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COURSE OVERVIEW

Day 1: Introduction & Forward Models of Microwave Imaging
• Field-based Integral Solutions of the Scattering Problem in Time and 

Frequency
• Born and Rytov Approximations of the Forward Model of Scattering
• Scattering Parameters and Integral Solutions in Terms of S-parameters
• 2D Model of Tomography in Microwave Scattering

Day 2: Linear Inversion Methods
• Deconvolution Methods

Microwave Holography (MH)
Scattered Power Mapping (SPM) Image 

• Reconstruction of Pulsed-radar Data
Synthetic Focusing: Delay and Sum (DAS

Day 3: Performance Metrics & Hardware
• Spatial Resolution
• Dynamic Range
• Data Signal-to-noise Ratio

Select Topics
• Overview of Nonlinear Inversion Methods

Direct Iterative Methods
Model-based Optimization Methods

• Tissue Imaging – Challenges and Advancements
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INTRODUCTION INTO THE SUBJECT



SHORT-RANGE RADAR: NUMEROUS APPLICATIONS
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WHY DO WE CARE ABOUT MICROWAVE IMAGING

• penetration into optically obscured objects (fog/clouds, foliage, soil, brick, concrete, 
clothing, walls, luggage, living tissue…)

 the lower the frequency the better the penetration
 frequency bands from 500 MHz well into the mm-wave bands (≤300 GHz) 

• long-range radar – weather radar, airport and marine radars, automotive radars
• compact relatively cheap electronics esp. in the low-GHz range
• diverse suite of image reconstruction methods

whole body scanners nondestructive testing through-wall imaging

medical imaging underground radar
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RECENT APPLICATIONS: LUGGAGE INSPECTION, NDT
[Ghasr et al., “Wideband microwave camera for real-time 3-D imaging,” IEEE Trans. AP, 2017]  

16×16 array

Prof. Zoughi’s team at Missouri 
University of Science & Technology 

20 GHz to 30 GHz frequency range

video

[https://youtu.be/RE-PPXmtTeA]

https://youtu.be/RE-PPXmtTeA
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APPLICATIONS: WHOLE BODY SCANNERS
[Sheen et al., “Near-field three-dimensional radar imaging techniques and applications,” Applied Optics 2010]  

40 GHz to 60 GHz (U 
band) cylindrical scan

10 GHz to 20 GHz 
polarimetric cylindrical scan

Pacific Northwest National Laboratory,  Washington, USA

40 GHz to 60 GHz (U 
band) cylindrical scan
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APPLICATIONS: THROUGH-WALL IMAGING
[Depatla et al., “Robotic through-wall imaging,” IEEE A&P Mag. 2017]

Prof. Mostofi’s team at the University of California Santa Barbara

https://www.youtube.com/watch?v=THu3ZvAHI9A

https://www.youtube.com/watch?v=THu3ZvAHI9A
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APPLICATIONS: MEDICAL IMAGING
[Song et al., “Detectability of breast tumor by a hand-held impulse-radar detector: performance evaluation and 
pilot clinical study,” Nature Sci. Reports 2017]  

Prof. Kikkawa’s team at Hiroshima University, 
Japan

MRI

Fig. 7 in Song 2017
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MICROWAVE NEAR-FIELD IMAGING: FAST GROWTH COMMERCIALLY

• mm-wave whole-body imagers for 
airport security inspection ( > 30 GHz)

• through-wall and through-floor 
infrastructure inspection for 
contractors and home inspectors 
(UWB, 3 GHz to 8 GHz)

• numerous underground radar 
applications: detection of pipes, 
cables, tunnels, etc. ( < 3 GHz)

[video credit: https://walabot.com/diy]

[video credit: 
https://www.youtube.com/watch?v=_YZEa1hiGO0]



14

MAIN PRINCIPLE OF ACTIVE MICROWAVE IMAGING

• microwave radiation penetrates and interacts with the imaged object
• the wave is modified (amplitude decay, phase delay, etc.) by the object’s EM properties 

and geometry
• scattered wave samples are collected and processed to deduce the object’s EM properties 

and geometry

acquisition surface
    (aperture)

bε

acquisition surface
    (aperture)

bε

sε

baseline 
(reference object)

measurement
measurement 

of OUTincE incE

scE
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COMPONENTS OF THE IMAGING PROCESS

