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COURSE OVERVIEW
. ________________________________________________________________________________________________________________________________________________

Day 1: Introduction & Forward Models of Microwave Imaging

e Field-based Integral Solutions of the Scattering Problem in Time and
Frequency

e Born and Rytov Approximations of the Forward Model of Scattering

e Scattering Parameters and Integral Solutions in terms of S-parameters

e 2D Model of Tomography in Microwave Scattering

Day 3: Performance Metrics & Hardware
e Spatial Resolution

4 ) o i
Day 2: Linear Inversion Methods Dynarr.nc SEEE . _
e Data Signal-to-noise Ratio

e Deconvolution Methods
Microwave Holography (MH)
Scattered Power Mapping (SPM)

* Image Reconstruction of Pulsed-radar Data
Synthetic Focusing: Delay and Sum (DAS)

Select Topics

e Overview of Nonlinear Inversion Methods
Direct Iterative Methods
Model-based Optimization Methods

e Tissue Imaging — Challenges and Advancements
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THE KERNEL OF THE DATA EQUATION:
POINT-SPREAD FUNCTION (PSF)



THE REALISTIC MEASUREMENT SCENARIO

e microwave measurements involve scanning over large acquisition surfaces — each
response being function of the observation position r

o at each observation position r several responses may be acquired

example of antenna
array measuring 9
responses at each r
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[Amineh et al., IEEE Trans. Instr. Meas., 2015][Photo credit: Justin J. McCombe]



THE REALISTIC MEASUREMENT SCENARIO: PLANAR SCANNING

« example of planar scanning for microwave imaging

type of number of
response values S;,(X,y)

co-pol X-X  4xN
co-pol Y-Y  4xN,,
cross-pol X-Y 4xN,,
cross-pol Y-X 4xN

@

TOTAL 161<Nw
D number of possible responses
» reflected signals: S, S,, acquired at each position

» transmitted signals: S,,, Sy, (S,; = Sy, In reciprocal systems)



FORWARD MODEL WITH PLANAR SCANNING

o S-parameter forward model in planar scanning

lwgg ARV inc  pEinc
2a.a, _” Ve A<9r(X Y L )|:E§,Rx E§,Tx
| S —

K

S¥(X, Y. Z;m) = dx'dy’'dz’, £ =1,..., Nt

data

}(X’,y’,Z’;x,yi;a))

o £ (response type) replaces (i,k)

EXAMPLE: RESPONSE TYPES WITH 2-PORT MEASUREMENT

g (i,k) response type
1 1,1 reflection S;,
2 (2,2) reflection S,,
3 (1,2) or (2,1) transmission S, = Sy,

NT =3



FORWARD MODEL WITH PLANAR SCANNING -2

o S-parameter forward model in planar scanning

S¥ (M;a)) ~ Kﬂjvs Ag (X, Y, z')[E

Ry &ITx

inc
&, Rx

e position of Tx/Rx antenna pair given by rg,

Ry =(X,y,Z2) and rry =(X,y,Z - D)

-E

inc
&, TX

](X’,y’,Z’;x,yi;w)

.

X 7

3y

D

dx'dy'dz’, £=1,...,Nt

S — ——@#oz-pol

cross-pol



FORWARD MODEL: OBTAINING THE RESOLVENT KERNEL

 resolvent kernel of forward model — re-visiting last lecture
SF¥(X, Y. Z;m) = K”j Ag (XY, z)[Eg‘CRX S

approxmate (Born) rescsflvent kernel £ (r';r;) >

dx'dy'dz’, £=1,...,N

](x',y’,z’;x,y,f;a))

« method 1: analytical far-zone expressions well suited only for measurements in air with
large stand-off distances

* method 2: simulated field distributions suffer from modeling errors

e method 3: Measurements? Yes, measure the system point-spread function (PSF)
[Savelyev&Yarovoy, EURAD 2012][Amineh et al., IEEE Trans. Instrum. Meas., 2015]



RESOLVENT KERNEL & POINT-SPREAD FUNCTION (PSF)

» PSF is data measured with point scatterer (electrically small object)

top scanning plane scattering probe
, \ 4z antennas
start (xy, y1) "
S e |
R D =
SR S = \*-N'-‘;*\..
“"--:;;§;;::;;._,,: “:"..-.‘.:. 4 ‘
bottom scanning plane finish (Xyx. Vay)

e relating PSF to kernel

SEF(X,Y,Z;w) = K_mv Agrspd (X=X, Y=Y, 2-2) - L:(X, Y, 7' X, Y, T; ) dx'dy'dz’
scattering proge (sp) contrast

