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COURSE OVERVIEW

Day 1: Introduction & Forward Models of Microwave Imaging
• Field-based Integral Solutions of the Scattering Problem in Time and 

Frequency
• Born and Rytov Approximations of the Forward Model of Scattering
• Scattering Parameters and Integral Solutions in terms of S-parameters
• 2D Model of Tomography in Microwave Scattering

Day 2: Linear Inversion Methods
• Deconvolution Methods

Microwave Holography (MH)
Scattered Power Mapping (SPM)

• Image Reconstruction of Pulsed-radar Data
Synthetic Focusing: Delay and Sum (DAS)

Day 3: Performance Metrics & Hardware
• Spatial Resolution
• Dynamic Range
• Data Signal-to-noise Ratio

Select Topics
• Overview of Nonlinear Inversion Methods

Direct Iterative Methods
Model-based Optimization Methods

• Tissue Imaging – Challenges and Advancements
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THE KERNEL OF THE DATA EQUATION: 
POINT-SPREAD FUNCTION (PSF)
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THE REALISTIC MEASUREMENT SCENARIO

• microwave measurements involve scanning over large acquisition surfaces – each 
response being function of the observation position r

• at each observation position r several responses may be acquired

example of antenna 
array measuring 9 
responses at each r

[Amineh et al., IEEE Trans. Instr. Meas., 2015][Photo credit: Justin J. McCombe]
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THE REALISTIC MEASUREMENT SCENARIO: PLANAR SCANNING

 reflected signals: S11, S22
 transmitted signals: S21, S12 (S21 = S12 in reciprocal systems)

type of 
response

number of 
values Sik(x,y)

co-pol X-X 4xNω

co-pol Y-Y 4xNω

cross-pol X-Y 4xNω

cross-pol Y-X 4xNω

TOTAL 16xNω

number of possible responses 
acquired at each position

x

y

D

z

co-pol

cross-pol

#1
#2

OUT

Tx

Rx

• example of planar scanning for microwave imaging  

z z= observation plane
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FORWARD MODEL WITH PLANAR SCANNING

s

0sc inc inc
r ,Rx ,Tx ( , , ; , , ; )

data

i( , , ; ) 1,) ( , ,
2

,, Tx y z x y zVi k
S x y z x y z dx dy dz

a a
Nξ ωξ ξ ξωεω ε

′ ′ ′
 ′ ′ ′ ′ ′ ′≈ ∆ ⋅  =∫∫∫ E E







• S-parameter forward model in planar scanning

• ξ (response type) replaces (i,k) 

response type
1 reflection S11

2 reflection S22

3 transmission S12 = S21

ξ ( , )i k
(1,1)
(2, 2)

(1,2) or (2,1)
3TN =

EXAMPLE: RESPONSE TYPES WITH 2-PORT MEASUREMENT



κ
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FORWARD MODEL WITH PLANAR SCANNING – 2 

 s
Rx Tx

sc inc inc
r ,Rx ,Tx ( , , ; , ,

&
; )

( ; ) ( , , ,, 1, ) , , Tx y z x y zV
S yx y x y z dx d dzz Nξ ξ ξ ω

ω κ ε ξ
′ ′ ′

 ′ ′ ′ ′ ′ ′≈ ∆ ⋅ = ∫∫∫
r r

E E 

• S-parameter forward model in planar scanning

• position of Tx/Rx antenna pair given by rRx

Rx Tx( , , ) and ( , , )x y z x y z D≡ ≡ −r r
x

y

D

z

co-pol

cross-pol

#1
#2

OUT
z z=

Txr

Rxr



• resolvent kernel of forward model – re-visiting last lecture

• method 1: analytical far-zone expressions well suited only for measurements in air with 
large stand-off distances

• method 2: simulated field distributions suffer from modeling errors

• method 3: Measurements? Yes, measure the system point-spread function (PSF) 
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FORWARD MODEL: OBTAINING THE RESOLVENT KERNEL

s

inc inc
,Rx ,Tx ( , , ; , , ; )

sc
r( , , ; ) ( , , ) , 1, , Tx y z x y zV

S x y z x y z dx dy dz N
ωξ ξ ξω κ ε ξ

′ ′ ′
′ ′ ′ ′ ′ ′⋅ ≈ ∆ =∫∫∫ E E 

approximate (Born) resolvent kernel ( ; ; )ξ ω′r r




[Savelyev&Yarovoy, EuRAD 2012][Amineh et al., IEEE Trans. Instrum. Meas., 2015]



9

RESOLVENT KERNEL & POINT-SPREAD FUNCTION (PSF)

• PSF is data measured with point scatterer (electrically small object)
scattering probe

• relating PSF to kernel

s
,

PSF
r sp ( , , ;, ,,( , ) , ;; ), ( )

