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Abstract

This paper finds asymptotically exact upper and lower bounds on the channel
capacity of power and band-limited optical intensity channels corrupted by white
Gaussian noise. This work differs from the oft investigated case of the Poisson
photon counting channel in that not only are rectangular pulse amplitude schemes
considered, but results for more general time-disjoint intensity modulation schemes
are presented. The role of bandwidth is expressed by way of the effective dimension
of the set of signals. The bounds show that at high optical signal-to-noise ratios the
use of bandwidth efficient pulse sets is essential to achieve high spectral efficiencies.
This result can be considered as an extension of previous work on photon counting
channels which more closely model low optical intensity channels.

1 Introduction

Previous investigations into the capacity of optical intensity systems has focused primarily

on channels in which the dominant noise source is quantum in nature. In these channels

the transmitted optical intensity is constant in discrete time intervals. The received

signal is modeled by a Poisson distributed count of the number of received photons in each

discrete interval. The capacity of such channels has been reported under a variety of peak

and average optical power constraints [2–5]. It has also been shown that schemes based

on photon counting in discrete intervals require an exponential increase in bandwidth as

a function of the rate (in nats/photon) for reliable communication [6].

In this work we present capacity bounds for a fundamentally different optical intensity

channel. The indoor free-space optical channel can be modeled as a lowpass, linear
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channel with additive, white, signal independent, Gaussian noise [7]. Unlike previous

treatments, capacity bounds are computed for a wider class of time-disjoint modulation

schemes under a constraint on the bandwidth of any codeword.

2 The Optical Intensity Channel

Optical intensity channels transmit information by modulating the optical power of a

laser or LED light source in proportion to an input electrical current, x(t). The channel

is well modeled as being linear and lowpass due to multipath distortion and the electrical

characteristics of the optoelectronics [7]. The transmitted signal is corrupted by noise,

z(t), which can be modeled as being additive, white, zero-mean and Gaussian distributed

[7]. Assuming that the channel is flat in the band of interest, the received electrical signal,

y(t) can be written as

y(t) = x(t) + z(t).

Since x(t) is proportional to the transmitted optical intensity, ∀t x(t) ≥ 0. Additionally,

due to eye and skin safety regulations the average optical power is limited, and hence the

average amplitude of x(t) is limited.

Note that this channel model applies not only to free-space optical channels but also

to fiber optic links with negligible dispersion and signal independent, additive, white,

Gaussian noise.

3 Signal Space Model

The free-space optical channel can be viewed as a vector channel with respect to the

time-disjoint, orthonormal M -dimensional signal basis {φ1(t), φ2(t), . . . , φM(t)}, where

φm(t) = 0 for t /∈ [0, T ). The vector channel can then be represented as Y = X + Z,

where each term is an M -dimensional random vector distributed as fY(y), fX(x) and

fZ(z) respectively where Z is Gaussian with uncorrelated components. In order to adapt

the signal space model to the optical intensity channel, we specify

φ1(t) =
1√
T

, t ∈ [0, T ) (1)

as a basis function for every intensity modulation scheme [8]. This basis function repre-

sents the average amplitude of each symbol, and as a result represents the average optical

power of each symbol.

The admissible region of the optical intensity modulation scheme is defined as the set

of all points in the signal space which describe non-negative pulses, or formally

Υ =

{
(υ1, υ2, . . . , υM) ∈ RM : (∀t ∈ R),

M∑
m=1

υmφm(t) ≥ 0

}
.

It can be shown that Υ is the convex hull of a generalized N -cone with vertex at the

origin [8]. Clearly fX(x) = 0 for x /∈ Υ to ensure the non-negativity constraint is met.



Additionally, Υ can be partitioned into sets of points of equal optical power, Υk =

{(υ1, . . . , υN) ∈ Υ : υ1 = k, k ≥ 0}.
The average optical power, P , of an intensity signaling set can then be computed as

rP =
1√
T

∫
x∈Υ

x1fX(x)dx (2)

=
1√
T

PG, (3)

where PG is the expected value of the x1 component of each signal vector and r is

responsivity of the photodiode in units of Amperes per Watt. Note that r allows the

optical constraints to be cast in terms of electrical quantities. In this case, rP is in units

of Amperes.