FORWARD MODELS:
MEASURED DATA: d

linear and nonlinear solvers
deconvolution and optimization methods
sensitivity analysis

analytical EM models
EM simulators

UWB frequency sweep
or UWB pulsed radar

ME

state equations

{ , }=


x E E

INVERSION STRATEGY: 
x = F−1{d} MEsubject to { , }=x E E

data equation

( )F =x d


imaging research is an intersection of engineering, math and physics

noise analysis & suppression
data filtering
image post-processing
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DATA ACQUISITION: ABUNDANCE AND DIVERSITY

Main Principle: imaging needs abundant and diverse data
• spatial data abundance
 illuminate target from various angles
 collect scattered signals at various angles/distances
 scanning is required (acquisition surfaces – planar, 

cylindrical, spherical)
 scanning approaches  

mechanical 
scanning

electronically 
switched arrays

speed low HIGH
complexity LOW high
flexibility in adjusting 
scan parameters

GREAT limited

sV

bk

s

b 0 b

s 0

k
k ε

µ ε
µ

ω=
=

sk
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DATA ACQUISITION: SPATIAL SAMPLING

• over-sampling does not ensure diversity but increases acquisition time
• over-sampling counteracts noise effectively in cross-correlation reconstruction methods
• each sample must add independent information 
• linearly dependent data may lead to ill-posed inversion problems

Illustration of Viewing Angle

xz

aperture edges

A,maxα

scattering
object

AΩ
antenna
beam

A,max Amin( , / 2)α α= Ω

 effective near-field wavelengths
may be shorter than b

b

2v
f k

πλ = =

eff,min max
,

2

x yk
πλ =

{ }2D( , ) ( , )x yS k k S x y= 

 stay below but close to the maximum 
spatial sampling step – ensures diversity

min
max , ,

4sin
x yλζ ζ ζ

α
∆ ≤ ∆ ≈ ≡



18

DATA ACQUISITION: FREQUENCY SAMPLING

• frequency data diversity in frequency-domain measurements

 stay below but close to the maximum frequency sampling step
 it ensures that back-scattered signals from all targets ≤ Rmax do 

not overlap 







OUT

Tx
Rx

maxR

antenna
array radar

1s

is

Ns

1is +

to SPU















b
max

m x maxa

1
2 4

vf f
T R

∆ ≤ ∆ = ≈

maximum range
maximum observation period



19

DATA ACQUISITION: TEMPORAL SAMPLING

• temporal data diversity in time-domain (pulsed-radar) measurements

 stay below but close to the maximum time sampling step
 it ensures that all frequency components of the pulsed signals are fully used (Nyquist) 

min
max

max

1
2 2

Tt t
f

∆ ≤ ∆ ≈ =
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NEAR-FIELD vs. FAR-FIELD IMAGING

2
A,max

A,max

2
OUT,max

OUT,max

2 , 

2 , 

Dr r D

Dr r D

r

λ

λ
λ

≤ ≤

≤ ≤

≤

• OUT is in Tx/Rx antennas’ near field
• antennas are in the OUT’s near field
• implication A: multiple scattering & 

coupling between antennas and OUT  

any one of the conditions below implies near-field imaging 

• implication B: incident antenna fields do 
not conform to free-space far-zone model

bi
inc ˆ( ) ( , )

k reG
r

θ ϕ
−

′E r p

Goran M Djuknic - commons.wikimedia.org/w/index.php?curid=20417988

not valid!
inc sc

ik ik ikS S S≠ +
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FORWARD MODELS OF ELECTROMAGNETIC SCATTERING
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FORWARD vs. INVERSE PROBLEM

forward problem inverse problem

• from cause toward effect
• unique solution

• from effect toward cause
• not unique

[giphy.com]

cause

effect

cause
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FORWARD vs. INVERSE PROBLEM IN EM SCATTERING

• cause (known)
excitation
boundary conditions
medium properties

• effect (unknown)
scattering parameters
radar cross-section
antenna far-field pattern
etc.