= S (X, Y, T X, Y, 2 0) & (KAE Qs ) L (XY, 2%, Y, T 0), E=1,..., Ny

-~
known constants




RESOLVENT KERNEL & POINT-SPREAD FUNCTION (PSF) -2

SEF(X,Y,Z: X, Y, 2 @)
KAEr sp€sp
* notice the simple exchange of positions allowing to obtain the kernel from the PSF

L:(X, Y, 2%,Y, 7, 0) = , &=1...,Nt

LT ) = SET(rr'®) | observation: r = (X,Y,2)
KAEr 5pQsp Integration (probe location): r'= (X, y’, 2")

If medium in V is uniform (or layered for planar acquisition) — probe needs to be
measured only at the center of an imaged plane z' = const

measured centered PSF: SE (X, Y,Z; 2 w) = SE° (X, Y,Z;0,0,2; @)
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RESOLVENT KERNEL & POINT-SPREAD FUNCTION (PSF) — 3

* since medium is uniform or layered

probe moves left/right —

PSF PSF
Sé (X y’Z’X y Z' w) S (X X Y- y,z,z a)) response moves left/right

SEY (X=X, y-V',7;7"; ») Eol N 4

A:(X, Y, 2%, Y,7;, ) =
: KAEr spLsp

A (X, Y, 2)SE (x=X,y—Y',Z;2"; o)dx'dy'dz’, £ =1,..., Ny

= S (X,Y,Z;0) =
2(xy,7 Aersp - IVS\

convolutlon in X,y

 the measured response is a convolution of the contrast and the system PSF
 the Image reconstruction can then be viewed as a de-convolution process!
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CALIBRATION PROCEDURE: PSF EXTRACTION

[Tajik et al., JPIER- B, 2017][Shumakov et al., Trans. MTT, 2018] [/

Reference Object

o system calibration involves two measurements: Y
(i) reference object (RO) — incident-field data Antenna
(i1) calibration object (CO) — scattering-probe data

e PSF extraction

Antenna
Rx y

SEF ()~ (SBF0)), =S£°() - SE() J " Calibration Object

» Born Method SEO(x,Y,7;0)

» Rytov Method Antenna

S5 () = (8570, =S n| 3.0 | )
R I 7

Y
Antenna
RX »
12

(’)E(X’y17;w)’ 521,...,NT \Sgo(x,y,f;a))




EXAMPLE: PSF

. typlcal noise-free PSF obtained from simulated RO and CO data
o IR, Y f =6.5 GHz

magnitude

1 1 1 1 1 1
40 30 20 -0 0 1 2 3} 4 4 3 » W 0 W N I L0
% (i 2 {mm}

o typical noisy PSF obtained from measurements (magnitude shown) [Tajik et al., EUCAP 2019]

0.08

“ [Amineh et al., IEEE Trans. Instrum. Meas., 2015]

0.2

0.06
Mag.
0.04

0.15 0.15

0.05 0.02

0.05
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MEASUREMENT PROCEDURE: DATA EXTRACTION

e data is extracted with the same method as that for PSF — being consistent is important!

» Born Method

SE() ~(S£0), =S2UT()-SE() J

» Rytov Method

OUT (.
S£() = (s£0), =S§°(->In[35 ()j J

SE°()

O=(x,Vy,Z;0), £=1,...,N¢

Object Under Test

Y
Antenna
Tx

Antenna

SEVT (XY, T0)  Rx

14



INVERSION WITH MICROWAVE HOLOGRAPHY



DATA EQUATION IN FOURIER SPACE

SF¥(X, Y. Z,m) =

_[Agr(x Yy, 2)SEY (X=X, y—VY',Z;2"; w) dxX'dy'dz’, £ =1,..