V
S z zx y z dxx x y y z z dy dzx y x yξξ ω κ ε ωδ − ′ ′ ′′ ′ ′∆ − − ′ ′ ′≈ ⋅∫∫∫ 

scattering probe (sp) contrast


( )PSF
sp

known cons

r,s

tan

p

ts

( , , ; , ( ,, ; ) ; 1, , , , ) ,; , Tx y z x y z x y z x yS z Nξξ ξω ωεκ′ ′ ′ ′ ′ ′⇒ Ω ⋅∆≈ = 
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RESOLVENT KERNEL & POINT-SPREAD FUNCTION (PSF) – 2 

PSF

r,sp sp

( , , ; , , ; )
( , , ; , , ; ) , 1, , T

S x y z x y z
x y z x y z Nξ

ξ
ω

ω ξ
κ ε

′ ′ ′
′ ′ ′ = =

∆ Ω


• if medium in Vs is uniform (or layered for planar acquisition) – probe needs to be 
measured only at the center of an imaged plane z const′ =

• notice the simple exchange of positions allowing to obtain the kernel from the PSF
PSF

r,sp sp

( ; ; )
( ; ; )

Sξ
ξ

ω
ω

κ ε
′

′ =
∆ Ω

r r
r r observation: ( , , )

integration (probe location): ( , , )
x y z

x y z
≡

′ ′ ′ ′≡
r

r

PSF PSF
,0measured centered PSF: ( , , ; ; ) ( , , ;0,0, ; )S x y z z S x y z zξ ξω ω′ ′≡
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RESOLVENT KERNEL & POINT-SPREAD FUNCTION (PSF) – 3 

• since medium is uniform or layered
PSF PSF

,0( , , ; , , ; ) ( , , ; ; )S x y z x y z S x x y y z zξ ξω ω′ ′ ′ ′ ′ ′= − − probe moves left/right → 
response moves left/right

PSF
,0

r,sp sp

( , , ; ; )
( , , ; , , ; ) , 1, , T

S x x y y z z
x y z x y z Nξ

ξ
ω

ω ξ
κ ε

′ ′ ′− −′ ′ ′ = =
∆ Ω



s

sc PSF
r ,0

r,sp sp

1( , , ; ) ( , , ) ( , , ; ; ) , 1, , TV
S x y z x y z S x x y y z z dx dy dz Nξ ξω ε ω ξ

ε
′ ′ ′ ′ ′ ′ ′ ′ ′⇒ ≈ ∆ − − =

∆ Ω ∫∫∫ 

convolution in ,x y


• the measured response is a convolution of the contrast and the system PSF
• the image reconstruction can then be viewed as a de-convolution process!
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CALIBRATION PROCEDURE: PSF EXTRACTION

• system calibration involves two measurements: 
(i) reference object (RO) – incident-field data
(ii) calibration object (CO) – scattering-probe data 

Calibration Object

Antenna 1

Antenna n

Tx

Rx

Reference Object

Antenna 1

Antenna n

Tx

Rx

• PSF extraction

 Born Method

( )PSF PSF CO RO
0 0 B

( ) ( ) ( ) ( )S S S Sξ ξ ξ ξ⋅ ≈ ⋅ = ⋅ − ⋅

CO ( , , ; )S x y zξ ω

RO ( , , ; )S x y zξ ω

 Rytov Method

( ) ( , , ; ), 1, , Tx y z Nω ξ⋅ ≡ = 

( )
CO

PSF PSF RO
0 0 ROR

( )
( ) ( ) ( ) ln

( )
S

S S S
S
ξ

ξ ξ ξ
ξ

 ⋅
⋅ ≈ ⋅ = ⋅  ⋅ 

[Tajik et al., JPIER- B, 2017][Shumakov et al., Trans. MTT, 2018]
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EXAMPLE: PSF

• typical noise-free PSF obtained from simulated RO and CO data

magnitude phase

6.5 GHzf =

[Amineh et al., IEEE Trans. Instrum. Meas., 2015]

• typical noisy PSF obtained from measurements (magnitude shown)

RO CO PSF

[Tajik et al., EuCAP 2019]

PSF
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MEASUREMENT PROCEDURE: DATA EXTRACTION

• data is extracted with the same method as that for PSF – being consistent is important!