EM ANALYSIS

• cause (known)
excitation
boundary conditions

• cause (unknown)
medium properties

• effect (somewhat known)
scattering parameters
radar return

INVERSE SCATTERING

Example: EM simulators –
general-purpose forward solvers  

General-purpose inverse solvers 
do not exist
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FORWARD MODELS: DATA and STATE EQUATIONS

sa

sc inc
a

da

b

ta

( , (( )) )()
VS

dS K
∈

′ ′= ′ ⋅ ′∈ = −  ∫∫∫r
E r E r E rE G rr r


data equation: maps contrast to the data (field measured outside OUT)

state equation: maps contrast to 
field inside OUT (state variables)

s
bs( ) ( )( ) ( , )

V
V K d′ ′ ′= ′⋅∈ ∫∫∫E r G r r rr E r

:D K → dF

s( ):E K V→ ∈E rF

2 2
s b( ) ( ) ( )K k k′ ′ ′= −r r r

bk
sk

sV

aS

Tx

Rx
Rx

Rx

Rx

Rx

Rx
Rx

OUT

sV∈r

• ensures contrast produces result matching measurements
• contrast source concept:

• ensures contrast source satisfies Maxwell’s equations

sV∈r

) ( )( ) (r K′ ′= ⋅ ′r E rS
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ROLE OF DATA AND STATE EQUATIONS IN IMAGE RECONSTRUCTION

INVERSION:
1

ME

solving
data equation

{ } subject to { , }F −= =


x d x E E
FORWARD MODELS:

ME

state equations

{ , }=


 E Ex
data equation

( )F =


dx

s

sc
a

d a

b

at

( , )
data equation:

( ) ( ) ( )
V

KS d′ ′ ′= ⋅′∈ ∫∫∫ r G r r E rE r r


s
s

internal field

b

s
)

tate e
(

quation
,

:
( ) ( )( )

V
K dV ′∈ ′ ′ ′= ⋅∫∫∫ r Gr r r rE E r



• the unknown is the contrast
• ensures that for a given internal field 

the forward model matches the data

• the unknown is the internal field
• ensures that for a given contrast the 

internal field satisfies Maxwell’s eqns.

reconstruction is an interplay of the two equations
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DATA EQUATION: A CLOSER LOOK

sa

sc in
b

c
a ( , )( ( ,) ))(

S V
K K dS

∈
′ ′ ′= ′∈ = −   ⋅∫∫∫r

E G r r rr rr E E E

data?

Q1: Can we measure the scattered field? 
No, we measure S-parameters or voltage waveforms

Q2: Do we know Green’s dyadic               ? 
No, unless the medium is uniform (or layered) and unbounded

Q3: Do we know the total internal field              ?
No, unless we employ Born’s approximation →

Q4: Do we know the incident internal field              ?
No, unless the medium is uniform (or layered) and unbounded

( , )K ′E r
incBA: ( ) ( )′ ≈ ′Er rE

inc ( )′E r

b ( , )′G r r





s
r

0 inc

known constan

sc

ts

(( )i
2

) )( kiik Vi k
d

a a
S ωε ε ′∆ ′= ⋅ ′′∫∫∫ rr E rr E

27

DATA EQUATION FOR SCATTERING (S) PARAMETERS
[Nikolova et al., APS-URSI 2016][Beaverstone et al., IEEE Trans. MTT, 2017]

Green’s vector
function

data

• scattering from penetrable objects (isotropic scattering is assumed)

complex
permittivity
contrast

total internal field due to 
Tx antenna

( ) :k ′E r
is

-th portk

ks

-th port

i

ka

ib

ˆ ku

ˆ iu

Tx

Rx

OUT

sV

inc ( ) :i ′E r incident internal field due 
to Rx antenna if it were to 
transmit

p, 1, ,i k N= 

total number of experiments: 2
pN

reciprocity: 2
p p( ) / 2N N+

total internal field

r r,s r,b( ) ( ) ( )ε ε ε′ ′ ′∆ = −r r r
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DATA EQUATION: BORN’S APPROXIMATION OF TOTAL INTERNAL FIELD 

( )
s

n
r

cs 0 i
r

c ( ) ; (
2

)i ( )iVi k
k kiS d

a a
ωε ε ε′ ′∆∆ ′= ′ ′⋅∫∫∫ r rE rrr E

• the total field               is generally unknown AND it depends on the contrast: 
data equation is nonlinear in the unknown contrast

( )k ′E r

• Born’s approximation linearizes the data equation by replacing the unknown total 
internal field with the known incident internal field (Max Born, 1926)

inc ( )( ) kk ≈ ′′ Er rE

total internal field?

s

0 inc incc
r

s )(i ( ) (
2

)k i kVi k
iS d

a a
εωε ′′∆≈ ′ ′⋅∫∫∫ E r rr E r

data
(assumed error-free)

contrast
(unknown)

incident fields
(assumed known)





