UNIVERSITÀ DELLA CALABRIA
 DIMES

April 9 - 11, 2019

Introduction to Microwave Imaging Part II: Linear Inversion Methods

Natalia K. Nikolova
nikolova@ieee.org

McMaster University
Department of Electrical and Computer Engineering Electromagnetic Vision (EMVi) Research Laboratory Hamilton, ON CANADA

COURSE OVERVIEW

Day 1: Introduction \& Forward Models of Microwave Imaging

- Field-based Integral Solutions of the Scattering Problem in Time and Frequency
- Born and Rytov Approximations of the Forward Model of Scattering
- Scattering Parameters and Integral Solutions in terms of S-parameters
- 2D Model of Tomography in Microwave Scattering

Day 2: Linear Inversion Methods

- Deconvolution Methods

Microwave Holography (MH)
Scattered Power Mapping (SPM)

- Image Reconstruction of Pulsed-radar Data

Synthetic Focusing: Delay and Sum (DAS)

Day 3: Performance Metrics \& Hardware

- Spatial Resolution
- Dynamic Range
- Data Signal-to-noise Ratio

Select Topics

- Overview of Nonlinear Inversion Methods

Direct Iterative Methods
Model-based Optimization Methods

- Tissue Imaging - Challenges and Advancements

THE KERNEL OF THE DATA EQUATION: POINT-SPREAD FUNCTION (PSF)

THE REALISTIC MEASUREMENT SCENARIO

- microwave measurements involve scanning over large acquisition surfaces - each response being function of the observation position \mathbf{r}
- at each observation position \mathbf{r} several responses may be acquired

example of antenna array measuring 9 responses at each \mathbf{r}
[Amineh et al., IEEE Trans. Instr. Meas., 2015][Photo credit: Justin J. McCombe]
- example of planar scanning for microwave imaging

reflected signals: S_{11}, S_{22}

type of response	number of values $S_{i k}(x, y)$
co-pol X-X	$4 \times N_{\omega}$
co-pol Y-Y	$4 \times N_{\omega}$
cross-pol X-Y	$4 \times N_{\omega}$
cross-pol Y-X	$4 \times N_{\omega}$
TOTAL	$16 \times N_{\omega}$

number of possible responses acquired at each position
$>$ transmitted signals: S_{21}, S_{12} ($S_{21}=S_{12}$ in reciprocal systems)

FORWARD MODEL WITH PLANAR SCANNING

- S-parameter forward model in planar scanning

$$
\begin{aligned}
& \underbrace{S_{\xi}^{\mathrm{sc}}(x, y, \bar{z} ; \omega)}_{\text {data }} \approx \underbrace{\frac{\mathrm{i} \omega \varepsilon_{0}}{2 a_{i} a_{k}}}_{\kappa} \iiint_{V_{\mathrm{s}}} \Delta \varepsilon_{\mathrm{r}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\left[\mathbf{E}_{\xi, \mathrm{Rx}}^{\mathrm{inc}} \cdot \mathbf{E}_{\xi, \mathrm{Tx}}^{\mathrm{inc}}\right]_{\left(x^{\prime}, y^{\prime}, z^{\prime} ; x, y, \bar{z} ; \omega\right)} d x^{\prime} d y^{\prime} d z^{\prime}, \xi=1, \ldots, N_{T} \\
& \text { • (response type) replaces }(i, k)
\end{aligned}
$$

EXAMPLE: RESPONSE TYPES WITH 2-PORT MEASUREMENT

ξ	(i, k)	response type
1	$(1,1)$	reflection S_{11}
2	$(2,2)$	reflection S_{22}
3	$(1,2)$ or $(2,1)$	transmission $S_{12}=S_{21}$

$$
N_{T}=3
$$

- S-parameter forward model in planar scanning

$$
S_{\xi}^{\mathrm{sc}}(\underbrace{x, y, \bar{z}}_{\mathrm{r}_{\mathrm{Rx}} \& \mathrm{r}_{\mathrm{Tx}}} ; \omega) \approx \kappa \iiint_{V_{\mathrm{s}}} \Delta \varepsilon_{\mathrm{r}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\left[\mathbf{E}_{\xi, \mathrm{Rx}}^{\mathrm{inc}} \cdot \mathbf{E}_{\xi, \mathrm{Tx}}^{\mathrm{inc}}\right]_{\left(x^{\prime}, y^{\prime}, z^{\prime} ; x, y, \bar{z} ; \omega\right)} d x^{\prime} d y^{\prime} d z^{\prime}, \xi=1, \ldots, N_{T}
$$

- position of $T x / R x$ antenna pair given by \mathbf{r}_{Rx}

$$
\mathbf{r}_{\mathrm{Rx}} \equiv(x, y, \bar{z}) \text { and } \mathbf{r}_{\mathrm{Tx}} \equiv(x, y, \bar{z}-D)
$$

- resolvent kernel of forward model - re-visiting last lecture

$$
S_{\xi}^{\mathrm{sc}}(x, y, \overline{\mathrm{z}} ; \omega) \approx \kappa \iiint_{V_{\mathrm{s}}} \Delta \varepsilon_{\mathrm{r}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \underbrace{\left[\overline{\mathbf{E}}_{\xi, \mathrm{Rx}}^{\mathrm{inc}} \cdot \overline{\mathbf{E}}_{\xi, T \mathrm{Tx}}^{\mathrm{inc}}\right]_{\left(x^{\prime}, y^{\prime}, z^{\prime} ; x, y, \bar{z} ; \omega\right)} d x^{\prime} d y^{\prime} d z^{\prime}, \xi=1, \ldots, N_{T} . \xi=1 .}_{\text {approximate (Born) resolvent kernel } \mathcal{K}_{\xi}\left(\mathbf{r}^{\prime} ; \mathbf{r} ; \omega\right)}
$$

- method 1: analytical far-zone expressions well suited only for measurements in air with large stand-off distances
- method 2: simulated field distributions suffer from modeling errors
- method 3: Measurements? Yes, measure the system point-spread function (PSF) [Savelyev\& Yarovoy, EuRAD 2012][Amineh et al., IEEE Trans. Instrum. Meas., 2015]

RESOLVENT KERNEL \& POINT-SPREAD FUNCTION (PSF)

- PSF is data measured with point scatterer (electrically small object)