4 Upper bound on Channel Capacity

An upper bound on the capacity of a Gaussian noise corrupted channel can be obtained

by considering a sphere-packing argument in the set of all received codewords while

imposing an average optical power constraint. This analysis is done in the same spirit as

Shannon’s sphere packing argument for channels subject to an average electrical power

constraint [9]. Determining this bound requires that the volume of the set of received

codewords be computed for a given average optical power limit.

4.1 Set of Transmitted Codewords

Consider transmitting a codeword x formed from a series of N , M -dimensional symbols

at a low probability of error. Geometrically, in order for x to be transmittable, x ∈ ΥN

where ΥN is the N -fold Cartesian product of Υ with itself. It is possible to show that

ΥN is itself the convex hull of a generalized cone with vertex at the origin [8]. In an

analogous fashion to (1), define the φMN
1 basis vector as

φMN
1 =

1√
N

(1, 0, 0, . . . , 0︸ ︷︷ ︸
M

, 1, 0, 0, . . . 0︸ ︷︷ ︸
M

, 1, 0, 0, . . .)

︸ ︷︷ ︸
MN

so that it represents the average optical power of each MN -dimensional codeword x ∈
ΥN . The region ΥN is then parameterized by cross-sections for a given φMN

1 coordinate

value.

For a fixed symbol period T , assume that the average optical power of each transmit-

ted codeword is limited to be at most PG/
√

T as defined in (3). In terms of the signal

space definition for Υ,

1

N

N∑
n=1

x1,n ≤ PG (4)

where x1,n is the coordinate value in the φ1 direction for each constituent symbol. The

transmitted NM -dimensional vector x is taken from the set Θ(PG) = ΥN ∩Ψ(PG) where

Ψ(PG) is a hyperplane defined so that the power constraint (4) is satisfied.



4.2 Set of Received Codewords

For some x ∈ Θ(PG), the received vector, Y is normally distributed with mean x and

variance equal to the noise variance, σ2 per dimension. Let ΩMN denote the set of all

possible received vectors. By the law of large numbers, with high probability Y will lie

near the surface of a sphere of radius
√

MN(σ2 + ε) where ε can be made arbitrarily

small by increasing N . A codeword is decoded by assigning all vectors contained inside

the sphere to the given codeword.

Define the region Ω∞ as

Ω∞ = {x + b : x ∈ Θ(PG), b ∈ ρBMN}
= Θ(PG)⊕ ρBMN

where ρ =
√

MNσ2, ⊕ is the Minkowski addition of two sets and BMN is the MN -

dimensional unit ball. Since Θ(PG) is convex, Ω∞ is a parallel convex set of radius ρ,

that is, the set of all points with distance at most ρ from Θ(PG). It can be shown that

for a y ∈ ΩMN and the corresponding x ∈ Θ(PG), the probability that y does not lie in

Ω∞ can be made arbitrarily small by increasing N . Thus, the properties of Ω∞ must be

determined in order to determine an upper bound.

Clearly, Θ(PG) ⊂ Ω∞ since 0 ∈ BMN . Where ever the boundary of Θ(PG) is smooth,

the boundary points of Ω∞ are a subset of the points parallel to Θ(PG) at distance ρ

away. Form the parallel extension of Θ(PG) as the region Θ(PG + pρ) − h, for some

h, pρ > 0 as the set of points which are at most distance of ρ away from Θ(PG) whenever

the boundary of Θ(PG) is smooth. At points of discontinuity, that is, in the “corners” of

the bodies in question, the points in Ω∞ lie inside the parallel extension of Θ(PG) at a

distance ρ away due to the triangle inequality. In other words,

Θ(PG) ⊂ Ω∞ ⊂ Θ(PG + pρ)− h. (5)

Let V (·) evaluate to the volume of the region. Since all the regions are closed, an

upper bound on V (Ω∞) can be found using (5) to give,

V (Θ(PG + pρ)) > V (Ω∞) > V (Θ(PG)).