29

LIMITATIONS OF BORN’S APPROXIMATION OF THE TOTAL INTERNAL FIELD

• limits both the size and the contrast of the scatterer

2 2 2
s b s( ) 1,a k k V− ∈r r

bk
sV

s ( ')k r s ( ')k r

a

• if OUT violates the limits: images contain artifacts which reflect differences between
inc
Tx Tx( ) and ( ) trather than contr as′ ′E r E r

[Nikolova, Introduction to Microwave Imaging, 2017]

• Born’s approximation is underlying all direct inversion methods (real-time imaging)  
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1-D EXAMPLE: BORN’S APPROXIMATION OF TOTAL INTERNAL FIELD 

• Gaussian pulse bandwidth: 5 GHz at 3-dB level
• 1-D incident wave coming from left
• internal field recorded inside dielectric slab of length L = 6 cm

air

air
dielectric
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1-D EXAMPLE: BORN’S APPROXIMATION OF THE TOTAL INTERNAL FIELD – 2 

0 10 20 30 40 50 60
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15

20

25

30

m
ag

ni
tu
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1 GHz

0 10 20 30 40 50 60

position inside scatterer (mm)

-300
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-100

0
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as

e 
(d

eg
)

r  = 1.0 (incident)

r
 = 1.1

r
 = 4.0

comparison of incident wave in air (εr = 1.0) with actual internal field in dielectric slabs

incident (BA)

0 10 20 30 40 50 60
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4
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m
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ni
tu

de

5 GHz
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position inside scatterer (mm)

-800
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)

r  = 1.0 (incident)

r
 = 1.1

r
 = 4.0
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1-D EXAMPLE: BORN’S APPROXIMATION OF THE TOTAL INTERNAL FIELD – 3 

• let us evaluate Born’s limit in this example – dielectric slab

2 2 2
s b( ) 1a k k−r 

22
r,s2 2 s

b 2
b r,bb

21 1 1k aa k
k

επ
λ ε

    
− = −          



r,b

r,s
1GHz
b
5GHz
b

/ 2 3 cm
1
1.1, 4.0

30 cm
6 cm

a L
ε
ε
λ
λ

= =
=
=
≈
≈( )

( )
1GHz
r,s max
5GHz
r,s max

3.53

1.10

ε

ε

<

<

• BA holds marginally for slab of εr,s = 1.1 but error is very large at εr,s = 4.0
• BA in the magnitude field distribution is more sensitive (than the phase) to permittivity 

contrast because reflections at interfaces are not taken into account – even for εr,s = 1.1 
magnitude errors are appreciable (esp. at 5 GHz)

• error of the internal-field BA grows with frequency due to increase in scatterer’s
electrical size a/λ
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WHAT IS THE BASIS OF BORN’S APPROXIMATION IN WAVE THEORY? 

• Born’s approximation is based on a simple linear combination of incident-field and total-
field wave equations (Helmholtz equations in the frequency domain)

2 2
s

2 inc 2 inc
b

b b b

s s s

0
0

U k U
U k U

k
k

ω µ ε
ω µ ε

∇ + =
∇ + =
=
=

−
sc

2 inc 2 2 inc
s b( ) 0

U

U U k U k U∇ − + − =


2 sc 2 sc 2 2
b s b, where U k U K U K k k∇ + = − ⋅ = −

• in scattering from dielectric bodies: 2 2
0 0 r,s r,b 0 r( )K kω µ ε ε ε ε= = ∆−

• some terminology
∆εr – dielectric contrast
K – contrast function
K⸱U – contrast source
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BORN’S APPROXIMATION IN WAVE THEORY – 2  

2 sc 2 sc 2 2
b s b, where U k U K U K k k∇ + = − ⋅ = −



contrast sourcedifferential operator
is that of background



s
b

inc sc inc( ) ( ) ( ) ( ) ( ) ( )( , )
V

U U U U KG U dv′ ′ ′⇒ = + = + ⋅′∫∫∫r r r r rr rr
contrast source


background Green’s function depends on boundary conditions

• Green’s function gives the solution at r upon point excitation (δ-source) at r' ← 
• examples of analytical Green’s functions for open (unbounded) uniform background 

medium 
bi | |

b3D: ( , )
| |

keG
′− −

′ =
′−

r r

r r
r r

(2)
b 0 b

i2D: ( , ) ( | |)
4

G H kρ ρ ρ ρ′ ′= −

( )δ ′−r r

superposition integral
b ( )KU
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BORN’S APPROXIMATION AS NEUMANN SERIES EXPANSION