- relating PSF to kernel

$$
\begin{aligned}
& S_{\xi}^{\mathrm{PSF}}(x, y, \bar{z} ; \omega) \approx \kappa \iiint_{V_{\mathrm{s}}} \underbrace{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \delta\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)}_{\text {scattering probe (sp) contrast }} \cdot \mathcal{K}_{\xi}\left(x^{\prime}, y^{\prime}, z^{\prime} ; x, y, \bar{z} ; \omega\right) d x^{\prime} d y^{\prime} d z^{\prime} \\
& \Rightarrow S_{\xi}^{\mathrm{PSF}}\left(x, y, \bar{z} ; x^{\prime}, y^{\prime}, z^{\prime} ; \omega\right) \approx \underbrace{\left(\kappa \Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}\right)}_{\text {known constants }} \cdot \mathcal{K}_{\xi}\left(x^{\prime}, y^{\prime}, z^{\prime} ; x, y, \bar{z} ; \omega\right), \xi=1, \ldots, N_{T}
\end{aligned}
$$

$$
\mathcal{K}_{\xi}\left(x^{\prime}, y^{\prime}, z^{\prime} ; x, y, \bar{z} ; \omega\right)=\frac{S_{\xi}^{\mathrm{PSF}}\left(x, y, \bar{z} ; x^{\prime}, y^{\prime}, z^{\prime} ; \omega\right)}{\kappa \Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}}, \xi=1, \ldots, N_{T}
$$

- notice the simple exchange of positions allowing to obtain the kernel from the PSF

$$
\mathcal{K}_{\xi}\left(\mathbf{r}^{\prime} ; \mathbf{r} ; \omega\right)=\frac{S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r} ; \mathbf{r}^{\prime} ; \omega\right)}{\kappa \Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}} \quad \begin{aligned}
& \text { observation: } \mathbf{r} \equiv(x, y, z) \\
& \text { integration (probe location): } \mathbf{r}^{\prime} \equiv\left(x^{\prime}, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

- if medium in V_{s} is uniform (or layered for planar acquisition) - probe needs to be measured only at the center of an imaged plane $z^{\prime}=$ const

$$
\text { measured centered PSF: } S_{\xi, 0}^{\mathrm{PSF}}\left(x, y, \bar{z} ; z^{\prime} ; \omega\right) \equiv S_{\xi}^{\mathrm{PSF}}\left(x, y, \bar{z} ; 0,0, z^{\prime} ; \omega\right)
$$

- since medium is uniform or layered

$$
S_{\xi}^{\mathrm{PSF}}\left(x, y, \bar{z} ; x^{\prime}, y^{\prime}, z^{\prime} ; \omega\right)=S_{\xi, 0}^{\mathrm{PSF}}\left(x-x^{\prime}, y-y^{\prime}, \bar{z} ; z^{\prime} ; \omega\right) \longleftarrow \quad \begin{aligned}
& \text { probe moves left/right } \rightarrow \\
& \text { response moves left/right }
\end{aligned}
$$

$$
\mathcal{K}_{\xi}\left(x^{\prime}, y^{\prime}, z^{\prime} ; x, y, \bar{z} ; \omega\right)=\frac{S_{\xi, 0}^{\mathrm{PSF}}\left(x-x^{\prime}, y-y^{\prime}, \bar{z} ; \mathrm{z}^{\prime} ; \omega\right)}{\kappa \Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}}, \xi=1, \ldots, N_{T}
$$

$$
\Rightarrow S_{\xi}^{\mathrm{sc}}(x, y, \bar{z} ; \omega) \approx \frac{1}{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}} \iiint_{V_{\mathrm{s}}} \underbrace{\Delta \varepsilon_{\mathrm{r}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) S_{\xi, 0}^{\mathrm{PSF}}\left(x-x^{\prime}, y-y^{\prime}, \bar{z} ; z^{\prime} ; \omega\right.}_{\text {convolution in } x, y}) d x^{\prime} d y^{\prime} d z^{\prime}, \xi=1, \ldots, N_{T}
$$

- the measured response is a convolution of the contrast and the system PSF
- the image reconstruction can then be viewed as a de-convolution process!
- system calibration involves two measurements:
(i) reference object (RO) - incident-field data
(ii) calibration object (CO) - scattering-probe data
- PSF extraction
> Born Method

$$
S_{\xi 0}^{\mathrm{PSF}}(\cdot) \approx\left(S_{\xi 0}^{\mathrm{PSF}}(\cdot)\right)_{\mathrm{B}}=S_{\xi}^{\mathrm{CO}}(\cdot)-S_{\xi}^{\mathrm{RO}}(\cdot)
$$

Reference Object

Calibration Object

Rytov Method

$$
S_{\xi 0}^{\mathrm{PSF}}(\cdot) \approx\left(S_{\xi 0}^{\mathrm{PSF}}(\cdot)\right)_{\mathrm{R}}=S_{\xi}^{\mathrm{RO}}(\cdot) \ln \left(\frac{S_{\xi}^{\mathrm{CO}}(\cdot)}{S_{\xi}^{\mathrm{RO}}(\cdot)}\right)
$$

$(\cdot) \equiv(x, y, \bar{z} ; \omega), \quad \xi=1, \ldots, N_{T}$

- typical noise-free PSF obtained from simulated RO and CO data

- typical noisy PSF obtained from measurements (magnitude shown) [Tajik et al., EuCAP 2019]

- data is extracted with the same method as that for PSF - being consistent is important!
$>$ Born Method

$$
S_{\xi}^{\mathrm{sc}}(\cdot) \approx\left(S_{\xi}^{\mathrm{sc}}(\cdot)\right)_{\mathrm{B}}=S_{\xi}^{\mathrm{OUT}}(\cdot)-S_{\xi}^{\mathrm{RO}}(\cdot)
$$

$>$ Rytov Method

$$
S_{\xi}^{\mathrm{sc}}(\cdot) \approx\left(S_{\xi}^{\mathrm{sc}}(\cdot)\right)_{\mathrm{R}}=S_{\xi}^{\mathrm{RO}}(\cdot) \ln \left(\frac{S_{\xi}^{\mathrm{OUT}}(\cdot)}{S_{\xi}^{\mathrm{RO}}(\cdot)}\right)
$$

$(\cdot) \equiv(x, y, \bar{z} ; \omega), \quad \xi=1, \ldots, N_{T}$

INVERSION WITH MICROWAVE HOLOGRAPHY

DATA EQUATION IN FOURIER SPACE

$$
S_{\xi}^{\mathrm{sc}}(x, y, \bar{z} ; \omega) \approx \frac{1}{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}} \int_{x^{\prime} y^{\prime} z^{\prime}} \int_{z^{\prime}} \Delta \varepsilon_{\mathrm{r}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) S_{\xi, 0}^{\mathrm{PSF}}\left(x-x^{\prime}, y-y^{\prime}, \bar{z} ; z^{\prime} ; \omega\right) d x^{\prime} d y^{\prime} d z^{\prime}, \xi=1, \ldots, N_{T}
$$