 Born Method

( )sc sc OUT RO
B

( ) ( ) ( ) ( )S S S Sξ ξ ξ ξ⋅ ≈ ⋅ = ⋅ − ⋅

Antenna 1

Antenna n

Object Under Test

Tx

RxOUT ( , , ; )S x y zξ ω

 Rytov Method

( ) ( , , ; ), 1, , Tx y z Nω ξ⋅ ≡ = 

( )
OUT

sc sc RO
ROR

( )
( ) ( ) ( ) ln

( )
S

S S S
S
ξ

ξ ξ ξ
ξ

 ⋅
⋅ ≈ ⋅ = ⋅  ⋅ 
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INVERSION WITH MICROWAVE HOLOGRAPHY
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DATA EQUATION IN FOURIER SPACE

• in Fourier (or k) space
PSF
,0

r,sp sp
( , ; ; ) , ( ,( ; ) ; ; )x yx y x yz

z

k F k k zx yS k z S k k z dzξ ξω ω
ε ′

′

′ ′∆ ∆ ′ ′≈ ′ ⋅
∆ Ω ∫ 

{ }2D rFT ( , , )x y zε ′ ′ ′∆


• we now have a system of equations to solve at each spectral position  

( )( ) PSF
,0

1
(( ; )( ) ; )

zN
m

nn
m

n
S S zf z ξξ

=

 ′ ′≈∑κ κκ 

1, ,
1, , T

m N
N

ω
ξ
=
=




( , )x yk k=κ

sc PSF
r ,0

r,sp sp

1( , , ; ) ( , , ) ( , , ; ; ) , 1, , T
x y z

S x y z x y z S x x y y z z dx dy dz Nξ ξω ε ω ξ
ε ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′≈ ∆ − − =
∆ Ω ∫ ∫ ∫ 

2D FT

r,sp sp
( ; ) ( ; )n

n nf z zx z Fy
ε
′ ′ ′∆ ∆ ∆

= ⋅
∆ Ω

′ ′κ κ


• discretize integral along z' into a sum

vΩ
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INVERSION IN FOURIER SPACE

( )( ) PSF
,0

1
( ; )( ) ( ; )

zN
mm

n
n

n zS S zf zξ ξ ′
=

 ′ ′≈∑κ κκ  1, ,
1, , T

m N
N

ω
ξ
=
=




data ( )


d κ contrast ( )


f κ system matrix ( )


A κ
( , )ij x yi k j k≡ ∆ ∆κ

in discrete Fourier space

• at each discrete point in Fourier space, a small system of equations is solved for a total 
of NxNy such systems

( ) ( ) ( )ij ij ij⋅ =A κ f κ d κ 1, , , 1, ,x yi N j N= = 

(1) (1)PSF PSF (1)10 0 1

( )( ) ( )PSF PSF
1110 0

( ; ) ( ; ) ( ; ) ( )

( )( ; )( ; ) ( ; )

z

z Tzz
T z

ij ij N ij ij

NN N ijij N N NNij ij N
N N N

z z f z

f zz z
ωω ω

ω
ω

××
×

    ′ ′    ′          ⋅ =        ′    ′ ′       

κ κ κ κ

κκκ κ

 

 

    





 



S S S

SS S

( ) ( )( )
1[ ( )] ( ) ( )

T

m mm T
NS S ⋅ = ⋅ ⋅ 

  

S
vectors of response types
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FINAL STEP: BACK TO X-Y SPACE

{ }r,sp sp 1
r 2D

v
( , , ) ( ; ) , 1, ,n n zx y z f z n N

ε
ε −∆ Ω

′ ′ ′ ′∆ = =
Ω

κ 



• at each plane along range (z'n, n = 1, …, Nz)

r r,b r( , , ) ( , , )n nx y z x y zε ε ε′ ′ ′ ′ ′ ′= + ∆
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ADVANTAGES OF SOLVING IN FOURIER SPACE: DIVIDE AND CONQUER

 (e.g. 60 5)T zN N Nω × ×

• we solve (Nx⸱Ny) small systems of equations
number of solved systems on the order of 104 to 105

• size of each system is small:

• typical execution times: 2 to 3 seconds on a laptop using Matlab

• solution is orders of magnitude faster than solving in real space where one very 
large system of equations needs to be solved of size 

7 8
v

6 7
v

 with 10  to 10
10 to 10

D D x y T

x y z

N N N N N N N
N N N N

ω× =
=
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3-D SIMULATION EXAMPLE: C-shape and 3 Cubes

isometric view

side view

Object εr

C-shape 1.5 - i0

Cubes
1.1 – i0

Altair FEKO

• 2 dipole antennas aligned along 
boresight, separated by 10 cm

• reflection and transmission 
coefficients acquired

1 cm

air

• C-shape is 4 cm from lower dipole
• cubes are 4 cm, 5 cm, and 6 cm from lower dipole
• acquisition plane of area 30 cm by 30 cm with 1 cm 

sampling interval along x and y
• frequency range from 3 GHz to 8 GHz, ∆f = 1 GHz
• scattering probe in calibration: 1 cm3 cube of εr,sp = 

1.1 − i0 

1 cm

[Tajik et al., JPIER-B 2017]
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3-D SIMULATION EXAMPLE: IMAGES OF C-shape and 3 Cubes
[Tajik et al., JPIER-B 2017]

rε ′ rε ′
Born Approximation Rytov Approximation

• due to the targets’ low contrast, both approximation yield practically the same images
• quantitative estimate of permittivity distribution is very good
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MEASUREMENT EXAMPLE: Teddy Bear (2-D Image)