• 0th order Born approximation of the total field

(0) inc
B ( ) ( )U U=r r

this is what we use to linearize the data equations by approximating the total internal field

( )
s

s

0 inc

0 inc inc

r

cs
B

r
s

r

c (( )

( )

)i )
2

i ( ) (

(

)

;

(
2

)

ik

i

iVi k

i k
k

k

i
k V

S

S

d
a a

d
a a

εε ε

ω ε

ω

ε

′ ′= ⋅

′ ′ ′⇒

′ ′∆

∆=

′

⋅

∆

′

∫∫∫

∫∫∫

r

r

E r r

E r E r r

rE r
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s b m x

( )
B a

( ) ( ) if 1 .58n aU k kU − <→r r
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BORN’S APPROXIMATION AS NEUMANN SERIES EXPANSION – 2 

• 1st order Born approximation of the total field

s

(1) (0) (0) inc inc
B B B b( ) ( ) ( ) ( ) ( , ) ( ) ( )

V
U U KU U G K U dv′ ′ ′ ′= + = + ⋅∫∫∫r r r r r r r

 this is what we use to approximate the total and scattered external fields (or data)
OUT inc OUTc insc s c)( ) ( ) ) )( ( )( (U U UU UU= + ⇒ = −r rr rr r

sc ( )U≈ r


• nth order Born approximation of the total field – can be used to obtain iteratively the 
total internal field

( ) ( 1) ( 1)
B B B( ) ( ) ( )n n nU U KU− −= +r r 

 for known contrast K(r), Born’s expansion series converges to the true total field  

[Nikolova, Introduction to Microwave Imaging, 2017]
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BORN’S APPROXIMATION OF THE DATA (S-PARAMETERS)

• Born’s approximation of the total response is an additive correction to the incident one

( )
s

cinc c inc
r

s inc in0
B

i ( ) ( )
2

( )ik i kik ik i V
i k

kS
a

SS d
a

S ωε ε ′∆ ′≈ + ′ ′= ⋅+ ∫∫∫ r rr E r E

Born’s approximation of the scattered datatotal data incident data

• acquisition of the incident (aka baseline) data: the reference object (RO)
RO is simply the measurement setup in the absence of an OUT

aS

sV

aS

RO OUT

inc RO
ik ikS S≡ ikS OUT

ik ikS S≡
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BORN’S APPROXIMATION OF THE DATA (EXTERNAL FIELD) – SUMMARY 

1) Born’s superposition model allows to extract the scattered portion of a response
sc OUT RO
ik ik ikS S S= −  requires 2 measurements: RO and OUT

2) 1st order BA  supplies a linearized (but approximate)  model of scattering 

( )
s

cs ncsc inc i0
B r

OUT RO ( )i ( ) ( )
2ik i kV

i k
ik ik ikS

a
S S S d

a
ω εε ′ ′ ′≈ ′∆= − ⋅≈ ∫∫∫ E r E r rr

Note: in reality

( )
s

n
r r

0sc i c( ) ; ( )i ( )
2 iik

i k
kV

S d
a a
ω εε ε′ ′ ′∆ ∆′ ′= ⋅∫∫∫ r rE rrr E

Note: RO is not a uniform medium – it includes all complexities of the measurement 
setup
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LIMITATIONS OF BORN’S APPROXIMATION OF THE DATA 

( )
s

cs ncsc inc i0
B r

OUT RO ( )i ( ) ( )
2ik i kV

i k
ik ik ikS

a
S S S d

a
ω εε ′ ′ ′≈ ′∆= − ⋅≈ ∫∫∫ E r E r rr

( )
s

n
r r

0sc i c( ) ; ( )i ( )
2 iik

i k
kV

S d
a a
ω εε ε′ ′ ′∆ ∆′ ′= ⋅∫∫∫ r rE rrr E

• How accurate is the data approximation with Born’s model?  

in reality:

• limit on BA data approximations – less strict compared to that for internal field 

s b max2 ( )a k k π− <r

compare with 

[Slaney et al., IEEE Trans. MTT, 1984]

2 2 2
s b( ) 1a k k−r 
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1-D EXAMPLE: LIMITATIONS OF BORN’S APPROXIMATION OF THE DATA 

