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Abstract

In microwave imaging, the data acquired at different frequency intervals are fed
into reconstruction algorithms. However, the quality of data at each frequency varies,
and using frequencies with low contrast-to-noise ratio (CNR) can be detrimental to the
overall quality of the reconstruction. An algorithm is developed to classify the quality
of the point-spread function data by evaluating the CNR at each frequency. Validation
is performed on the algorithm with simulated and experimental datasets.

1 Introduction

A microwave imaging system is being developed at McMcaster University for use as a
breast cancer screening tool. Malignant breast tissue and normal breast tissue differ with
respect to their electric permittivities. In order to derive the electric permittivities of imaged
tissue, complex-valued S-parameter data are acquired by the imaging system. The data are
then processed and fed into reconstruction algorithms to determine complex permittivity.
Quantitative microwave holography (QMH) [2,3] is the reconstruction algorithm used in con-
junction to the work described in this report, which employs the use of Born’s approximation
(BA) or Rytov’s approximation (RA) to linearize the forward model of scattering.

The acquisition scans are performed across the x, y, and z planes at a range of frequen-
cies. The quality of the data can vary with frequency. Consequently, frequencies with low
CNR can lead to poor final image quality. The datasets are usually inspected prior to recon-
struction in order to identify and remove the poor quality frequencies. With large datasets,
this critical step can be time-consuming.

Measurement acquisition conducts three seperate scans: a reference object (RO), a cal-
ibration object (CO), and an object-under-test (OUT). The system point-spread functions
(PSFs) are derived from the CO and RO measurements. In this report, an algorithm is
developed to classify the quality of the PSF at each sampling frequency. It is important to
note that the quality of the PSF at a particular frequency does not have an exact corre-
lation to the quality of the OUT at the same frequency. The algorithm is adapted into a
function (Matlab 2017a) that can be called to classify the good frequencies, and feed them
into the reconstruction algorithms. Compared to manual identification, the execution of the
algorithm is faster, and largely autonomous.

The normalized PSFs are the minimum required inputs for the algorithm to execute (see
Eq. (20) in [2]). The general function call, with no optional inputs used, is: [freq good]

= PSF classification(CO), where CO is the normalized PSF data. The algorithm can be
described in two parts. The first is the automated detection of the defined areas of interest
for the CNR calculations - a region of interest (ROI) and an exclusion zone. The second
is using the area definitions to perform a series of CNR and/or signal-to-noise ratio (SNR)
calculations, which are used to determine the quality of the PSFs.
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2 Region of Interest Detection

The algorithm first detects and defines two regions - the ROI and an exclusion zone.
Automated detection of these regions supports a more robust and data-driven algorithm.
The ROI is defined as a cluster of points that contain the signal of interest, and is consistent
across all frequencies but varies across z-planes. The exclusion zone is defined as a circular
region that omits the ROI and potential interference patterns around it. The area outside
of the exclusion zone is defined as the background of the image, which theoretically contains
only noise.

2.1 Inversion

To determine a general ROI across all frequencies, a frequency summation of the magni-
tude of the complex-valued PSFs is performed. The signal is expected to be constant across
all frequencies, while the noise is expected to be stochastic. This summation therefore leads
to an enhancement of the signal while supressing the noise.

At each frequency, the algorithm determines if the PSF is a depressed signal relative to
its background. The PSF is first estimated to be within 5% of the center of the image. If
the average signal in the estimated PSF region is lower than the average signal outside of
the region, then inversion will be performed to retrieve the desired elevated signal. The data
is inverted according to (1),

PSFinverted = (|PSF | − 1)× (−1). (1)

2.2 ROI Cluster Detection

The ROI is defined as a cluster of points that have a value higher than 3 dB, with the
maxima of the signal in the frequency summation as a reference point. If the user wishes
to use a different threshold point (ie. to 3.5 dB), it can be changed in the function call:
PSF classification(CO, ‘cluster threshold’, 3.5). The algorithm checks for a clus-
ter within a 25% distance from the center of the image (on both sides, spanning 50% of
image). If multiple clusters are detected, the cluster closest to the center of the image is
selected. If a cluster is not found within 25% of the center, the algorithm iterates in 5% in-
crements until it reaches the size of the image. A warning is issued to the user if the distance
is over 25%, as it is indicative of an off-centered ROI. See Fig. 1 for an initial cluster ROI
detection.

An abnormal cluster ROI is defined as a cluster with a radius that results in the exclusion
zone exceeding image dimensions. If the detected cluster is abnormal, the algorithm reverts
to the alternative fixed-sized ROI detection method, which is more robust but less accurate.
The fixed-sized method is described in section 2.3.
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Fig. 1. An image of the frequency
summations of the PSFs. The cluster
ROI is shown with highlighted pixels.
The initial exclusion zone is shown
inside the white circle, and the ini-
tial background is shown outside the
white circle.

Fig. 2. An image of the frequency
summations of the PSFs. The fixed-
sized ROI is shown with highlighted
pixels. The initial exclusion zone is
shown inside the white circle, and the
initial background is shown outside
the white circle.