• scanned area: 29 cm by 29 cm
• sampling step along x and y: 5 mm
• only transmission coefficient acquired
• frequency range from 8 GHz to 12 GHz (41 samples)
• two open-end waveguides (WR-90) aligned along 

boresight

1) dielectric cross: εr = 12 − i0 (thickness 1 cm, cross arm 3 cm) inserted in bear’s tummy
2) dielectric L-shaped object: εr = 10 − i5 (thickness 1 cm, L arm 2 cm) inserted in right 

arm 

 measurement 1: just teddy bear
 measurement 2: two objects inserted in teddy bear
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MEASUREMENT EXAMPLE: 2-D IMAGES OF Teddy Bear

normalized contrast

empty with hidden objects
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MEASUREMENT EXAMPLE: 2-D QUANTITATIVE ESTIMATES (Teddy Bear)
permittivity

with hidden objects

empty

empty

with hidden objects

with physical 
constraints

with hidden objects

Imaginary Part of the Permittivity

20 10 0 10 20

 

 

-1

-0.8

-0.6

-0.4

-0.2

0
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EXAMPLE: 3-D NEAR-ZONE IMAGING OF METALLIC OBJECTS (RE-VISITED)

5mm
250MHz

x y
f

∆ = ∆ =
∆ =

X-band (WR90) open-end 
waveguides ( 6.56GHz)cf ≈

f (GHz) λ (mm) Dfar (mm)
3 100 12.5

8.2 37 34
20 15 83

scattering probe

metallic targets

[photo credit: Justin McCombe]

[Amineh et al., Trans. IM, 2015]
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EXAMPLE: 3-D NEAR-ZONE IMAGING OF METALLIC OBJECTS (RE-VISITED)

expected 
spatial 
resolution

depth:
10 mmzδ ≈

lateral:
, 4 mmx yδ ≈
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INVERSION WITH SCATTERED POWER MAPPING (SPM)
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QUALITATIVE IMAGING WITH SENSITIVITY MAPS

• SPM is rooted in early work on the use of response sensitivities in image reconstruction
[Y. Song, N.K. Nikolova, “Memory efficient method for wideband self-adjoint sensitivity analysis,” IEEE Trans. Microwave Theory Tech., 2008]
[L. Liu, A. Trehan, N.K. Nikolova, “Near-field detection at microwave frequencies based on self-adjoint response sensitivity analysis,” Inv. Problems, 2010]

• assume we want to minimize the ℓ2-norm error between the measured OUT (total-field) 
and RO (incident-field) data

• for that we need to know how to properly change the permittivity in the RO

• response sensitivities: response derivatives with respect to some system parameters
• in imaging – derivatives with respect to permittivity at each voxel (Fréchet derivative)

a

2OUT RO
21

[ ] 0.5 ( , ) [ ,( ) ( ); ]
TN

S
F S S d dξ ξω

ξ
ωε εω ω

∈
=

= −′ ′∑∫ ∫∫r r rr r r

?

b )( ()ε ε→′ ′r r
 we need to know how the error function F would change when ε changes at

v? 1, ,
( )n

F n N
ε
∂

= =
′∂ r



sn V′∀ ∈r
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QUALITATIVE IMAGING WITH SENSITIVITY MAPS – 2 

{ }

{ }

Re ( )
( )

Im ( )
( )

FD

FD

ε

ε

∂′ =
′ ′∂
∂′ = −
′′ ′∂

r
r

r
r

• Fréchet derivative with respect to ( ) ( ) i ( )ε ε ε′ ′ ′ ′′ ′= −r r r

a

RO
RO OUT

1

( , )
( , ) ( , ))

( )
(

TN

S

S
D S S d dξ

ξ ξω
ξ

ω
ω ω ω

ε

∗

∈
=

 ∂
 = − ⋅    ′  

′
∂∑∫ ∫∫r

r
r r rr

r

sensitivity
map

[Nikolova, Introduction to Microwave Imaging, 2017]

→ indicates where contrast in ε' exists in the OUT

→ indicates where contrast in ε" exists in the OUT

where

• sensitivity map: 3-D plot of the real and imaginary parts of D(r')
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SENSITIVITY MAPS: FROM DERIVATIVES TO FINITE DIFFERENCES

a

U
RO

O

1

R O T( , ) ( ,
(

)
( , )

( )
)

TN

S

S
D d dS S ξ

ω
ξ

ξ ξω
ω

ω
ε

ω
∗

∈
=

 ∂
′ = ⋅  

′∂  
 − ∑∫ ∫∫r r

rr rr
r



sc ( , )Sξ ω− r (Born approximation)