7'

Agrsp Spy ;‘;

e in Fourier (or k) space g 2DFT >

- _ AX'AY’
S (Ke, Ky:Z; @) = F(k,, k ,z) SESF (ky, Ky 2 @) dz’
3 y Agrsstp"- y £,0 y

FTZD{Agr(x Yy, z)}
o discretize integral along z' into a sum

 We now have a system of equations to solve at each spectral position k = (Ky,Ky)
Qy

F(x;z})

AX'AY'Az;,
A& r,sstp

(m)

S (k) ~ Zf(xz)[sPSF(K, 24)] ?:_11 Nw f(x:2p) =
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INVERSION IN FOURIER SPACE

N
S 3 ’ ~ .ot (m) - I I I
Sém) (k) ~ Z f(x;z, [Sg,%i'(“’ Zn):| m=1...,N, In dlscrete_ Four_ler space
e n=l-— -y —— - ~ g 521’”"NT Kij E(IAkX1 JAky)
data d (x) contrast f (x)  system matrix A(x)

o at each discrete point in Fourier space, a small system of equations is solved for a total
of N,N, such systems

A(Kij)'f(k‘ij)Zd(Kij) i=1,..., NX, j=1,..., Ny

4

: A0 . DT . ;
| SeFGepsz) | [ S5 Oeys k) | f (icij; 21)

vectors of response types
[SMOT =[S - S0 |

R (Kij);

~ A (NG) ~ (NG £ S(No) (4.
(S5 Gegsz) | - [ 8BS (eyizi,) | _— fleiizng) ]y, LS (ki)

N, N7 x1
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FINAL STEP: BACK TO X-Y SPACE

e ateach plane alongrange (z',,n=1, ..., N,)

Aeg (X', Y, 2)) = Q ]—“251{?(1(;2;, },nzl,...,NZ

gl’ (Xr, y'1 ZI{I) — 3r,b + Agl’ (X" y,’ thl)

18



ADVANTAGES OF SOLVING IN FOURIER SPACE: DIVIDE AND CONQUER

* we solve (N,-N,) small systems of equations
number of solved systems on the order of 10% to 10°

 size of each system is small: NtN_, x N, (e.g. 60x5)
o typical execution times: 2 to 3 seconds on a laptop using Matlab

 solution is orders of magnitude faster than solving in real space where one very
large system of equations needs to be solved of size

Np x Ny with Np = N,N,N,N; ~10" to 10°
N, = NyN,N, ~10° to 10’

19



3-D SIMULATION EXAMPLE: C-shape and 3 Cubes

[Tajik et al., JPIER-B 2017]

2 dipole antennas aligned along
boresight, separated by 10 cm

e reflection and transmission
coefficients acquired

e C-shape Is 4 cm from lower dipole
e cubes are 4 cm, 5 cm, and 6 cm from lower dipole

acquisition plane of area 30 cm by 30 cm with 1 cm

sampling interval along x and y
e frequency range from 3 GHz to 8 GHz, Af = 1 GHz
* scattering probe in calibration: 1 cm? cube of ¢, ¢, =

Sir /ﬁ*f ISOMetric VIew || opject g,
Cshape 115-io
Cubes
ﬁ / _ 1.1-1i0
A -
5 side view
1cm
—ll! 1om
xJ Altair FEKO 1.1 —-10

20



3-D SIMULATION EXAMPLE: IMAGES OF C-shape and 3 Cubes
L |
[Tajik et al., JPIER-B 2017]

Born Approximation Rytov Approximation

114

&y
{14

z(cm)

z (cm)

20

0 y(cm)

10
X (cm) 0 y (cm)

e due to the targets’ low contrast, both approximation yield practically the same images

e quantitative estimate of permittivity distribution is very good

21



MEASUREMENT EXAMPLE: Teddy Bear (2-D Image)

e scanned area: 29 cm by 29 cm

e sampling step along x and y: 5 mm

 only transmission coefficient acquired

« frequency range from 8 GHz to 12 GHz (41 samples)

 two open-end waveguides (WR-90) aligned along
boresight

» measurement 1: just teddy bear
» measurement 2: two objects inserted in teddy bear

2) dielectric L-shaped object: ¢, = 10 — 15 (thickness 1 cm, L arm 2 cm) inserted in right
arm

22
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>

MEASUREMENT EXAMPLE: 2-D IMAGES OF Teddy Bear

Magnitude

10

S =240 Ba
x (cm)

normalized contrast

Magnitude

with hidden objects

x (cm)

-20 10 O 10 20
y (cm)