- in Fourier (or k) space

$$
\tilde{S}_{\xi}\left(k_{x}, k_{y} ; \bar{z} ; \omega\right) \approx \frac{\Delta x^{\prime} \Delta y^{\prime}}{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}} \int_{z^{\prime}} \underbrace{\tilde{F}\left(k_{x}, k_{y} ; z^{\prime}\right)}_{\mathrm{FT}_{2 \mathrm{D}}\left\{\Delta \varepsilon_{\mathrm{r}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\}} \cdot \tilde{S}_{\xi, 0 z^{\prime}}^{\mathrm{PSF}}\left(k_{x}, k_{y} ; z^{\prime} ; \omega\right) d z^{\prime}
$$

- discretize integral along z^{\prime} into a sum
- we now have a system of equations to solve at each spectral position $\boldsymbol{\kappa}=\left(k_{x}, k_{y}\right)$

$$
\left.\tilde{S}_{\xi}^{(m)}(\boldsymbol{\kappa}) \approx \sum_{n=1}^{N_{z}} \tilde{f}\left(\boldsymbol{\kappa} ; z_{n}^{\prime}\right)\left[\tilde{S}_{\xi, 0}^{\mathrm{pSF}}\left(\boldsymbol{\kappa} ; z_{n}^{\prime}\right)\right]^{(m)} \begin{array}{l}
m=1, \ldots, N_{\omega} \\
\xi=1, \ldots, N_{T}
\end{array}\right) \tilde{f}\left(\boldsymbol{\kappa} ; z_{n}^{\prime}\right)=\frac{\Delta x^{\prime} \Delta y^{\prime} \Delta z_{n}^{\prime}}{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}} \cdot \tilde{F}\left(\boldsymbol{\kappa} ; z_{n}^{\prime}\right)
$$

$$
\underbrace{\tilde{S}_{\xi}^{(m)}(\boldsymbol{\kappa})}_{\text {data } \boldsymbol{d}(\boldsymbol{\kappa})} \approx \sum_{n=1}^{N_{z}} \underbrace{\tilde{f}\left(\boldsymbol{\kappa} ; z_{n}^{\prime}\right)}_{\text {contrast } f(\boldsymbol{\kappa})} \underbrace{\tilde{S}_{\xi, 0 z^{\prime}}^{\text {PSF }}\left(\boldsymbol{\kappa} ; z_{n}^{\prime}\right)}_{\text {system matrix } \boldsymbol{A}(\boldsymbol{\kappa})}]^{(m)} \quad \begin{array}{l}
m=1, \ldots, N_{\omega} \\
\xi=1, \ldots, N_{T}
\end{array}]
$$

in discrete Fourier space

$$
\boldsymbol{\kappa}_{i j} \equiv\left(i \Delta k_{x}, j \Delta k_{y}\right)
$$

- at each discrete point in Fourier space, a small system of equations is solved for a total of $N_{x} N_{y}$ such systems

- at each plane along range $\left(z_{n}^{\prime}, n=1, \ldots, N_{z}\right)$

$$
\begin{aligned}
& \Delta \varepsilon_{\mathrm{r}}\left(x^{\prime}, y^{\prime}, z_{n}^{\prime}\right)=\frac{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}}{\Omega_{\mathrm{v}}} \mathcal{F}_{2 \mathrm{D}}^{-1}\left\{\tilde{f}\left(\boldsymbol{\kappa} ; z_{n}^{\prime}\right)\right\}, n=1, \ldots, N_{z} \\
& \varepsilon_{\mathrm{r}}\left(x^{\prime}, y^{\prime}, z_{n}^{\prime}\right)=\varepsilon_{\mathrm{r}, \mathrm{~b}}+\Delta \varepsilon_{\mathrm{r}}\left(x^{\prime}, y^{\prime}, z_{n}^{\prime}\right)
\end{aligned}
$$

- we solve $\left(N_{x} \cdot N_{y}\right)$ small systems of equations number of solved systems on the order of 10^{4} to 10^{5}
- size of each system is small: $N_{T} N_{\omega} \times N_{z}$ (e.g. 60×5)
- typical execution times: 2 to 3 seconds on a laptop using Matlab
- solution is orders of magnitude faster than solving in real space where one very large system of equations needs to be solved of size

$$
\begin{gathered}
N_{D} \times N_{\mathrm{v}} \text { with } N_{D}=N_{x} N_{y} N_{\omega} N_{T} \sim 10^{7} \text { to } 10^{8} \\
N_{\mathrm{v}}=N_{x} N_{y} N_{z} \sim 10^{6} \text { to } 10^{7}
\end{gathered}
$$

air

Object	ε_{r}
C-shape \square	$1.5-\mathrm{i} 0$
Cubes	$1.1-\mathrm{i} 0$

- 2 dipole antennas aligned along boresight, separated by 10 cm
- reflection and transmission coefficients acquired

- C-shape is 4 cm from lower dipole
- cubes are $4 \mathrm{~cm}, 5 \mathrm{~cm}$, and 6 cm from lower dipole
- acquisition plane of area 30 cm by 30 cm with 1 cm sampling interval along x and y
- frequency range from 3 GHz to $8 \mathrm{GHz}, \Delta f=1 \mathrm{GHz}$
- scattering probe in calibration: $1 \mathrm{~cm}^{3}$ cube of $\varepsilon_{\mathrm{r}, \mathrm{sp}}=$ 1.1 - i0
[Tajik et al., JPIER-B 2017]

Born Approximation

Rytov Approximation

- due to the targets' low contrast, both approximation yield practically the same images
- quantitative estimate of permittivity distribution is very good

MEASUREMENT EXAMPLE: Teddy Bear (2-D Image)

- scanned area: 29 cm by 29 cm
- sampling step along x and $y: 5 \mathrm{~mm}$
- only transmission coefficient acquired
- frequency range from 8 GHz to 12 GHz (41 samples)
- two open-end waveguides (WR-90) aligned along boresight
$>$ measurement 1: just teddy bear
$>$ measurement 2: two objects inserted in teddy bear