• re-visiting the dielectric-slab example for scattered field at external observation 
points (ports 1 and 2)

• What is the contrast limit now?

s b max2 ( )a k k π− <r


2
r,ss

b
b b r,b

22 1 1
L

k La k
k

επ π
λ ε

    
− = − <           

r,b
1GHz
b
5GHz
b

/ 2 3 cm
1

30 cm
6 cm

a L
ε
λ
λ

= =
=
≈
≈

( )
( )

1GHz
r,s max
5GHz
r,s max

12.25

2.25

ε

ε

<

<
compare with internal-field BA limits

• Be aware! Slaney’s limit is derived with transmission measurements in mind! 
[Nikolova, Introduction to Microwave Imaging, 2017]
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1-D EXAMPLE: LIMITATIONS OF BORN’S APPROXIMATION OF THE DATA 
slab relative permittivity = 1.2

(back-scatter) (forward-scatter)

60 MM THICK DIELECTRIC SLAB IN AIR
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1-D EXAMPLE: LIMITATIONS OF BORN’S APPROXIMATION OF THE DATA 
slab relative permittivity = 2

• errors at Port 1 (reflection measurement) are unacceptable, esp. magnitude

(back-scatter) (forward-scatter)
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RYTOV’S APPROXIMATION OF THE TOTAL FIELD 

• Rytov’s approximation of the total field is an exponential correction to the incident field

[ ]R 0 1 2( ) ( ) exp ( ) ( ) ( )U U ψ ψ ψ≈ = + + +r r r r r 

[S.M. Rytov, Izv. Akad. Nauk SSSR, Ser. Fiz 2 (1937)]

• the total field is represented as a complex exponent

• 0th order Rytov approximation of the total field – used to approximate total internal field

[ ](0) inc
0R ( ) exp ( ) ( )U Uψ= =r r r same as 0th order Born approximation

• 1st order Rytov approximation of the total field – used to approximate total external field 
(data)

[ ] { }s

1(1) inc inc inc
0 1 bR ( ) exp ( ) ( ) ( ) exp ( ) ( , ) ( ) ( )

V
U U U G K U dvψ ψ

−
  ′ ′ ′ ′= + = ⋅ ⋅  ∫∫∫r r r r r r r r r

(1)
B ( )U r



or
(1) (1)inc inc
R B( ) ( ) exp ( ) / ( )U U U U = ⋅  r r r r
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RYTOV’S APPROXIMATION OF THE SCATTERED-FIELD DATA 

• the case of S-parameters
OUT

(1)OUT RO sc RO sc sc RO
RB ROexp ( ) / ( ) ln ik

ik ik ik ik ik ik ik
ik

SS S S S S S S
S

  = ⋅ ⇒ ≈ =     

 compare with the BA data approximation
sc OUT RO

B( )ik ik ikS S S= −

• limitation of the Rytov’s approximation of the data

( )2 2 2
s b b/ 1k k k− <

 no limitation on the size of the scattering object – advantage over Born’s approximation
 strict limitation on the relative contrast – disadvantage to Born’s approximation

or ( )r,s r,b r,b/ 1ε ε ε− <
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EXAMPLE: BORN vs. RYTOV APPROXIMATION OF THE DATA 

• re-visiting the dielectric-slab example for scattered field at external observation 
points (ports 1 and 2)

• What is Rytov’s contrast limit?

r,s r,b2 2ε ε< =

( )
( )

1GHz
r,s max
5GHz
r,s max

12.25

2.25

ε

ε

<

<

 compare with BA limits( )r,s r,b r,b/ 1ε ε ε− <

• notice independence of electrical size
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EXAMPLE: BORN vs. RYTOV APPROXIMATION OF THE DATA – 2  
slab relative permittivity = 1.2

(back-scatter) (forward-scatter)

• both approximations perform very well: BA slightly better on back-scatter, RA slightly 
better on forward-scatter
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EXAMPLE: BORN vs. RYTOV APPROXIMATION OF THE DATA – 3  
slab relative permittivity = 2.0

(back-scatter) (forward-scatter)

• both approximation show errors in magnitude of back-scatter
• RA better on forward-scatter and in the phase of back-scatter
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EXAMPLE: BORN vs. RYTOV APPROXIMATION OF THE DATA – 4  
slab relative permittivity = 4.0

(back-scatter) (forward-scatter)

• both approximation show large errors in magnitude of back-scatter
• RA much better on forward-scatter and the phase of both back-scatter
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PITFALLS IN THE USE OF RYTOV’S APPROXIMATION
1) Rytov’s approximation is prone to errors in unwrapping the phase of the S-parameters

• unwrapped data in frequency does not ensure continuity in space (over the acquisition 
surface) → spurious large differences between OUT and RO phases corrupt inversion!

