only explicitly described symptoms were scored and the clinical rater was instructed not to infer the presence of potential symptoms. The same rating was repeated, based on case records describing current symptoms at the time (usually after approximately six months) when the decision was made to either discontinue or continue with on-going maintenance clozapine therapy.

Acknowledgements

The authors would like to thank Margarita Criollo, Joy Fournier, and Eleanor Bard for their help in clinical experiments. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

Oikonomou T, Sakkalis V, Tollis IG, Michelyouannis S. Searching and visualizing brain networks in Schizophrenia. Springer Lecture Notes in Computer Science, Biological and Medical Data Analysis 2006;4345:172–82.

Struyf J, Dobrin S, Page D. Combining gene expression, demographic and clinical data in modeling disease: a case study of bipolar disorder and schizophrenia. BMC Genomics 2008; 9(531).