1) dielectric cross: $\varepsilon_{\mathrm{r}}=12-\mathrm{i} 0$ (thickness 1 cm , cross arm 3 cm) inserted in bear's tummy
2) dielectric L-shaped object: $\varepsilon_{\mathrm{r}}=10-\mathrm{i} 5$ (thickness $1 \mathrm{~cm}, \mathrm{~L}$ arm 2 cm) inserted in right arm

normalized contrast

MEASUREMENT EXAMPLE: 2-D QUANTITATIVE ESTIMATES (Teddy Bear)

permittivity

EXAMPLE: 3-D NEAR-ZONE IMAGING OF METALLIC OBJECTS (RE-VISITED)
[Amineh et al., Trans. IM, 2015]

$$
\begin{aligned}
& \Delta x=\Delta y=5 \mathrm{~mm} \\
& \Delta f=250 \mathrm{MHz}
\end{aligned}
$$

> X-band (WR90) open-end waveguides ($f_{c} \approx 6.56 \mathrm{GHz}$)

[photo credit: Justin McCombe]

INVERSION WITH SCATTERED POWER MAPPING (SPM)

QUALITATIVE IMAGING WITH SENSITIVITY MAPS

- SPM is rooted in early work on the use of response sensitivities in image reconstruction
[Y. Song, N.K. Nikolova, "Memory efficient method for wideband self-adjoint sensitivity analysis," IEEE Trans. Microwave Theory Tech., 2008]
[L. Liu, A. Trehan, N.K. Nikolova, "Near-field detection at microwave frequencies based on self-adjoint response sensitivity analysis," Inv. Problems, 2010]
- response sensitivities: response derivatives with respect to some system parameters
- in imaging - derivatives with respect to permittivity at each voxel (Fréchet derivative)
- assume we want to minimize the ℓ_{2}-norm error between the measured OUT (total-field) and RO (incident-field) data

$$
F\left[\varepsilon\left(\mathbf{r}^{\prime}\right)\right]=0.5 \sum_{\xi=1}^{N_{T}} \int_{\omega} \iint_{\mathbf{r} \in S_{\mathrm{a}}}\left\|S_{\xi}^{\mathrm{OUT}}(\mathbf{r}, \omega)-S_{\xi}^{\mathrm{RO}}\left[\mathbf{r}, \omega ; \varepsilon\left(\mathbf{r}^{\prime}\right)\right]\right\|_{2}^{2} d \mathbf{r} d \omega
$$

- for that we need to know how to properly change the permittivity in the $\mathrm{RO} \varepsilon_{\mathrm{b}}\left(\mathbf{r}^{\prime}\right) \xrightarrow{?} \varepsilon\left(\mathbf{r}^{\prime}\right)$ $>$ we need to know how the error function F would change when ε changes at $\forall \mathbf{r}_{n}^{\prime} \in V_{\mathrm{s}}$

$$
\frac{\partial F}{\partial \varepsilon\left(\mathbf{r}_{n}^{\prime}\right)}=? \quad n=1, \ldots, N_{\mathrm{v}}
$$

QUALITATIVE IMAGING WITH SENSITIVITY MAPS - 2

- Fréchet derivative with respect to $\varepsilon\left(\mathbf{r}^{\prime}\right)=\varepsilon^{\prime}\left(\mathbf{r}^{\prime}\right)-\mathrm{i} \varepsilon^{\prime \prime}\left(\mathbf{r}^{\prime}\right)$

$$
\begin{aligned}
& \operatorname{Re}\left\{D\left(\mathbf{r}^{\prime}\right)\right\}=\frac{\partial F}{\partial \varepsilon^{\prime}\left(\mathbf{r}^{\prime}\right)} \\
& \operatorname{Im}\left\{D\left(\mathbf{r}^{\prime}\right)\right\}=-\frac{\partial F}{\partial \varepsilon^{\prime \prime}\left(\mathbf{r}^{\prime}\right)}
\end{aligned} \rightarrow \rightarrow \text { indicates where contrast in } \varepsilon^{\prime} \text { exists in the OUT }
$$

$$
\underbrace{D\left(\mathbf{r}^{\prime}\right)}_{\substack{\text { sensitivity } \\ \text { map }}}=\sum_{\xi=1}^{N_{T}} \int_{\omega} \iint_{\mathbf{r} \in S_{\mathrm{a}}}\left[S_{\xi}^{\mathrm{RO}}(\mathbf{r}, \omega)-S_{\xi}^{\mathrm{OUT}}(\mathbf{r}, \omega)\right] \cdot\left[\frac{\partial S_{\xi}^{\mathrm{RO}}(\mathbf{r}, \omega)}{\partial \varepsilon\left(\mathbf{r}^{\prime}\right)}\right]^{*} d \mathbf{r} d \omega
$$

- sensitivity map: 3-D plot of the real and imaginary parts of $D\left(\mathbf{r}^{\prime}\right)$

$$
\underbrace{D\left(\mathbf{r}^{\prime}\right)=\sum_{\xi=1}^{N_{T}} \int_{\omega} \iint_{\mathbf{r} \in S_{\mathrm{a}}} \underbrace{}_{\substack{\left[S_{\xi}^{\mathrm{RO}}(\mathbf{r}, \omega)-S_{\xi}^{\mathrm{OUT}}(\mathbf{r}, \omega)\right]}} \cdot\left[\frac{\partial S_{\xi}^{\mathrm{RO}}(\mathbf{r}, \omega)}{\partial \varepsilon\left(\mathbf{r}^{\prime}\right)}\right]^{*} d \mathbf{r} d \omega)}_{-S_{\xi}^{\mathrm{SC}}(\mathbf{r}, \omega) \text { (Born approximation) }}
$$

- approximating the response derivative with the PSF

$$
\begin{aligned}
& \frac{\partial S_{\xi}^{\mathrm{RO}}(\mathbf{r}, \omega)}{\partial \varepsilon\left(\mathbf{r}^{\prime}\right)} \approx \frac{\Delta S_{\xi}^{\mathrm{RO}}(\mathbf{r}, \omega)}{\Delta \varepsilon\left(\mathbf{r}^{\prime}\right)} \approx \frac{S_{\xi}^{\mathrm{CO}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)-S_{\xi}^{\mathrm{RO}}(\mathbf{r}, \omega)}{\Delta \varepsilon_{\mathrm{sp}}\left(\mathbf{r}^{\prime}\right)}=\frac{S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)}{\Delta \varepsilon_{\text {sp }}} \\
& \Rightarrow-\Delta \varepsilon_{\text {position of scattering probe }}^{*} \cdot D\left(\mathbf{r}^{\prime}\right)=\underbrace{M\left(\mathbf{r}^{\prime}\right)}_{\begin{array}{c}
\text { scatered } \\
\text { power map }
\end{array}}=\sum_{\xi=1}^{N_{T}} \int_{\omega} \iint_{\mathbf{r} \in S_{\mathrm{a}}} S_{\xi}^{\mathrm{sc}}(\mathbf{r}, \omega) \cdot\left[S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)\right]^{*} d \mathbf{r} d \omega
\end{aligned}
$$