By exploiting the geometry of the regions, it is possible to show that for large N ,

pρ → 2σ
√

M to give

V (Θ(PG + pρ)) = V (Υ1)
N (M − 1)!N

(MN)!
(N(PG + 2σ

√
M))MN . (6)

4.3 Upper bound Computation

The channel capacity in bits/symbol can be upper bounded using the sphere packing

argument developed for electrical power constrained channels [9]. The maximum rate is

upper bounded by the asymptotic number of non-overlapping spheres that can be packed

in ΩMN as N goes to infinity. Using the previously defined regions,

Cs(Φ) ≤ lim
N→∞

1

N
log2

V (ΩMN)

V (ρBMN)

≤ lim
N→∞

1

N
log2

V (Θ(PG + pρ))

V (ρBMN)
.



Using (6) and taking the limit the capacity of the channel can be upper bounded as

Cs(Φ) ≤ M log2

[(√
T

rP

σ
+ 2

√
M

)
V (Υ1)

1/M(M − 1)!1/M

M

√
e

2π

]
(7)

in units of bits/symbol for some symbol period T .

5 Lower bound on Channel Capacity

A lower bound on the capacity of the optical intensity channel can be found by computing

the mutual information between the channel input and output for any input distribution.

An asymptotically tight lower bound for high optical SNR can be achieved if the max-

entropic source distribution, subject to an average optical power constraint, is used to

compute this lower bound. It is possible to show that this choice of source distribution

causes the upper bound (7) and lower bound to converge at high optical SNR.

Due to the signal space definition, the average optical power depends solely on the

φ1 coordinate and can be represented as in (2). By the maximum entropy principle, the

maxentropic source distribution subject to this constraint must take the form f ∗X(x) =

K exp(−λx1), for x ∈ Υ and for some K, λ > 0 [10]. The constants K and λ can be

found by using the form of the distribution and solving the following∫
x∈Υ

f ∗X(x)dx = 1

∫
x∈Υ

x1f
∗
X(x)dx = PG

to yield

f ∗X(x) =

(
M

PG

)M
1

V (Υ1)(M − 1)!
exp

(
−M

x1

PG

)
(8)

for x = (x1, x2, . . . , xM) ∈ Υ . Notice that f ∗X(x) is a function of solely the coordinate

in the φ1 direction which represents the average optical power of each symbol. The

conditional distribution for a given x1 = k is uniform over all elements of Υk, which is

entropy maximizing in the absence of constraints.

6 Bandwidth Constraint

Previous work on the photon counting channel indicated that under an average optical

power constraint the rate was unbounded at the the price of an infinite bandwidth re-

quirement [6]. It is clear that in order to have a consistent bound or notion of maximum

rate for this channel that a bandwidth constraint must be placed on the space of signals

transmitted.

Imposing a bandwidth constraint on a set of time-limited signals is not straightforward

since the Fourier spectrum is necessarily time-unlimited. Let L2[0, T ] denote the set of all

finite energy signals with support contained in [0, T ). Define the (1− ε)-fractional energy

bandwidth, Wε(x), of a transmitted symbol x(t) ∈ L2[0, T ] with Fourier transform X(f)



as Wε(x) = inf{W ∈ [0,∞) :
∫W

−W
|X(f)|2df ≥ (1 − ε)

∫∞
−∞ |X(f)|2df} where ε ∈ (0, 1)

is fixed to some value, typically 10−2 or 10−3. This bandwidth measure quantifies the

frequency concentration of x(t).