10.8
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MEASUREMENT EXAMPLE: 2-D QUANTITATIVE ESTIMATES (Teddy Bear)

permittivity

Real Part of the Permittivity Real Part of the Permittivity

Real Part of the Permittivity

5 -
. o 1
5 il - =1
215
X « T
20 ¢ &
!! H
20 . ]
W|th hidden objects with physmal
0 5 10 15 20 25 0 5 10 15 20 25 constraints

X (cm)

Imaglnary Part of the Permlttmty

X (cm)

0 Imaginary Part of the Permittivity

Imaginary Part of the Permittivity

0.5
5t : -0.2
- 0 ¥

E‘IO- -0.5 -0.4

S15 ' . o

= - 1 * 0.6

20 ¢ 1.5 0.8

25| . ’ 2 1
N : ~with hidden objects e
0 5 10 15 20 25 0 5 10 15 20 25 '

X (cm)

X (cm)




EXAMPLE: 3-D NEAR-ZONE IMAGING OF METALLIC OBJECTS (RE-VISITED)

[Amineh et al., Trans. IM, 2015]

ik

><
w

30

AX = Ay

=5mm

Af =250 MHz

X-band (WR90) open-end

waveguides (f. ~ 6.56 GHz)

[photo credit: Justin McCombe]

f(GHz) | A (mm) |Ds, (Mmm)
3 100 12.5
8.2 37 34
20 15 83




EXAMPLE: 3-D NEAR-ZONE IMAGING OF METALLIC OBJECTS (RE-VISITED)

z=30 mm, RE =0.0604 z =40 mm, RE =0.0282 z=50 mm, RE =0.0274

50 50

expected
spatial
resolution

(mm)
(mm)

0 0

¥imm)

0
v

depth:
0, ~10 mm

-50

.50 0 50 -50 0 50 -50 0 50

z=60 mm, RE = 0.0291 z="70mm, RE =0.0590

" “ - z =380 mm, RE =0.0286 lateral:
, . - Ox,y 4 mm

0

y{mm)

y{mm)
yimm)

-50 =50 -50

-50 0 50 -50 0 50 -50 0 50

X (mm) X (mm) X (mm)
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INVERSION WITH SCATTERED POWER MAPPING (SPM)



QUALITATIVE IMAGING WITH SENSITIVITY MAPS

« SPM is rooted In early work on the use of response sensitivities in image reconstruction

[Y. Song, N.K. Nikolova, “Memory efficient method for wideband self-adjoint sensitivity analysis,” IEEE Trans. Microwave Theory Tech., 2008]
[L. Liu, A. Trehan, N.K. Nikolova, “Near-field detection at microwave frequencies based on self-adjoint response sensitivity analysis,” Inv. Problems, 2010]

response sensitivities: response derivatives with respect to some system parameters
In imaging — derivatives with respect to permittivity at each voxel (Fréchet derivative)

assume we want to minimize the £,-norm error between the measured OUT (total-field)
and RO (incident-field) data

Fle(r)] =055 [
= :

for that we need to know how to properly change the permittivity in the RO gb(r’)%g(r’)
» we need to know how the error function F would change when ¢ changes at Vr;, eV,
oF

0¢(In)

SOV (r, ) - SEOIr, @; 2 (1)) E drde

=? n=1,...,N,

28



QUALITATIVE IMAGING WITH SENSITIVITY MAPS -2

 Fréchet derivative with respectto ¢(r') =&'(r')—ig"(r")

, oF oo . .
Re{D(r")} = 92/ (r') — indicates where contrast in ¢’ exists in the OUT
oF ..
{ (r )} be"(r") — indicates where contrast in &'" exists in the QOUT
Where [Nikolova, Introduction to Microwave Imaging, 2017]
5SRO(r,0) |
RO ouT S !
D(r)= 2j Il N [s (r,@)-S2T (r, a))] ) drde
sen5|t|V|ty B _
map

* sensitivity map: 3-D plot of the real and imaginary parts of D(r")

29



SENSITIVITY MAPS: FROM DERIVATIVES TO FINITE DIFFERENCES

- . o lesEewe) |
D(r)=;j@ﬂresa[sgo(r,a))—sgu (r,a))]- 25(:,;) drdew

. J/
'