[Tu et al., Inv. Problems, 2015][Shumakov et al., IEEE Trans. MTT, 2018]

$$
\underbrace{M\left(\mathbf{r}^{\prime}\right)}_{\begin{array}{c}
\text { scattered } \\
\text { power map }
\end{array}}=\sum_{\xi=1}^{N_{T}} \int_{\omega} \iint_{\mathbf{r} \in S_{\mathrm{a}}} S_{\xi}^{\mathrm{SC}}(\mathbf{r}, \omega) \cdot\left[S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)\right]^{*} d \mathbf{r} d \omega
$$

- scattered-power map: 3-D qualitative image of the OUT contrast relative to the RO

SOME IMPORTANT ADVANTAGES

- reconstruction is practically instantaneous - no systems of equations are solved! ... reconstruction formula is a simple summation of response products
- reconstruction can be carried out with ANY set of observation points (no need to have acquisition surfaces of canonical shapes (planar, cylindrical, spherical)
\ldots as long as the PSF is available analytically or from measurements
- SPM image $M\left(\mathbf{r}^{\prime}\right)$ can be viewed as a plot of the aggregate measure of similarity between the OUT responses and the respective PSF responses due to point scatterer at \mathbf{r}^{\prime}

$$
M\left(\mathbf{r}^{\prime}\right)=\sum_{\xi=1}^{N_{T}} \iiint_{\omega \mathbf{r} \in S_{\mathrm{a}}} S_{\xi}^{\mathrm{sC}}(\mathbf{r}, \omega) \cdot\left[S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)\right]^{*} d \mathbf{r} d \omega=\sum_{\xi=1}^{N_{T}} \iint_{\omega} \iint_{\mathbf{r} \in S_{\mathrm{a}}} \mathcal{F}_{t} \underbrace{\left.S_{\xi}^{\mathrm{sc}}(\mathbf{r}, t) \otimes S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right)\right\}}_{\text {cross-correlation } X_{\xi}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \tau\right)} d \mathbf{r} d \omega
$$

- reminder: cross-correlation is a measure of similarity between 2 waveforms as a function of their mutual time-shift
- it can be shown that (with infinite bandwidth)

$$
M\left(\mathbf{r}^{\prime}\right) \sim \sum_{\xi=1}^{N_{T}} \iint_{\mathbf{r} \in S_{\mathrm{a}}} X_{\xi}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \tau=\widehat{0) d \mathbf{r}}\right. \text { no shift }
$$

- consider planar scanning and assume lateral translational invariance of the PSF

$$
S_{\xi}^{\mathrm{PSF}}\left(x, y, \bar{z} ; x^{\prime}, y^{\prime}, z^{\prime} ; \omega\right) \approx S_{\xi 0}^{\mathrm{PSF}}\left(x-x^{\prime}, y-y^{\prime}, \bar{z} ; z^{\prime} ; \omega\right)
$$

$$
\Rightarrow \quad M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\sum_{\xi=1}^{N_{T}} \int_{\omega} \underbrace{\int_{S_{\mathrm{a}}} S_{\xi}^{\mathrm{sc}}(x, y, \bar{z}, \omega) \cdot\left[S_{\xi 0}^{\mathrm{PSF}}\left(x-x^{\prime}, y-y^{\prime}, \bar{z} ; z^{\prime} ; \omega\right)\right]^{*} d x d y}_{\text {cross-correlation in }(x, y)} d \omega
$$

- image reconstruction formula

$$
\Rightarrow \quad M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\mathcal{F}_{2 \mathrm{D}}^{-1}\left\{\sum_{\xi=1}^{N_{T}} \sum_{m=1}^{N_{\omega}} \tilde{S}_{\xi}^{\text {sc }}\left(k_{x}, k_{y}, \bar{z}, \omega\right) \cdot\left[\tilde{S}_{\xi 0}^{\mathrm{PSF}}\left(k_{x}, k_{y}, \bar{z} ; z^{\prime} ; \omega\right)\right]^{*}\right\}
$$

simulation of data acquisition

Altair FEKO

$$
\begin{aligned}
& f_{\min }=3 \mathrm{GHz} \\
& f_{\max }=16 \mathrm{GHz} \\
& \Delta f=1 \mathrm{GHz}
\end{aligned}
$$

- blurring typical for cross-correlation methods
$>$ limited number of responses
$>$ diffraction limit on resolution

QUANTITATIVE SPM WITH MEASURED PSFs

- quantitative SPM uses the qualitative maps to improve the image quality significantly

$$
\begin{gathered}
M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\sum_{\xi=1}^{N_{T}} \int_{\omega} \iint_{S_{\mathrm{a}}} S_{\xi}^{\mathrm{sc}}(x, y, \bar{z}, \omega) \cdot\left[S_{\xi 0}^{\mathrm{PSF}}\left(x-x^{\prime}, y-y^{\prime}, \bar{z} ; z^{\prime} ; \omega\right)\right]^{*} d x d y d \omega \\
S_{\xi}^{\mathrm{sc}}\left(x, y, \bar{z} ; \widehat{\omega) \approx \frac{1}{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Delta \Omega_{\mathrm{sp}}} \iint_{x^{\prime}} \int_{y^{\prime} z^{\prime}} \int_{\mathrm{z}^{\prime}} \Delta \varepsilon_{\mathrm{r}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) S_{\xi 0}^{\mathrm{PSF}}\left(x-x^{\prime}, y-y^{\prime}, \bar{z} ; z^{\prime} ; \omega\right) d x^{\prime} d y^{\prime} d z^{\prime}, \xi=1, \ldots, N_{T}}\right.
\end{gathered}
$$

$$
\triangleleft \underbrace{\left.M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\frac{1}{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}} \iiint_{V_{\mathrm{s}}} \Delta \varepsilon_{\mathrm{r}}\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right) \cdot M_{\mathrm{sp} @\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right)}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) d x^{\prime \prime} d y^{\prime \prime} d z^{\prime \prime}\right)}
$$

qualitative SPM image of OUT contrast
qualitative SPM image of scattering probe when it is at ($x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$)

QUANTITATIVE SPM: SOLUTION IN FOURIER SPACE

- quantitative SPM solves the linear problem

$$
M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\frac{1}{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}} \iiint_{V_{\mathrm{s}}} \Delta \varepsilon_{\mathrm{r}}\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right) \cdot M_{\mathrm{sp} @\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right)}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) d x^{\prime \prime} d y^{\prime \prime} d z^{\prime \prime}
$$