• safe to use for object thickness D such that  

( )
OUT sc OUT

Rsc RO OUT RO
R RO RO RO

( ) | |( ) ln ln i
| |

ik ik ik
ik ik ik ik

ik ik ik

S S SS S S S
S S S

   
= ⇒ = + ∠ −∠  

   

1 2 3 4 5 6 7 8 9 10

frequency (GHz)

-540

-450

-360

-270

-180

-90

0

90

ph
as

e 
(d

eg
.)

wrapped  S
21

 phase

unwrapped  S
21

 phase

coax cable

1 2 3 4 5 6 7 8 9 10

frequency (GHz)

-540

-450

-360

-270

-180

-90

0

90

ph
as

e 
(d

eg
.)

wrapped  S
21

 phase

unwrapped  S
21

 phase

bandpass filter

phase unwrapping in the 
frequency domain ensures 
smooth behavior in this 
domain

s b r,s r,b 0| | 2 / 2k k D Dπ ε ε λ π− ⇒ − 
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PITFALLS IN THE USE OF RYTOV’S APPROXIMATION – 2 

2) Rytov’s approximation is prone to errors when incident field (RO data) is weak

( )
OUT sc OUT

Rsc RO OUT RO
R RO RO RO

( ) | |( ) ln ln i
| |

ik ik ik
ik ik ik ik

ik ik ik

S S SS S S S
S S S

   
= ⇒ = + ∠ −∠  

   

• best use in transmission measurement with significant RO signal strength

division by zero or noisy signal! 
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THE LINEARIZED DATA EQUATION: A CLOSER LOOK AGAIN!

Do we really know the incident internal field distributions?
• NO, unless the RO is uniform (or layered) and unbounded
• …and unless Vs is in the far-zone of the antennas

inc ( )( ) kk ≈ ′′ Er rE
s

0 inc incc
r

s )(i ( ) (
2

)k i kVi k
iS d

a a
εωε ′′∆≈ ′ ′⋅∫∫∫ E r rr E r

incident fields
assumed known





data
assumed noise-free

contrast
unknown



i-th port

Tx

i-th port

k-th port

Tx

k-th port

Rx

inc ( )kE r inc ( )iE r
Rx

inc
ikS

inc
kiS
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THE LINEARIZED DATA EQUATION: ANALYTICAL INCIDENT FIELD MODELS

• IF Vs is in the far-zone of the antennas and the RO can be assumed uniform & unbounded

THEN analytical incident-field models exist

b Txiinc
Tx Tx ˆ( , ) ke− −r rE r r p

b Txi
inc
Tx Tx

Tx

ˆ( , )
ke− −

−

r r

E r r p
r r



plane waves:

spherical waves:

inc (2) 2 2
Tx Tx b Tx Tx0ˆ( , ) ( ), ( ) ( )H k x x y yρ ρ = − + −E r r pcylindrical waves:

• antenna far-field pattern F(θ,ϕ) improves incident-field model, for example 
bi

inc
Tx ˆ( , , ) ( , )

k rer F
r

θ φ θ φ
−

E p
[Amineh et al., IEEE AWPL, 2012]
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THE LINEARIZED DATA EQUATION: SIMULATED INCIDENT FIELD MODELS

• simulated incident fields are often used in near-field imaging where the analytical far-
zone models do not apply

• incident-field distributions often suffer from modeling errors

• modeling errors increase with: (i) decreasing the stand-off distance between the 
antennas and the OUT, (ii) the complexity of the measurement setup

• errors in incident fields corrupt the resolvent kernel of the data equation

[Amineh et al., Trans. AP, 2011; Int. J. Biomed. Imaging, 2012][Li et al., Inverse Problems, 2010]
[Tu et al., Inverse Problems, 2015]

s

0 inc incc
r

s )(i ( ) (
2

)k i kVi k
iS d

a a
εωε ′′∆≈ ′ ′⋅∫∫∫ E r rr E r

resolvent kernel
( )ik ′r




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EXAMPLE: SIMULATED vs. MEASURED INCIDENT FIELD MODELS