: _ _

-S2(r,w) (Born approximation)

 approximating the response derivative with the PSF

0S;°0(rw)  ASP(r,w) SO(r 1) -SO(rw) S (r,rw)

oe(r’) Ae(r’) Agg, (') A&,

position of scattering probe

Ny

= —Aeyp D) =M()=>[ [[ _ SE(r,e)|SEF(r,r; a))]* drdew
=1 :

| S —
scattered

power map

30



SCATTERED-POWER MAPS: RECONSTRUCTION FORMULA
[Tu et al., Inv. Problems, 2015][Shumakov et al., IEEE Trans. MTT, 2018]

M(r)= zj Jl,s SEr.o)[s EF(r,r0) | drda

scattered
power map

o scattered-power map: 3-D qualitative image of the OUT contrast relative to the RO

SOME IMPORTANT ADVANTAGES
e reconstruction is practically instantaneous — no systems of equations are solved!
.. reconstruction formula is a simple summation of response products

e reconstruction can be carried out with ANY set of observation points (no need to have
acquisition surfaces of canonical shapes (planar, cylindrical, spherical)

.. as long as the PSF is available analytically or from measurements

31



SCATTERED-POWER MAPS AND TEMPORAL CROSS-CORRELATION

 SPM image M(r') can be viewed as a plot of the aggregate measure of similarity
between the OUT responses and the respective PSF responses due to point scatterer at r'

M (r') = zj [ s&(r,w)-| SEF(r,r; a))] drde = zj [[ F{se(r,)y®sEF(r,r; t)}drda)

c=lwreS, c=lwreS, -

Cross- correlatlon X (r r';z)

« reminder: cross-correlation is a measure of similarity between 2 waveforms as a function
of their mutual time-shift

e it can be shown that (with infinite bandwidth)
no shift

M (r') ~ Z [ Xerr;z= ‘(ﬁ
¢=lreS, >

32



SCATTERED-POWER MAPS AND CROSS-CORRELATION IN SPACE

e consider planar scanning and assume lateral translational invariance of the PSF

S (XY, TX, Y, 2 w) » S& (X=X, y-Y,Z;7; o)

= M(X,y,2)= %L}”S S*(x,v.7, w).[sggF (x=x,y-Y.7Z;2; a))]* dxdy dw
P /

g
cross-correlation in (x,Y)

 image reconstruction formula

NT Na) - . %
= M(x',y’,z’):]—'ZDl{ZZSEC(kX,ky,f,a))-[SggF(kx,ky,f;Z';a))]}

E=1m=1
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SIMULATION EXAMPLE: QUALITATIVE SPM IMAGE OF F-SHAPE
. ________________________________________________________________________________________________________________________________________________

simulation of PSF acquisition simulation of data acquisition
top scanning plane top scanning plane

‘ Z antennas ‘ z antennas

e R R

_ = X B N

gr,b — 1-0 -------- =
s =11 “iibottom scannmg piane - “hottom scanmng p}aj:le n

rsp -
Altair FEKO sample PSF: Sy, at 4 GHz MAG/PHASE f =3GHz

N

y (cm)

" i f o =16 GHz
10 0.8 100 Af =1 GHz
- 5 06 50
5 0 ¥
\":\ -5 04 {((( ])))) -50
-10 s -100
s 0.2 e
-20 -2

-20-15-10-5 0 5 10 15 20 '20 0 20

Clll
) 34



SIMULATION EXAMPLE: QUALITATIVE SPM IMAGE OF F-SHAPE -2

 Dblurring typical for cross-correlation
108 methods

» limited number of responses

» diffraction limit on resolution

s o 50 7
x (cm) -107 y (cm)
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QUANTITATIVE SPM WITH MEASURED PSFs

e quantitative SPM uses the qualitative maps to improve the image quality significantly

M(x,y, 2) = %L}ﬂs SX(X,Y,7,m): [SESF (x=x,y-Yy7;2; a))] dxdy dw
DEigitae:

_ <

sC = - ' ;) 9N\QPSF(y V' s _\) 5! ' ' ! .
Sé (X’y’z’w)NAgr,spAQ jjjAgr(X,y,Z)S§O (x=x,y—-V',Z;2;o)dx'dy'dz’, £ =1,..., Nt

