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Abstract — We define lattice codes for the optical in-
tensity, direct-detection channel. These codes obey
a non-negativity constraint and are shaped to mini-
mize average optical power. Expressions for the cod-
ing and shaping gain of such codes over a rectangular
PAM baseline are presented. Over short distances, we
show that lattice codes provide significant rate gains
for free-space optical links.

I. Introduction

Optical communication systems are traditionally consid-
ered as power-limited rather than bandwidth-limited. How-
ever, in the case of wireless optical systems, which operate in
a multipath environment and use inexpensive optoelectronic
components, this may not always be the case. Multilevel, mul-
tidimensional schemes are useful on these types of channels to
mitigate the impact of the limited channel bandwidth.

Present-day optical communication systems are unable to
modulate the amplitude or phase of the optical carrier di-
rectly, instead modulating only the intensity of the carrier.
Every optical intensity signal transmitted must therefore be
non-negative. Since the amplitude of the received signal is pro-
portional to the optical power, the average optical power is the
average amplitude of the transmitted waveform. The channel
can be modeled as linear and flat in the band of transmission
with additive, signal-independent, white Gaussian noise [1].

In this work we present a means of defining multidimen-
sional lattice codes for the optical intensity channel and for
calculating their gain over a baseline scheme. Conventional
lattice code constructions cannot be applied directly to the
optical intensity channel since they do not take into account
the non-negativity constraint of the channel nor do they min-
imize the average optical power.

II. Guaranteed non-negative Lattice Codes

To span the signal space we define a structured set of N
orthonormal basis functions φ1, . . . , φN , each time limited to
t ∈ [0, Ts], with φ1 chosen as a pulse of constant amplitude

T
−1/2
s , so that the average optical power of each symbol is

represented in the coordinate value of a single dimension. Un-
like conventional constellations, the average optical power, P ,
depends on the geometry of the constellation as well as on the
symbol interval and can be factored as P = T

−1/2
s Pg.

We define the bounding region, Υ, of a modulation scheme
as the set of all points in the signal space which give rise to
transmittable (i.e., non-negative amplitude) signals. It can be
shown that Υ is a convex generalized cone with vertex at the
origin opening about the φ1 axis.

An N -dimensional lattice code which is guaranteed to
satisfy the non-negativity constraint can be constructed as
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Ω(Λ,Υ,Ψ) = Λ ∩Υ ∩Ψ, where Λ is an N -dimensional lattice
and Ψ is defined as the shaping region. We show that the op-
timum (gain-maximizing) shaping region Ψ is the half-space
consisting of all points in the signal space with φ1 coordinate
not exceeding some fixed positive value.

III. Optical Power Gain

Due to the use of average optical power and not electri-
cal energy, it is necessary to redefine the constellation figure
of merit [2] as CFM(Ω) = dmin(Ω)/P (Ω). Both the band-
width and the bandwidth efficiency of the two schemes are
fixed equal since the average optical power depends directly
on Ts. Let W be the fractional power bandwidth, we define
ν as the “effective” number of dimensions of the constellation
with respect to the baseline given by ν = (2WTs)/(2W⊕Ts⊕),
where terms with subscript ⊕ denote baseline quantities.

The baseline scheme, Ω⊕, is taken as non-negative M -ary
rectangular PAM. Using the continuous approximation, the
asymptotic optical power gain [2] versus this baseline can be
approximated as

G(Ω(Λ,Υ,Ψ)) ≈

(
dmin(Λ)

V (Λ)
1
ν

)
·

(√
ν

2

V (Υ,Ψ)
1
ν

Pg(Υ,Ψ)

)
,

where the first factor represents the coding gain of the chosen
lattice and the second factor represents the shaping gain of
the chosen region. Unlike the conventional definition [2], the
coding depends not only on the lattice properties but also on
the effective number of dimensions. It can be shown that cod-
ing gain is maximized by the densest N -dimensional lattice.
The shaping gain is maximized by selecting points of lowest
φ1 coordinate until the desired volume is achieved, hence the
optimal shaping region is the half-space described earlier.

IV. Applications

We calculate that in a channel similar to a commercially
available line-of-sight infrared link, the use of a 512 point
QAM constellation, transmitting at 8 Mbps with a 99% frac-
tional power bandwidth of 40 MHz can operate at a symbol
error rate of 10−8 over a distance of 100 cm when transmitting
at eye-safe optical power limits. If the bandwidth is increased
to 80 MHz, the same scheme can transmit at 16 Mbps over
a distance of 80 cm. Over the same channel, BER and eye-
safety limit, a 4-PPM scheme can operate at 4 Mbps using a
99% bandwidth of 100 MHz over a distance of 200 cm. Thus,
lattice codes for bandwidth limited optical channels can sup-
ply a significant rate gain for short distance free-space optical
links.
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