RO RO CO RO PSF

sp sp

( , ) ( , ) ( , ; ) ( , ) ( , ; )
( ) ( ) ( )

S S S S Sξ ξ ξ ξ ξω ω ω ω ω
ε ε ε ε

′ ′∂ ∆ −
≈ ≈ =

′ ′ ′∂ ∆ ∆ ∆

r r r r r r r
r r r

• approximating the response derivative with the PSF

position of scattering probe

a

sc PSF
sp

1
( , ) ( , ;( ) ( ) )

TN

S
M S S d dD ξ ξω

ξ
ωε ω ω

∗

∈
=

∗  ′⇒ ′ ′−∆ ⋅ ⋅ = = ∑ ∫ ∫∫rr r r r rr


scattered
power map
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SCATTERED-POWER MAPS: RECONSTRUCTION FORMULA

a

sc PSF

1
( , ) ( , ;( ))

TN

S
M S S d dξ ξω

ξ
ω ω ω

∗

∈
=

 ′= ⋅  ′ ∑ ∫ ∫∫r r rr r r


scattered
power map

• scattered-power map: 3-D qualitative image of the OUT contrast relative to the RO

[Shumakov et al., IEEE Trans. MTT, 2018]

SOME IMPORTANT ADVANTAGES
• reconstruction is practically instantaneous – no systems of equations are solved!

… reconstruction formula is a simple summation of response products
• reconstruction can be carried out with ANY set of observation points (no need to have 

acquisition surfaces of canonical shapes (planar, cylindrical, spherical) 
… as long as the PSF is available analytically or from measurements

[Tu et al., Inv. Problems, 2015]
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SCATTERED-POWER MAPS AND TEMPORAL CROSS-CORRELATION

• SPM image M(r') can be viewed as a plot of the aggregate measure of similarity 
between the OUT responses and the respective PSF responses due to point scatterer at r'

• reminder: cross-correlation is a measure of similarity between 2 waveforms as a function 
of their mutual time-shift 

• it can be shown that (with infinite bandwidth)

{ }
a a

sc PSF sc PSF

1 1
cross-correlation ( , ; )

( ) ( , ) ( , ; ) ( , ) ( , ; )
T TN N

t
S S

X

M S S d d S t S t d d

ξ

ξ ξ ξ ξ
ξ ξω ω

τ

ω ω ω ω
∗

= =∈ ∈
′

 ′ ′ ′= ⋅ = ⊗ ∑ ∑∫ ∫∫ ∫ ∫∫
r r

r r

r r r r r r r r r


a1
( ) ( , ; 0)

TN

S
M X dξ

ξ
τ

= ∈

′ ′ =∑ ∫∫
r

r r r r

no shift 
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SCATTERED-POWER MAPS AND CROSS-CORRELATION IN SPACE  

( )
a

sc PSF

1
0( , , , ), , , ;, ;( )

TN

S
M S x y z S x x y y z z dx xdyy z dξω ξ

ξ
ω ωω

=

∗
 ′ ′ ′⋅ − − ′ ′ ′ = ∫ ∫∫∑

cross-correlation in ( , )x y


• consider planar scanning and assume lateral translational invariance of the PSF

( )PSF PSF
0( , , ; , , ; ) , , ; ;S x y z x y z S x x y y z zξ ξω ω′ ′ ′ ′ ′ ′≈ − −

• image reconstruction formula

( )1 sc PSF
2D 0

1 1
( , , ) ( , , , ) , , ; ;

T NN

x y x y
m

M x y z S k k z S k k z z
ω

ξ ξ
ξ

ω ω
∗−

= =

   ′ ′ ′ ′= ⋅    
∑∑  
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SIMULATION EXAMPLE: QUALITATIVE SPM IMAGE OF F-SHAPE

simulation of data acquisitionsimulation of PSF acquisition

sample PSF: S11 at 4 GHz MAG/PHASE

r,b 1.0ε =
r,sp 1.1ε = r,b 1.0ε =

r,OUT 1.2ε =

min

max

3 GHz
16 GHz

1 GHz

f
f
f

=
=

∆ =

sample PSF: S11 at 4 GHz MAG/PHASEAltair FEKO
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• blurring typical for cross-correlation 
methods
 limited number of responses
diffraction limit on resolution

SIMULATION EXAMPLE: QUALITATIVE SPM IMAGE OF F-SHAPE – 2 
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QUANTITATIVE SPM WITH MEASURED PSFs