- linear system of equations can be quite large in real space: square system of size $N_{\mathrm{v}} \times N_{\mathrm{v}}$
- solving in Fourier (k-) space is much faster (similar to holography)
- assumption of medium lateral uniformity: a shift in the position of the scattering probe leads to a corresponding shift in its qualitative map obtained with the central PSF

$$
\begin{gathered}
M_{\mathrm{sp} @\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right)}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=M_{\mathrm{sp} @\left(0,0, z^{\prime \prime}\right)}\left(x^{\prime}-x^{\prime \prime}, y^{\prime}-y^{\prime \prime}, z^{\prime}\right) \\
\triangleleft M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\frac{1}{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}} \int_{z^{\prime \prime}} \underbrace{\iint_{y^{\prime \prime}} \Delta \varepsilon_{\mathrm{r}}\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right) \cdot M_{\mathrm{sp} @\left(0,0, z^{\prime \prime}\right)}\left(x^{\prime}-x^{\prime \prime}, y^{\prime}-y^{\prime \prime}, z^{\prime}\right) d x^{\prime \prime} d y^{\prime \prime} d z^{\prime \prime}}_{\text {convolution in }(x, y)}
\end{gathered}
$$

QUANTITATIVE SPM: SOLUTION IN FOURIER SPACE - 2

$$
\tilde{M}\left(k_{x}, k_{y}, z_{p}\right)=\frac{\Omega_{\mathrm{v}}}{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}} \sum_{q=1}^{N_{z}} \tilde{f}\left(k_{x}, k_{y}, z_{q}\right) \cdot \tilde{M}_{\mathrm{sp} @\left(0,0, z_{q}\right)}\left(k_{x}, k_{y}, z_{p}\right), p=1, \ldots, N_{z}
$$

- small square system of equations is solved at each spectral position $\boldsymbol{\kappa}=\left(k_{x}, k_{y}\right)$

$$
\boldsymbol{M}_{(\mathbf{k})} \boldsymbol{X}_{(\mathbf{k})}=\boldsymbol{m}_{(\mathbf{k})}
$$

$$
\begin{aligned}
& \boldsymbol{x}_{(\boldsymbol{\kappa})}=\left[\tilde{f}\left(\boldsymbol{\kappa}, z_{1}\right) \cdots \tilde{f}\left(\boldsymbol{\kappa}, z_{N_{z}}\right)\right]^{T} \\
& \boldsymbol{m}_{(\boldsymbol{\kappa})}=\left[\tilde{M}\left(\boldsymbol{\kappa}, z_{1}\right) \cdots \tilde{M}\left(\boldsymbol{\kappa}, z_{N_{z}}\right)\right]^{T} \boldsymbol{M}_{(\boldsymbol{\kappa})}=\left[\begin{array}{ccc}
\tilde{M}_{\text {sp@ }\left(0,0, z_{1}\right)}\left(\boldsymbol{\kappa}, z_{1}\right) & \cdots & \tilde{M}_{\text {sp } @\left(0,0, z_{N_{z}}\right)}\left(\boldsymbol{\kappa}, z_{1}\right) \\
\vdots & \ddots & \vdots \\
\tilde{M}_{\operatorname{sp@(0,0,z_{1})}}\left(\boldsymbol{\kappa}, z_{N_{z}}\right) & \cdots & \tilde{M}_{\mathrm{sp} @\left(0,0, z_{N_{z}}\right)}\left(\boldsymbol{\kappa}, z_{N_{z}}\right)
\end{array}\right]
\end{aligned}
$$

- final step: back to (x, y) space

$$
\Delta \varepsilon_{r}\left(x^{\prime}, y^{\prime}, z_{n}^{\prime}\right)=\frac{\Delta \varepsilon_{\mathrm{r}, \mathrm{sp}} \Omega_{\mathrm{sp}}}{\Omega_{\mathrm{v}}} \mathcal{F}_{2 \mathrm{D}}^{-1}\left\{\tilde{f}\left(\boldsymbol{\kappa} ; z_{n}^{\prime}\right)\right\}, n=1, \ldots, N_{z}
$$

SIMULATION EXAMPLE: QUANTITATIVE SPM IMAGE OF F-SHAPE

[Shumakov, in Nikolova, Introduction to Microwave Imaging, 2017]

$2^{\text {nd }}$ layer

(b)

CO: sheet with scattering probe

- 5 cm thick carbon-rubber sample $\varepsilon_{\mathrm{r}, \mathrm{b}} \approx 10$-i5
- frequency: from 3 GHz to 9 GHz (61 samples)

$$
\varepsilon_{\mathrm{r}, \mathrm{sp}} \approx 15-\mathrm{i} 0.003
$$

- scattering probe
- all embedded objects are 1 cm thick
- reflection and transmission coefficients on two TEM horn antennas aligned along boresight
- imaged area 13 cm by 13 cm (2 mm sampling step)

[Shumakov et al., IEEE Trans. MTT, 2018]

normalized permittivity contrast

INVERSION WITH SYNTHETIC FOCUSING

- synthetic focusing is the process of cross-correlating each measured signal with a signal, which represents the radar response to a point scatterer at \mathbf{r}^{\prime} (this is just the system PSF)

$$
\underset{\text { "focused" on } \mathbf{r}^{\prime}}{\substack{\text { signal recorded } \mathbf{r}} x_{\xi}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right)=S_{\xi}^{\mathrm{sc}}(\mathbf{r}, t) \otimes S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right), ~}
$$

- this computation is known as matched filtering - it checks how well a signal "matches" the PSF at \mathbf{r}^{\prime} for all time shifts
- Why is this called "filtering"?
in the frequency domain: $\quad X\left(\mathbf{r}^{\prime} ; \omega\right)=\sum_{\xi=1}^{N_{T}} \iint_{\mathbf{r} \in S_{\mathrm{a}}} \overbrace{S_{\xi}^{\mathrm{sC}}(\mathbf{r}, \omega) \cdot \underbrace{\left[S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)\right.}_{H_{\xi} \in\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)}]^{*}}^{X_{\text {input }}} d \mathbf{r}$
$\underbrace{S_{\xi}^{\mathrm{sc}}(\mathbf{r}, \omega)}_{\text {filter }} \cdot \underbrace{H_{\xi}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)}_{\text {output }}=\underbrace{X_{\xi}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)}_{\text {transfer function of the matched filter }}$ (aka steering filter)
- STAGE 1: matched filtering of all measured responses with "focus" on \mathbf{r}^{\prime}

$$
x_{\xi}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right)=\underbrace{S_{\xi}^{\mathrm{sc}}(\mathbf{r}, t) \otimes S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right)}_{\text {cross-correlation }}=\underbrace{S_{\xi}^{\mathrm{sc}}(\mathbf{r}, t) * h_{\xi}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right)}_{\text {convolution }} \text { - matched filter impulse response }
$$