Sp Xl y/ Z/

! / ! 1 " " 4 / / / " " 4
E> M (X Yz ) — Ae O ""UVS Aé‘r(X Yz ) I\/Isp@(x”,y",z”)(x Yz )dX dy dz

e

qualitative SPM unknown  qualitative SPM image of scattering
Image of OUT contrast  Probe when it is at (x", y", z")
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QUANTITATIVE SPM: SOLUTION IN FOURIER SPACE

e quantitative SPM solves the linear problem

M(X’y’z)_AerSpQ 1L, A Oy, 2") Mgie e (X' ¥, 2)dXdydz
e linear system of equations can be quite large in real space: square system of size N, x Ny,
« solving in Fourier (k-) space is much faster (similar to holography)

 assumption of medium lateral uniformity: a shift in the position of the scattering probe
leads to a corresponding shift in its qualitative map obtained with the central PSF

Msp@(x” y” Z”) (X’ yr Z’) — MSp@(O 0 z”) (X’ . er yr . yn Z,)

I:>M(x’,y’,z’)_Ag o, jjjAg (X" ¥ 2")  Mg@0.0, (X = X",y =y, 2') dX"dy" dz"

Sp==sp z" y" x"

J/

convolution in (X, Y)
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QUANTITATIVE SPM: SOLUTION IN FOURIER SPACE -2

QV

A“E‘r,sstp g=1

M (K, Ky, Z,) =

N, N N
> (kK 2) Moo Karky Zp)s P=1.N,

« small square system of equations is solved at each spectral position k = (ky,Ky)

M () Xy = M)

X =| F2) -+ Fle,2) |

] . : M
M =[|v| (k,2,) -+ M (K,ZNZ):|

(k) —

o final step: back to (x,y) space

A& gp€2

A‘g‘l’ (X’i y,1 Zr’1) — Q
Vv

I\/Isp@(O,O,zl) (K’ Zl)

|\/Isp@(O,O,zl)(K1 ZNZ)

2 Fo | f(z0)} n=1...,N,

Msp@(O,O,zNZ ) (K1 Zl)

Msp@(O,O,zNZ)(K1 ZNZ)

38




QUANTITATIVE SPM IMAGE OF F-SHAPE

SIMULATION EXAMPLE

[Shumakov, in Nikolova, Introduction to Microwave Imaging, 2017]

1.05

1.1

11.2
11.15

ee

R
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EXPERIMENTAL EXAMPLE: QUANTITATIVE SPM
[Shumakov et al., IEEE Trans. MTT, 2018]

air pocket

— iU

| * 5 cm thick carbon-rubber sample &, , 1015

@1 cm |

| f & =12

}.
4thl /l a

o frequency: from 3 GHz to 9 GHz (61
imaged area _|_§ SampIeS) E ~ 15 — |OOO3

r,sp

L, ﬁﬁt_ IR - scattering probe
' « all embedded objects are 1 cm thick

air pockets @lem

e reflection and transmission coefficients on
two TEM horn antennas aligned along
boresight

e imaged area 13 cm by 13 cm (2 mm sampling

ste
CO: sheet with P)

scattering probe

40



EXPERIMENTAL EXAMPLE: QUANTITATIVE SPM - IMAGES

=

Im e,

Born Rytov

&apprOXimation s 10 Y. kapproximation pomy B0 T

[Shumakov et al., IEEE Trans. MTT, 2018] a1



EXPERIMENTAL EXAMPLE: TEDDY BEAR 2-D IMAGE

normalized permittivity contrast

>

with hidden objects

3 10 15 20 235
x (cm)

42



INVERSION WITH SYNTHETIC FOCUSING



SYNTHETIC FOCUSING: MATCHED FILTERING

o synthetic focusing is the process of cross-correlating each measured signal with a signal,
which represents the radar response to a point scatterer at r' (this is just the system PSF)

signal recorded atr —— X (r,r’;t) = S*(r,t) ® SESF (r,r’;t)
“focused” on r'

o this computation is known as matched filtering — it checks how well a signal “matches”
the PSF at r' for all time shifts

e Why is this called “filtering”? . , X (rre) \
in the frequency domain: X (r’; @) = Z”res Sg"(r,w)-[SgSF(r,r’;a))] dr
£=1 a N -~ y
SE(r,w)-H:(r,r'; o) = X:(r,r'; o) Hg(T'r'r )
input filter output transfer function of the matched filter

(aka steering filter)