( )
a

PSF
0

1

sc ( , , , )( , , ) , , ; ;
TN

S
M x y z S x x y y z z dxdy dS x y z ξω ξ

ξ
ω ω ω

∗

=

 ′ ′ ′ ′ ′ ′= ⋅ − − ∑∫ ∫∫

• quantitative SPM uses the qualitative maps to improve the image quality significantly 

sc PSF
r 0

r,sp sp

1( , , ; ) ( , , ) ( , , ; ; ) , 1, , T
x y z

S x y z x y z S x x y y z z dx dy dz Nξ ξω ε ω ξ
ε ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′≈ ∆ − − =
∆ ∆Ω ∫ ∫ ∫ 

s
sp@( , , )

r, p sp
r

s
( , ,1( , , ) ,) ( , )x y zV

M xx yx y z M y z dxz dy dz
ε

ε ′′ ′′ ′′′ ′ ′ ′ ′ ′ ′′ ′′ ′ ′′= ⋅
∆ Ω

′′ ′′ ′∆∫∫∫

qualitative SPM 
image of OUT

qualitative SPM image of scattering 
probe when it is at (x", y", z")

unknown 
contrast
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QUANTITATIVE SPM: SOLUTION IN FOURIER SPACE

• quantitative SPM solves the linear problem

s
sp@( , , )

r, p sp
r

s
( , ,1( , , ) ,) ( , )x y zV

M xx yx y z M y z dxz dy dz
ε

ε ′′ ′′ ′′′ ′ ′ ′ ′ ′ ′′ ′′ ′ ′′= ⋅
∆ Ω

′′ ′′ ′∆∫∫∫

• linear system of equations can be quite large in real space: square system of size
• solving in Fourier (k-) space is much faster (similar to holography)
• assumption of medium lateral uniformity: a shift in the position of the scattering probe 

leads to a corresponding shift in its qualitative map obtained with the central PSF

v vN N×

sp@( , , ) sp@(0,0, )( , , ) ( , , )x y z zM x y z M x x y y z′′ ′′ ′′ ′′′ ′ ′ ′ ′′ ′ ′′ ′= − −

sp@(0,0, )
r,sp sp

convolution in ( , )

r
1( , , ) ( , , )( , , ) z

z y x

x y

M x y z M x x y y zx y z dx dy dz
ε

ε ′′
′′ ′′ ′′

′ ′ ′ ′ ′′ ′ ′′ ′ ′′ ′′ ′′= ⋅ − −
∆ Ω

′′ ′′ ′′∆∫ ∫ ∫
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QUANTITATIVE SPM: SOLUTION IN FOURIER SPACE – 2 

v
sp@(0,0, )

1r,sp sp
( , , ) ( , , ),  1, ,( , , )

z

q

N

x y p z x y zx q
q

y pM k k z Mf k kk z p Nk z
ε =

Ω
= ⋅ =
∆ Ω ∑ 





• small square system of equations is solved at each spectral position  ( , )x yk k=κ
( ) ( ) ( )=κ κ κM x m

( ) 1( , ) ( , )
z

T
Nf z f z =  κ κ κx  



( ) 1( , ) ( , )
z

T
NM z M z =  κ κ κm  



1

1

sp@(0,0, ) 1 sp@(0,0, ) 1

( )

sp@(0,0, ) sp@(0,0, )

( , ) ( , )

( , ) ( , )

Nz

z N zz

z z

z N z N

M z M z

M z M z

 
 

=  
 
  

κ

κ κ

κ κ
M

 



  

 



• final step: back to (x,y) space

{ }r,sp sp 1
2D

v
( , , ) ( ; ) , 1, ,r n n zx y z f z n N

ε
ε −∆ Ω

′ ′ ′ ′∆ = =
Ω

κ 
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SIMULATION EXAMPLE: QUANTITATIVE SPM IMAGE OF F-SHAPE

Reεr Imεr

[Shumakov, in Nikolova, Introduction to Microwave Imaging, 2017]
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EXPERIMENTAL EXAMPLE: QUANTITATIVE SPM

2nd layer

4th layer

CO: sheet with 
scattering probe

r,b 10 i5ε ≈ −

[Shumakov et al., IEEE Trans. MTT, 2018]

• 5 cm thick carbon-rubber sample
• frequency: from 3 GHz to 9 GHz (61 

samples)
• scattering probe
• all embedded objects are 1 cm thick 
• reflection and transmission coefficients on 

two TEM horn antennas aligned along 
boresight

• imaged area 13 cm by 13 cm (2 mm sampling 
step)

r,sp 15 i0.003ε ≈ −
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EXPERIMENTAL EXAMPLE: QUANTITATIVE SPM – IMAGES 

rReε

rImε

[Shumakov et al., IEEE Trans. MTT, 2018]

rReε

rImε

Born 
approximation

Rytov
approximation
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EXPERIMENTAL EXAMPLE: TEDDY BEAR 2-D IMAGE

normalized permittivity contrast

empty with hidden objects
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INVERSION WITH SYNTHETIC FOCUSING
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SYNTHETIC FOCUSING: MATCHED FILTERING