- STAGE 2: summing up all \mathbf{r} '-focused responses at each time instant

$$
y\left(\mathbf{r}^{\prime} ; t_{n}\right)=\sum_{\xi=1}^{N_{T}} \underbrace{\iint_{\mathbf{r} \in S_{\mathrm{a}}} x_{\xi}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t_{n}\right) d \mathbf{r}}_{\text {integrating over radar aperture }}=\sum_{\xi=1}^{N_{T}} \iint_{\mathbf{r} \in S_{\mathrm{a}}}\left[S_{\xi}^{\mathrm{sc}}(\mathbf{r}, t) \otimes S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right)\right]_{\left(t_{n}\right)} d \mathbf{r}, n=0,1, \ldots, N_{t}
$$

- STAGE 3: windowing focused output to suppress radar clutter

$$
y_{w}\left(\mathbf{r}^{\prime} ; t_{n}\right)=y\left(\mathbf{r}^{\prime} ; t_{n}\right) \cdot w\left(t_{n}\right), n=0,1, \ldots, N_{t}
$$

- STAGE 4: calculating scattering intensity at \mathbf{r}^{\prime}

$$
I\left(\mathbf{r}^{\prime}\right)=\int_{t} y_{w}^{2}\left(\mathbf{r}^{\prime}, t\right) d t \quad \triangleleft \text { PLOT as function of } \mathbf{r}^{\prime}
$$

SYNTHETIC FOCUSING: SIGNAL-FLOW SCHEMATIC

[Nikolova, Introduction to Microwave Imaging, 2017]

- core computation in synthetic focusing

$$
y\left(\mathbf{r}^{\prime} ; t\right)=\sum_{\xi=1}^{N_{T}} \iint_{\mathbf{r} \in S_{\mathrm{a}}}\left[S_{\xi}^{\mathrm{SC}}(\mathbf{r}) \otimes S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right]_{(t)} d \mathbf{r}
$$

- time-domain linear model of scattering (inverse FT of the frequency-domain model)

$$
S_{\xi}^{\mathrm{sc}}(\mathbf{r} ; \omega) \sim \iiint_{V_{\mathrm{s}}} \Delta \varepsilon_{\mathrm{r}}\left(\mathbf{r}^{\prime}\right) \cdot S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r} ; \mathbf{r}^{\prime} ; \omega\right) d \mathbf{r}^{\prime} \Rightarrow \underbrace{S_{\xi}^{\mathrm{sc}}(\mathbf{r} ; t) \sim \iiint_{V_{\mathrm{s}}} \Delta \varepsilon_{\mathrm{r}}\left(\mathbf{r}^{\prime}\right) \cdot S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r} ; \mathbf{r}^{\prime} ; t\right) d \mathbf{r}^{\prime}}_{\xi}
$$

$$
\Rightarrow y\left(\mathbf{r}^{\prime} ; t\right) \sim \iiint_{\mathbf{r}^{\prime \prime} \in V_{\mathrm{s}}} \Delta \varepsilon_{\mathbf{r}}\left(\mathbf{r}^{\prime \prime}\right) \cdot \sum_{\xi=1}^{N_{T}} \iint_{\mathbf{r} \in S_{\mathrm{a}}}\left[S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \otimes S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}\right)\right]_{(t)} d \mathbf{r} d \mathbf{r}^{\prime \prime}
$$

$$
\left.y\left(\mathbf{r}^{\prime} ; t\right) \sim \iiint_{\mathbf{r}^{\prime \prime} \in V_{\mathrm{s}}} \Delta \varepsilon_{\mathbf{r}}\left(\mathbf{r}^{\prime \prime}\right) \cdot \sum_{\xi=1}^{N_{T}} \iint_{\mathbf{r} \in S_{\mathrm{a}}}\left[S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \otimes S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}\right)\right]_{(t)} d \mathbf{r} d \mathbf{r}^{\prime \prime}\right)
$$

- with large number of responses, the strength of $y\left(\mathbf{r}^{\prime} ; t\right)$ is proportional to the contrast $\Delta \varepsilon_{\mathrm{r}}\left(\mathbf{r}^{\prime}\right)$ because the autocorrelation term dominates the integral over $\mathbf{r}^{\prime \prime}$
$>$ autocorrelation term: $\mathbf{r}^{\prime \prime}=\mathbf{r}^{\prime} \Rightarrow \Delta \varepsilon_{\mathbf{r}}\left(\mathbf{r}^{\prime}\right) \cdot \sum_{\xi=1}^{N_{T}} \iint_{\mathbf{r} \in S_{\mathrm{a}}}\left[S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \otimes S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right] d \mathbf{(t)} d \mathbf{r}$
$>$ cross-correlation terms: $\mathbf{r}^{\prime \prime} \neq \mathbf{r}^{\prime} \Rightarrow \Delta \varepsilon_{\mathbf{r}}\left(\mathbf{r}^{\prime \prime}\right) \cdot \sum_{\xi=1}^{N_{T}} \iint_{\mathbf{r} \in S_{\mathrm{a}}}\left[S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \otimes S_{\xi}^{\mathrm{PSF}}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}\right)\right] d \mathbf{r}$ integration over incoherent weak x-correlations

DELAY AND SUM (DAS) RECONSTRUCTION ALGORITHM

- DAS is the simplest synthetic-focusing algorithm
- it assumes a PSF of the form (same for all response types and antennas)

$$
\begin{aligned}
& S^{\mathrm{PSF}}\left(\mathbf{r}_{\mathrm{Rx}}, \mathbf{r}_{\mathrm{Tx}} ; \mathbf{r}^{\prime} ; t\right) \sim \delta\left(t+t_{0}-\frac{r_{\mathrm{Tx}}\left(\mathbf{r}^{\prime}\right)+r_{\mathrm{Rx}}\left(\mathbf{r}^{\prime}\right)}{v_{\mathrm{b}}}\right) / /\left(r_{\mathrm{Tx}} r_{\mathrm{Rx}}\right) \text {, where } r_{\mathrm{Tx}}=\left|\mathbf{r}^{\prime}-\mathbf{r}_{\mathrm{Tx}}\right|, r_{\mathrm{Rx}}=\left|\mathbf{r}^{\prime}-\mathbf{r}_{\mathrm{Rx}}\right| \\
& \quad \text { reference time for scattering center at origin }
\end{aligned}
$$