44



SYNTHETIC FOCUSING: SIGNAL PROCESSING STAGES

o STAGE 1: matched filtering of all measured responses with “focus” on r'
X (I’, r';t) — S (r t)®S§SF (r r" t) S (I’ t) *hg (r r" '[) — matched filter impulse response

Cross- correlatlon convolutlon
 STAGE 2: summing up all r'-focused responses at each time instant

y(r';ty) = Z ﬂre Xz (r,r'; t)dr _Zﬂres SE(r )@ SEF(r,r t)] dr, n=0,1,..., N

mtegratmg over radar aperture

o STAGE 3: windowing focused output to suppress radar clutter
YW(r’;tn) — Y(r’;tn)'W(tn)’ n=0,1...,N;

o STAGE 4: calculating scattering intensity at r'
I(r') = ya(r',t)dt | C>| PLOT as function of r
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SYNTHETIC FOCUSING: SIGNAL-FLOW SCHEMATIC

[Nikolova, Introduction to Microwave Imaging, 2017]

focal
point

Tx antenna

N .
| |
\Mw%

i-th experiment |

[oraf

|
: D-J'-S N, (f)
|

radar| storage |

|
|
|
|
|
|
|
|
|
|
i
v(t,r'") |
i
|
|
|
|
|
|
|
|

signal processing
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UNDERSTANDING SYNTHETIC FOCUSING

e core computation in synthetic focusing

y(r';t) = Zﬂ 5 [SEMOSEF(rr) | d

 time-domain linear model of scattering (inverse FT of the frequency-domain model)

SE(r; w) ~ ”_f Ag (r')-SEF(rir'; w)dr’ = SE(r;t) ~ ”j Ag,(r')-SEF(r;r';t)dr’

(t)

Sy Jf], As ) X [SE P @S] drar
A 2l
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UNDERSTANDING SYNTHETIC FOCUSING - 2

0~ []].., 26 X J] [ . )@ (] drar
252 ],

(t)

 with large number of responses, the strength of y(r';t) is proportional to the contrast Ae/(r')

because the autocorrelation term dominates the integral over r"
N

i
> autocorrelation term: r"=r’ = Agr(r’)-Z”r : [S?SF(r,r’)@)SgSF(r,r’)] dr
17" (t)

Ny

» cross-correlation terms: r” #r’ = Agr(r”)-Z”r : [SESF(r,r’)®S§SF(r,r”)] dr
ITRAER (t)

Integration over incoherent weak x-correlations
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DELAY AND SUM (DAS) RECONSTRUCTION ALGORITHM

e DAS is the simplest synthetic-focusing algorithm
e It assumes a PSF of the form (same for all response types and antennas)

/ /
PSF ol r.Tx(r)_l_rRx(r) |y et
S (rRX’rTx’r’t)~5[tJ;to_ y N(FrxTry )| Where e =1 =1, |, Ty = |1 =T, |
b N . .
reference time for scattering center at origin often ignored with far-zone measurements

e for a point scatterer at the reference point (origin)

S (Mg s Ty 7' = 0;1) = S5 °F (N s 1)
e, |+]|r
~5 t+t0_|TX| |RX|
Vb
» origin often chosen at furthest point and

N .
t I * ed go that So> (N, i 1) = S(1) point

Vb scatterer
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DELAY AND SUM (DAS) RECONSTRUCTION ALGORITHM -2

 DAS PSF is a plane wave in the frequency domain

: . (r')+rs, (r'
SPSF(rRX | rTx; rr; a)) _ e—lkb(rTX+rRX—ro) 5[1: _|_t0 . Tx( )V Rx( )j
b

where
kK, = @ /v, (wavenumber)
I, = ey |+ My |= Vipty (signal path through reference point)

e DAS matched filters

¥ _ - I, + T
H (o Frys T ) = (S77) = @Ml o) h(rRx1rTx;r’;t):5(t—to+ = ij
Vb
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DELAY AND SUM (DAS) RECONSTRUCTION ALGORITHM -3

e DAS synthetic focusing P matched filter

N;
yrit = . S§C(r;t)*5(t—to+ rTX”Rder
PR Vb

Ny Ty + 1
= SE(r: 7)o t—tg + —=—"* _ 7 |dz dr«— sifting property of 5-function
reS, Jr § Vb
&=l

e (o
=

Vb

J/

—
response is "delayed"

. J/

iy
responses colected over aperture are "delayed and sumed"