Consider approximating x(t) ∈ L2[0, T ] as a linear combination of some orthonormal

basis functions. For a given Wε(x) and T , the best such basis, in the sense of minimizing

the energy in the error of the approximation, is the family of prolate spheroidal wave

functions, ϕn(f) [11]. The ϕn(f) are functions strictly time-limited to [0, T ) which have

the maximum energy in [−Wε(x), Wε(x)] of all unit energy functions [12]. The error in

the approximation can be upper bounded as [13]

inf
{ai}

∫ ∞

−∞

∣∣∣∣∣∣X(f)−
d2Wε(x)T e∑

n=0

anϕn(f)

∣∣∣∣∣∣
2

df < 12ε2. (9)

In this sense the signal x(t) can be thought of as being indistinguishable from some

linear combination of prolate spheroidal basis functions. It can then be said that x(t) is

essentially 2Wε(x)T dimensional with the error in the approximation tending to zero as

ε → 0. For every x ∈ Υ define

κ(Φ) = max
x∈Υ

2Wε

(
M∑

m=1

xmφm(t)

)
T (10)

as the effective dimension of the signal space associated with the optical intensity basis

Φ. This channel bandwidth constraint can be interpreted as ensuring that the channel

is able to support the transmission of at most κ(Φ) dimensions per symbol. Since each

transmitted symbol in the model is at most κ(Φ) dimensional, the received symbols

are uncorrupted by the channel, i.e., the received signals are indistinguishable from the

transmitted signals in the sense of (9).

The upper bound on channel capacity for a given Φ in (7) can be represented as a

bound on the maximum spectral efficiency for a channel bandwidth of Wch Hz using the

effective dimension κ(Φ) (10) and (3) as,

Cη(Φ) ≤ 2M

κ(Φ)
log2

√κ(Φ)

2Wch

rP

σ
+ 2

√
M

 V (Υ1)
1/M(M − 1)!1/M

M

√
e

2π

 (11)

in units of bits/s/Hz. Unlike the band-limited case where the dimension of each basis

signal is one, here the effective dimension of each signal in Υ must be computed. The

factor M/κ(Φ) can be thought of as a measure of the dimensional efficiency of a given

model since M represents the dimension of each transmitted signal while κ(Φ) is the

maximum dimension of the set of signals determined by Φ using a (1 − ε)-fractional

energy bandwidth measure.

At high optical SNRs, the lower bound on capacity tends to the true capacity since

it is chosen to be the maxentropic source distribution. It is possible to show that using

this bandwidth constraint the upper and lower capacity bounds converge at high optical

signal-to-noise ratios. As a result, we make the claim that the upper and lower capacity

bounds computed here are asymptotically exact.
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Figure 1: Bounds on the achievable spectral efficiencies using (a) rectangular PAM and

(b) raised-QAM along with results for some uniform discrete constellations.

7 Examples and Discussion

7.1 PAM

Form an M -ary pulse-amplitude modulation scheme using the rectangular pulse shape

of (1). Define the effective dimension of the scheme using the 99% fractional power

bandwidth (K=0.99) to yield κPAM = 20.572. Figure 1(a) presents the upper and the

lower bounds on Cη(ΦPAM) for the PAM scheme defined as well as spectral efficiency

curves for for discrete uniform 2, 4, 8 and 16 point constellations versus optical SNR.

These spectral efficiency curves were computed numerically using Monte Carlo methods.

The upper bound on capacity is obtained by direct application of (11) to give,

Cη(ΦPAM) ≤ 2

κ(ΦPAM)
log2

[(√
κ(ΦPAM)

2W

rP

σ
+ 2

)√
e

2π

]
.

The lower bound on capacity was determined first by computing fY(y), which takes the

form

fY(y) = f ∗X(x) ∗ fZ(z)

=
1

PG

(
1−Q

(y

σ
− σ

PG

))
exp

(
σ2 − 2y

2PG

)
where Q(x)

4
= (1/

√
2π)

∫∞
x

exp(−u2/2)du. Since fY(y) does not have a closed form in

this case, computing the mutual information explicitly is impossible. Figure 1(a) shows

the lower bound computed for a number of points. Note that at high SNR the lower and

upper bounds on capacity approach one another.

7.2 Raised-QAM

An optical 3-dimensional raised-QAM scheme can be defined by specifying φ1(t) as in

(1), φ2(t) =
√

2/T cos(2πt/T ) and φ3(t) =
√

2/T sin(2πt/T ). for t ∈ [0, T ) [8]. Figure



1(b) presents a plot of the upper bound on capacity (11) for a 3-dimensional raised-QAM

scheme which takes the form

Cη(ΦQAM) ≤ 6

κ(ΦQAM)
log2

[(√
κ(ΦQAM)

2W

rP

σ
+ 2

√
3

)√
e

18π1/3

]
.