- for a point scatterer at the reference point (origin)

$$
\begin{gathered}
S^{\mathrm{PSF}}\left(\mathbf{r}_{\mathrm{Rx}}, \mathbf{r}_{\mathrm{Tx}} ; \mathbf{r}^{\prime}=0 ; t\right) \equiv S_{0}^{\mathrm{PSF}}\left(\mathbf{r}_{\mathrm{Rx}}, \mathbf{r}_{\mathrm{Tx}} ; t\right) \\
\sim \delta\left(t+t_{0}-\frac{\left|\mathbf{r}_{\mathrm{Tx}}\right|+\left|\mathbf{r}_{\mathrm{Rx}}\right|}{v_{\mathrm{b}}}\right)
\end{gathered}
$$

$>$ origin often chosen at furthest point and

$$
t_{0}=\frac{\left|\mathbf{r}_{\mathrm{TX}}\right|+\left|\mathbf{r}_{\mathrm{RX}}\right|}{v_{\mathrm{b}}} \text { so that } S_{0}^{\mathrm{PSF}}\left(\mathbf{r}_{\mathrm{RX}}, \mathbf{r}_{\mathrm{TX}} ; t\right)=\delta(t)
$$

- DAS PSF is a plane wave in the frequency domain

$$
\left.S^{\mathrm{PSF}}\left(\mathbf{r}_{\mathrm{Rx}}, \mathbf{r}_{\mathrm{Tx}} ; \mathbf{r}^{\prime} ; \omega\right)=e^{-\mathrm{i} k_{\mathrm{b}}\left(r_{\mathrm{Tx}}+r_{\mathrm{Rx}}-r_{0}\right)}\right) \longleftrightarrow \delta\left(t+t_{0}-\frac{r_{\mathrm{TX}}\left(\mathbf{r}^{\prime}\right)+r_{\mathrm{Rx}}\left(\mathbf{r}^{\prime}\right)}{v_{\mathrm{b}}}\right)
$$

where
$k_{\mathrm{b}}=\omega / v_{\mathrm{b}}$ (wavenumber)
$r_{0}=\left|\mathbf{r}_{\mathrm{Tx}}\right|+\left|\mathbf{r}_{\mathrm{Rx}}\right|=v_{\mathrm{b}} t_{0}$ (signal path through reference point)

- DAS matched filters

$$
H\left(\mathbf{r}_{\mathrm{Rx}}, \mathbf{r}_{\mathrm{Tx}} ; \mathbf{r}^{\prime} ; \omega\right)=\left(S^{\mathrm{PSF}}\right)^{*}=e^{\mathrm{i} k_{\mathrm{b}}\left(r_{\mathrm{Tx}}+r_{\mathrm{Rx}}-r_{0}\right)} \Rightarrow h\left(\mathbf{r}_{\mathrm{Rx}}, \mathbf{r}_{\mathrm{Tx}} ; \mathbf{r}^{\prime} ; t\right)=\delta\left(t-t_{0}+\frac{r_{\mathrm{Tx}}+r_{\mathrm{Rx}}}{v_{\mathrm{b}}}\right)
$$

DELAY AND SUM (DAS) RECONSTRUCTION ALGORITHM - 3

- DAS synthetic focusing

$$
\begin{aligned}
y\left(\mathbf{r}^{\prime} ; t\right) & =\sum_{\xi=1}^{N_{T}} \iint_{\mathbf{r} \in \mathrm{S}_{\mathrm{a}}} S_{\xi}^{\mathrm{sc}}(\mathbf{r} ; t) * \delta\left(t-t_{0}+\frac{r_{\mathrm{Tx}}+r_{\mathrm{Rx}}}{v_{\mathrm{b}}}\right) d \mathbf{r} \\
& =\sum_{\xi=1}^{N_{T}} \iint_{\mathbf{r} \in S_{\mathrm{a}}} \int_{\tau} S_{\xi}^{\mathrm{sc}}(\mathbf{r} ; \tau) \delta\left(t-t_{0}+\frac{r_{\mathrm{Tx}}+r_{\mathrm{Rx}}}{v_{\mathrm{b}}}-\tau\right) d \tau d \mathbf{r} \longleftarrow \text { sifting property of } \delta \text {-function } \\
& =\underbrace{\sum_{\xi=1}^{N_{T}} \iint_{\mathbf{r} \in S_{\mathrm{a}}} \underbrace{S_{\xi}^{\mathrm{sc}}\left(\mathbf{r} ; t-\left(t_{0}-\frac{r_{\mathrm{Tx}}+r_{\mathrm{Rx}}}{v_{\mathrm{b}}}\right)\right)} d \mathbf{r}}_{\text {response is "delayed" filter }}
\end{aligned}
$$

responses colected over aperture are "delayed and sumed"

- DAS focusing is nothing but a time-shift of the response so as to virtually space-shift the scattering center from \mathbf{r} ' to the origin (reference point)

DAS: CONCEPTUAL EXAMPLE

DAS: CONCEPTUAL EXAMPLE

DAS: 2-D SIMULATION EXAMPLE

- 2-D simulation (TM_{z} mode)
- point sources
- point probes recording $E_{z}(t)$

bandwidth at 3 dB from 1.25 GHz to 8.75 GHz

DAS: 2-D SIMULATION EXAMPLE

discussion

- Why the simple DAS algorithm (PSF is a δ-function of time) performs similarly to the more sophisticated x-correlation with the actual simulated PSF?
$>$ due to the point-like nature of the sources and probes
- Why do we have so many artifacts?
$>$ because the forward model does not take into account mutual coupling and scattering between close-by targets
$>$ the Tx total field is not the same as the Tx incident field (as the linearized model assumes) and these differences appear as spurious contrast (image artifacts)
$>$ because we have only 8 probes - incomplete data!
- real-time imaging methods provide an image within seconds of the data acquisition
- real-time methods substantially rely on linearized forward models
- there are 2 main types of real-time imaging methods
$>$ direct solution of the data equation (microwave holography)
$>$ cross-correlation with system PSF (scattered-power mapping \& synthetic focusing)
- assumption of uniform or layered medium enables super-fast solution in Fourier space
- however, inversion in Fourier space has some "pitfalls" - we discuss those and the respective mitigation strategies during Day Three of this course

QMH, SPM codes available:
http://www.ece.mcmaster.ca/faculty/nikolova/IntroMicrowaveImaging/MatlabCodes/ We keep updating!
[worldartsme.com]
THANK YOU!