• synthetic focusing is the process of cross-correlating each measured signal with a signal, 
which represents the radar response to a point scatterer at r' (this is just the system PSF)

sc PSF( , ; ) ( , ) ( , ; )x t S t S tξ ξ ξ′ ′= ⊗r r r r r

• Why is this called “filtering”?

signal recorded at r
“focused” on r' 

• this computation is known as matched filtering – it checks how well a signal “matches” 
the PSF at r' for all time shifts

in the frequency domain: 
a

PSF

( , ;
1

)

sc ( , ; )( ; ) ( , )
T

H

N

S
X S dS

ξ

ξ
ξ

ξ

ω

ω ωω
∈

=

∗

′

 ′ = ⋅ ′∑ ∫∫r
r r

r r rrr


transfer function of the matched filter
(aka steering filter)

sc

input ouf r tputilte

( , ) ( , ; )( , ; )S XHξξ ξω ωω ′⋅ =′r r rr r
   

( , ; )Xξ ω′r r




45

SYNTHETIC FOCUSING: SIGNAL PROCESSING STAGES

• STAGE 1: matched filtering of all measured responses with “focus” on r'

• STAGE 2: summing up all r'-focused responses at each time instant

sc PSF sc

cross-correlation convolution

( , ;( , ; ) ( , ) ( , ; ) ( , ) )x t S t S t h tt Sξ ξ ξ ξ ξ′ ′= ⊗ = ∗ ′r rr r r r r r
 

a a

sc PSF
( )1 1

integrating over radar aperture

( ; ) ( , ; ) ( , ) ( , ; ) , 0,1, ,
T T

n

N N

n n tS S t
y t x t d S t S t d n Nξ ξ ξ

ξ ξ
∈ ∈

= =
 ′ ′ ′= = ⊗ = ∑ ∑∫∫ ∫∫r r

r r r r r r r r 



• STAGE 3: windowing focused output to suppress radar clutter
( ; ) ( ; ) , 0,1, ,( )w n n tny t y tt n Nw′ ′= ⋅ =r r 

• STAGE 4: calculating scattering intensity at r'
2( ) ( , )wt

I y t dt′ ′= ∫r r PLOT as function of r'

matched filter impulse response
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SYNTHETIC FOCUSING: SIGNAL-FLOW SCHEMATIC
[Nikolova, Introduction to Microwave Imaging, 2017]
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UNDERSTANDING SYNTHETIC FOCUSING

• core computation in synthetic focusing

s a

PSF PSF
r

( )1
( ; ) ( ) ( , ) ( , )

TN

V S t
y t S S d dξ ξ

ξ
ε

′′∈ ∈
=

 ′ ′′ ′ ′′ ′′∆ ⋅ ⊗ ∑∫∫∫ ∫∫r r
r r r r r r r r

a

sc PSF
( )1

( ; ) ( ) ( , )
TN

S t
y t S S dξ ξ

ξ
∈

=
 ′ ′= ⊗ ∑ ∫∫rr r r r r

• time-domain linear model of scattering (inverse FT of the frequency-domain model)

s s

sc PSF sc PSF
r r( ; ) ( ) ( ; ; ) ( ; ) ( ) ( ; ; )

V V
S S d S t S t dξ ξ ξ ξω ε ω ε′ ′ ′ ′ ′ ′∆ ⋅ ⇒ ∆ ⋅∫∫∫ ∫∫∫r r r r r r r r r r 
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UNDERSTANDING SYNTHETIC FOCUSING – 2 

• with large number of responses, the strength of y(r';t) is proportional to the contrast  ∆εr(r') 
because the autocorrelation term dominates the integral over r"

a

PSF PSF
r

( )1
autocorrelation term: ( ) ( , ) ( , )

TN

S t
S S dξ ξ

ξ
ε

∈
=

 ′′ ′ ′ ′ ′= ⇒ ∆ ⋅ ⊗ ∑∫∫rr r r r r r r r

a

PSF PSF
r

( )1
cross-correlation terms:  ( ) ( , ) ( , )

TN

S t
S S dξ ξ

ξ
ε

∈
=

 ′′ ′ ′′ ′ ′′≠ ⇒ ∆ ⋅ ⊗ ∑∫∫rr r r r r r r r

s a

PSF PSF
r

( )1
( ; ) ( ) ( , ) ( , )

TN

V S t
y t S S d dξ ξ

ξ
ε

′′∈ ∈
=

 ′ ′′ ′ ′′ ′′∆ ⋅ ⊗ ∑∫∫∫ ∫∫r r
r r r r r r r r





integration over incoherent weak x-correlations 
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DELAY AND SUM (DAS) RECONSTRUCTION ALGORITHM

• DAS is the simplest synthetic-focusing algorithm
• it assumes a PSF of the form (same for all response types and antennas) 