* DAS focusing Is nothing but a time-shift of the response so as to virtually space-shift
the scattering center from r' to the origin (reference point)
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DAS: CONCEPTUAL EXAMPLE

X 10 — . -~ -
10 o | antenna signals o~ o~
6 S — T
5 ~ =
target 2 4 :;im
© .
’ 2
r, =(40,130) mm _g 5 s
2 ‘E 1 S
1
> ~ S T
0@e— ) @) E 0 S~ e
1 Fioid = (0,100) mm E) -1 ~ -~
-2 c:'-. '% S s
R
4 e g
< target I/~ & target 2
target 1 . -6 *w"“‘ ~/
-7 e -~
r; =(-70,80) mm -8 /- ~
-9 T -
-10
-10 .
fime
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antenna index

DAS: CONCEPTUAL EXAMPLE

10 . } : [ | ; — ; 7
9 |- signals filtered for | : | signals filtered for : l | signals filtered for : !
3 — voxel of target 1 P ~ voxel of target 2 | | — voxel void of target | |
- | - —_— e | R E— /i\-— -
| | I | I |
6 T | | RS
5 N + }
. . \ |
2 T 1 t T t T
i \/HI\/‘ ~S 1 ‘[ i
0 | | \/;?ﬂﬁ “ ‘ |
'é : | T ] T ]
] —~— -
i | { target 2 target | | I o
P target 1 .| \ v\% R ! I target 2 target 1 ! I target 2
e A - L | [
3 ]I [ I | 1 I
-0 | ‘ 1\ : | l
10 s ] —
tme 20 [sum target 1 I\ | time
0 ﬂw
| |
o0 L o
| |
| |
[ | I "N __ 2 /
I (rl) ~ 2927 20 [sum target 2 : | I (r ) — J‘t yW(r ,t)dt
| |
/ OfF———— e
' Y(r y t) A
I (I"g) ~ 2927 20 b T G
| |
, <—> window
I (rVOId) ~ 14 20 sum void | : f
0 SN S SN plot image
o |
_20 | : |O | L 1
0 1000 2000 3000 4000 53
time (ps)




DAS: 2-D SIMULATION EXAMPLE

[MEFiSTo-3D] o
array elements
///.,_/_ ______ \A /' 04 |
‘/’// \'QQ \\\\ 02 |
/ AN -
/ b‘Q - ’ 9
|// Py 50 gr _ 20 45 0
\ r — e ' Rt
Q\\ S = 25 % ‘ % 02
\\.\\‘\‘ _________ ‘,//’ . 0.4 i
gr’b —1 |
-0.6 \ | !
0 200 400 600 800
e 2-D simulation (TM, mode) time (ps)
* point sources bandwidth at 3 dB

. point probes recording Ez(t) from 1.25 GHz to 8.75 GHz



DAS: 2-D SIMULATION EXAMPLE

simple DAS

discussion

e Why the simple DAS algorithm (PSF is a o-function of time)
performs similarly to the more sophisticated x-correlation
with the actual simulated PSF?

» due to the point-like nature of the sources and probes

« Why do we have so many artifacts?

» because the forward model does not take into account
mutual coupling and scattering between close-by targets

» the Tx total field is not the same as the Tx incident field
(as the linearized model assumes) and these differences
appear as spurious contrast (image artifacts)

» because we have only 8 probes — incomplete data!
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SUMMARY OF DAY TWO

 real-time imaging methods provide an image within seconds of the
data acquisition MICROWAVE
_ _ o IMAGING
 real-time methods substantially rely on linearized forward models
 there are 2 main types of real-time imaging methods
» direct solution of the data equation (microwave holography)

» cross-correlation with system PSF (scattered-power mapping & RN \ - / P

synthetic focusing)

 assumption of uniform or layered medium enables super-fast solution in Fourier space

however, inversion in Fourier space has some “pitfalls” — we discuss those and the
respective mitigation strategies during Day Three of this course

QMH, SPM codes available:
http://www.ece.mcmaster.ca/faculty/nikolova/lntroMicrowavelmaging/MatlabCodes/

We keep updating!
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http://www.ece.mcmaster.ca/faculty/nikolova/IntroMicrowaveImaging/MatlabCodes/

[
‘I !ﬂ
’

[worldartsme.com]

THANK YOU!
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