5mm
250MHz

x y
f

∆ = ∆ =
∆ =

X-band (WR90) open-end 
waveguides ( 6.56GHz)cf ≈

f (GHz) λ (mm) Dfar (mm)
3 100 12.5

8.2 37 34
20 15 83

[Amineh et al., Trans. IM, 2015]

SP

metallic targets

[photo credit: Justin McCombe]
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METALLIC TARGETS IN AIR – RESULTS WITH SIMULATED KERNEL
[Amineh et al., Trans. IM, 2015]
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METALLIC TARGETS IN AIR – RESULTS WITH MEASURED KERNEL
[Amineh et al., Trans. IM, 2015]
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ANALYTICAL, SIMULATED & MEASURED RESOLVENT KERNELS 

• analytical and simulated kernels of the data equation are often inadequate for 
measurements in the antenna near zone

• measured kernels provide accurate system specific data equation for the reconstruction 
process

• we discuss how to obtain the data-equation kernel through measurements in our 
next lecture
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OTHER APPROXIMATIONS IN THE FORWARD MODELS OF IMAGING

• the forward-model choice is a compromise between two opposing requirements: speed
and accuracy

Example 1: whole-body imagers for concealed weapon detection
 we can get away with analytical kernels in the data equation

[video credit: 
https://www.youtube.com/watch?v=
_YZEa1hiGO0]

[Sheen et al., Appl. Opt., 2010]



2 2 2
b

inc inc
Tx Rx

i2 ( ) ( ) ( ')inc inc
Rx Rx( , , ; , , ; ) k x x y y z zx y z x y z eω ′ ′− − + − + −

=

′ ′ ′ = ⋅
E E

E E 

plane-wave kernel approximation for reflection data:

 we assume that Born’s approximation of the total internal field satisfies the state 
equation – no need to solve the state equation

inc inc
Tx Rx Tx= ≈E E E
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APPROXIMATIONS IN THE FORWARD MODEL OF IMAGING: TOMOGRAPHY

• tomography is an imaging procedure where a 3-D image of an object is obtained by a 
series of 2-D image reconstructions (one slice at a time)

di
re

ct
io

n 
of

 v
er

tic
al

 sc
an

Tx antenna
imaged plane

electronically switched angular scan with 
mechanical scan in the vertical direction

Rx antenna

direction of
angular scanTx antenna

mechanical scans in both the angular and 
the vertical directions
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APPROXIMATIONS IN THE FORWARD MODEL OF IMAGING: TOMOGRAPHY – 2 

• microwave tomography is common in tissue imaging where Born’s approximation of 
the internal field is inaccurate and the state equation must be solved

• it achieves better reconstruction speed by solving many 2-D inversions instead of one 
3-D inversion

• it solves iteratively both the data and state equations (using EM simulations) where 
hundreds of simulations may be required – EM simulation speed is critical!
 arithmetic-operation count for linear systems of equations: 3

10( ), sparse ( log )O N O N N

• microwave tomography assumes a plane of field symmetry at the imaged slice 
 this amounts to TMz field

b

b

0, 0
i /
i /

x y z

x z

y z

E E E
H E y
H E x

ωµ
ωµ

= = ≠
= −∂ ∂
= ∂ ∂

2-D scalar problem!
2 2

2
b s2 2 0, .z z

z
E E E z const
x y

ω µ ε∂ ∂
+ + = =

∂ ∂

0
z

∂
=

∂
E
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APPROXIMATIONS IN THE FORWARD MODEL OF IMAGING: TOMOGRAPHY – 3 

• to achieve the desired symmetry, careful design of the antennas and the imaging setup 
is required

• symmetry condition holds strictly only in incident-field measurements (RO data)
• sources of error: OUT corrupts the symmetry assumption
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SUMMARY OF DAY ONE

• forward models are an essential component of the imaging process –
they reflect our understanding of the relationship between measured 
data and reconstructed EM properties

• we need 2 forward models
 data equations: relate measured data to contrast
 state equations: relate total internal field to contrast

• there are 2 approximations that we can use to linearize the data 
equation: Born’s and Rytov’s approximations

• for best accuracy, the data equation must be expressed in terms of the measured data 
(e.g., S-parameters) instead of the E-field

• analytical representations of the total internal field are strictly limited to far-zone 
measurements in uniform reflection-free environment
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THANK YOU!
[worldartsme.com]
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