Using the same definition of bandwidth, K = 0.99, κQAM = 27.038. As is the case

with PAM, the lower bound must be computed numerically. Unfortunately, computation

of fY(y) is difficult and the lower bound was computed using a discretized version of

f ∗X(x) (8) and integrated using Monte Carlo methods. The upper and lower bounds

approach one another at high optical SNRs Spectral efficiency curves for 4, 16, 64 and

256 point uniform distributions were determined using Monte Carlo techniques and are

also presented.

7.3 Prolate Spheroidal Wave Function Bases

As discussed in Section 6, for a given 2WT product, the prolate spheroidal wave func-

tions are the time-limited functions with support in [0, T ) with maximum energy in the

frequency band [−W, W ] of all unit energy functions [12]. In light of the bandwidth

constraint imposed it seems natural to form an optical intensity signaling scheme based

on this orthonormal family of functions.

An M -PSWF optical intensity model be formed by performing a Gram-Schmidt or-

thogonalization procedure with φ1(t) and ϕm(t) for m = 0, 1, . . . ,M − 2 at a time-

bandwidth product of 2Wε(φ1)T to form the basis set ΦPSWF. The basis functions for

this model are then denoted φ1(t) and ϕ′m(t).

7.4 Discussion

An important difference over the electrical channels is that the upper and the lower bound

depend explicitly on the pulse set chosen. Thus, Cη(Φ) is a measure of the maximum

spectral efficiency of the optical channel for the given pulse set. Indeed, in order to

determine a bound on the maximum spectral efficiency, Cη(Φ) should be maximized over

all Φ. Some early work on the photon counting channel demonstrated that narrow pulse

position techniques were optimal pulse techniques in the sense of a given average distance

measure [14, 15]. Capacity results for the photon counting channel nearly exclusively

assume that rectangular pulse techniques are employed. Here the assumption on the

shape of the pulses is removed and the maximum spectral efficiencies are computed for a

given pulse set. However, the rate maximizing pulse set for an optical intensity channel

under an average optical and bandwidth constraint is an open problem.

At high optical signal-to-noise ratios, pulse techniques have lower maximum spectral

efficiencies than bandwidth efficient techniques. Figure 2 presents a comparison of the

capacity bounds derived earlier. Note that at high SNRs signaling schemes based on M -

PSWF and raised-QAM pulse sets have far greater spectral efficiencies over rectangular

PAM techniques at a given SNR. At lower optical SNRs, the derived bounds are loose

and do not reveal any new insight. Indeed, at low SNR, when the available spectral
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Figure 2: Comparison of achievable spectral efficiencies using rectangular PAM, raised-

QAM and 2-, 3-PSWF.

efficiencies tend to zero, rectangular pulse techniques are attractive due to their ease of

implementation.

8 Conclusions

We have derived capacity bounds for the optical intensity channel with average optical

power and bandwidth constraints in Gaussian noise. These results complement rather

than contradict previous work on the Poisson photon counting channel. The photon

counting channel can be viewed as an optical system operating at low optical power

where the quantum nature of the photons dominates performance. Rectangular pulse

techniques are uniquely considered since the bandwidth of the channel is considered to

be very large.

In this work, we treat a fundamentally different channel. Indoor free-space channels

suffer from reduced bandwidth due to multipath distortion and from white, Gaussian

noise due to high background illumination. The derived capacity bounds are not re-

stricted to pulse techniques, as in previous work, but treat a wider class of time-disjoint

optical intensity schemes. A bandwidth constraint is imposed on the set of signals that

are transmitted by way of determining the effective dimension of the space of time-

limited signals with a given fractional power bandwidth. The derived capacity bounds

demonstrate that for a given average optical power, pulse techniques have significantly

lower maximum spectral efficiencies than bandwidth efficient techniques. In particular,

significant rate gains can be had by using a M -PSWF or raised-QAM pulse sets over a

rectangular PAM at high optical signal-to-noise ratios.
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