PSF Tx Rx
Rx Tx 0 Tx Rx Tx Tx Rx Rx

b

( ) ( )( , ; ; ) / ( ), where ,r rS t t t r r r r
v

δ
 ′ ′+′ ′ ′+ − = − = − 
 

r rr r r r r r r

often ignored with far-zone measurementsreference time for scattering center at origin

• for a point scatterer at the reference point (origin)
PSF PSF

Rx Tx 0 Rx Tx

Tx Rx
0

b

( , ; 0; ) ( , ; )
| | | |

S t S t

t t
v

δ

′ = ≡
 +
+ − 

 

r r r r r
r r



 origin often chosen at furthest point and  
Tx Rx

0
b

| | | |t
v
+

=
r r so that PSF

0 Rx Tx( , ; ) ( )S t tδ=r r
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DELAY AND SUM (DAS) RECONSTRUCTION ALGORITHM – 2 

• DAS PSF is a plane wave in the frequency domain 
b Tx Rx 0i ( )PSF

Rx Tx( , ; ; ) k r r rS eω − + −′ =r r r

• DAS matched filters
b Tx Rx 0i ( )PSF * Tx Rx

Rx Tx Rx Tx 0
b

( , ; ; ) ( ) ( , ; ; )k r r r r rH S e h t t t
v

ω δ+ −  +′ ′= = ⇒ = − + 
 

r r r r r r

b b

0 Tx Rx b 0

where 
/  (wavenumber)

| | | |  (signal path through reference point)
k v
r v t

ω=
= + =r r

Tx Rx
0

b

( ) ( )r rt t
v

δ
 ′ ′+
+ − 

 

r r
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DELAY AND SUM (DAS) RECONSTRUCTION ALGORITHM – 3 

• DAS synthetic focusing

a

a

a

sc

1

Tx Rxsc
0

b1

Tx Rxsc
0

b1

response is "delayed"

responses colecte

Tx Rx
0

b
( ; ) ( ; )

( ; )

;

T

T

T

N

S

N

S

N

S

y t S t d

r rS t t d d
v

r rS t t d
v

r rt t
vξ

ξ

ξτ
ξ

ξ
ξ

δ

τ δ τ τ

∈
=

∈
=

∈
=

′ = ∗

+ = − + − 
 

 + = − −  



+ +

  

− 


∑ ∫∫

∑ ∫∫ ∫

∑ ∫∫

r

r

r

r r r

r r

r r


d over aperture are "delayed and sumed"


sifting property of δ-function

• DAS focusing is nothing but a time-shift of the response so as to virtually space-shift 
the scattering center from r' to the origin (reference point)

matched filter
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DAS: CONCEPTUAL EXAMPLE 

1 ( 70,80) mm′ = −r

2 (40,130) mm′ =r

void (0,100) mm′ =r
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DAS: CONCEPTUAL EXAMPLE 

( , )y t′r

plot image

2( ) ( , )wt
I y t dt′ ′= ∫r r

window

t0

1( ) 2927I ′ ≈r

2( ) 2927I ′ ≈r

void( ) 14I ′ ≈r
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DAS: 2-D SIMULATION EXAMPLE

array elements

10
0

40

40

32
x

y

16

[MEFiSTo-3D]

• 2-D simulation (TMz mode)
• point sources
• point probes recording Ez(t)

r,b 1ε =

r 25ε =
r 50ε = r 20ε =

0 200 400 600 800
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

bandwidth at 3 dB
from 1.25 GHz to 8.75 GHz



55

DAS: 2-D SIMULATION EXAMPLE

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

discussion
• Why the simple DAS algorithm (PSF is a δ-function of time) 

performs similarly to the more sophisticated x-correlation 
with the actual simulated PSF?
 due to the point-like nature of the sources and probes

• Why do we have so many artifacts?
 because the forward model does not take into account 

mutual coupling and scattering between close-by targets
 the Tx total field is not the same as the Tx incident field 

(as the linearized model assumes) and these differences 
appear as spurious contrast (image artifacts)

 because we have only 8 probes – incomplete data!
-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

simple DAS

x-corr with PSF
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SUMMARY OF DAY TWO

• real-time imaging methods provide an image within seconds of the 
data acquisition

• real-time methods substantially rely on linearized forward models
• there are 2 main types of real-time imaging methods
 direct solution of the data equation (microwave holography)
 cross-correlation with system PSF (scattered-power mapping & 

synthetic focusing)
• assumption of uniform or layered medium enables super-fast solution in Fourier space
• however, inversion in Fourier space has some “pitfalls” – we discuss those and the 

respective mitigation strategies during Day Three of this course
QMH, SPM codes available:
http://www.ece.mcmaster.ca/faculty/nikolova/IntroMicrowaveImaging/MatlabCodes/
We keep updating!

http://www.ece.mcmaster.ca/faculty/nikolova/IntroMicrowaveImaging/MatlabCodes/
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THANK YOU!
[worldartsme.com]
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