The initial exclusion zone is defined as a circle that fully encompasses the ROI. The
centroid of the cluster is taken as the center point of the circle, (x0, y0). The radius, ρ, is
defined as the maximum distance of the centroid to a point on the boundary of the cluster,
(xb, yb), as shown in (2),

ρ =
√

(x0 − xb)2 + (y0 − yb)2. (2)

2.3 Alternative Fixed-Sized ROI Detection

In the case of an abnormal cluster ROI, the algorithm defaults to an alternative fixed-
sized ROI detection method. The user can also select this method in the function call:
PSF classification(CO, ‘maxima ROI’, 1). In this method, the maxima of the frequency
summation is used as the center-point of a boxed region. The region dimensions can be de-
fined by the user. A default size of 10x10mm is implemented to mimic the size of a scattering
probe. The user can change the millimeter size of the fixed-sized ROI in the function call:
PSF classification(CO, ‘maxima ROI’, 1, ‘probe size’, [20, 20]). See Fig. 2 for
the fixed-sized ROI definition.

The initial exclusion zone definition is the same as the cluster method, except it takes
the coordinate points of the maxima as the center of the circle.

2.4 Exclusion Zone Refinement

The exclusion zone is defined at each frequency in order to accurately determine the
background of the image. The algorithm searches for the smallest exclusion zone that en-
compasses the ROI and any surrounding interference patterns or signal leaks. To do so, the
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algorithm increments the radius of the exclusion zone by 5% of its x range, rangex, as seen
in (3). If the change in the background variance is less than 4% between two iterations,
the algorithm will select the previous iteration’s exclusion zone. The convergence criteria is
defined in (4),

ρ = ρ+ ((rangex)× (0.05)) (3)

var(ABGnext)− var(ABG)

var(ABG)
× 100% < 4%. (4)

For a vectorized image, A, we define its variance, var(A), in (5) and its mean, mean(A),
in (6). In this report, A is the complex-valued image for an S-parameter at a particular
frequency and z-plane. ABG is the defined background in the current iteration, and ABGnext

is the variance of the background in the next iteration. A small change in variance indicates
that increasing the exclusion zone will not have a significant change in CNR and/or SNR
calculated values.

var(A) =
1

N − 1

N∑
i=1

(|Ai −mean(A)|)2 (5)

mean(A) =
1

N

N∑
i=1

Ai. (6)

3 Evaluating the Quality of PSFs

3.1 CNR and SNR Calculations

The established ROI and exclusion zone definitions are fed into the algorithm’s evaluation
of PSF quality. The two quality metrics are CNR and SNR, outlined by (7) and (8). CNR
uses a contrast signal, taken as the difference of the mean of the ROI signal and the mean
of the background. SNR simply takes the mean of the ROI signal. Both methods evaluate
noise as the standard deviation of the background,

CNR =
|mean(AROI)−mean(ABG)|

std(ABG)
(7)

SNR =
mean(AROI)

std(ABG)
(8)
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where AROI is the defined ROI, ABG is the defined background, and std(A) is defined in (9),

std(A) =

√√√√ 1

N − 1

N∑
i=1

(|Ai −mean(A)|)2. (9)

To evaluate the CNR and/or SNR of a complex-valued dataset, the dataset is processed
into its magnitude, phase, real and imaginary components. Then, each of these individual
components, along with the complex-valued component, are fed into the general equations
above to produce a variety of values. The evaluated CNRs and SNRs are magnitude, phase,
the average of real and imaginary, and complex magnitude.

The real and imaginary CNR is evaluated separately and then combined as an average
to capture the behaviour of the complex-valued dataset. The complex-valued datset is used
to evaluate complex magnitude CNR by first evaluating the complex mean of the ROI and
background, as seen in (7), and then taking the absolute magnitude of both means before
the subtraction. This will result in a different CNR from the magnitude CNR. A similar
approach is taken to evaluate the real and imaginary, and complex magnitude SNR.

3.2 Classifying ‘Good’ Frequencies

Complex magnitude CNR is the default evaluation of the algorithm because it most sim-
ply accounts for the nature of a complex-valued dataset. CNR is used in place of SNR due
to two possible situations The first case is when the ROI and background have similar signal
strengths. In this case, the CNR will be a low value and indicative of the data quality,
whereas the SNR would result in a false positive. The second case is when the ROI has a
depressed signal strength (for real, imaginary, complex-valued, phase) relative to the back-
ground noise, but the PSF is still visually noticable. In this case, the CNR will be a high
value and indicative of the data quality, whereas the SNR would result in a false negative.

Once the complex magnitude CNRs are calculated, a user-defined threshold is used to
classify a PSF as ‘good’ or ‘bad’. The default threshold used by the algorithm is CNR ≥ 3
dB - which is justified in section 4 with experimental validation. For example, If the PSF of
a dataset at a certain frequency evaluates to a complex magnitude CNR at or above 3 dB,
it is classified as a good quality PSF that can be used with the reconstruction algorithms. If
the PSF evaluates to a complex magnitude CNR below 3 dB, it is thrown away and not used
in reconstructions. If the PSFs have more than 1 z-plane, the average complex magnitude
CNR across all z-planes is evaluated and used in the thresholding process.

The user can select their desired calculation modes by assigning the corresponding linear
ratio thresholds in the function call. For example, to evaluate the phase and complex magni-
tude CNRs with a 1 and 2 dB threshold, respectively, the user must call: PSF classification(CO,

‘CNR thresholds’, [0 1.2589, 0, 1.5849]). To evaluate the SNR values, the same logic
applies but the user must use the ‘SNR thresholds’ input.
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4 Validation of Classification Algorithm on a Simu-

lated Dataset

To evaluate the performance of the algorithm, 3 dB white Gaussian noise is created and
added to a simulated dataset consisting of RO, CO and OUT measurements. The PSFs are
acquired by subtracting the RO from the CO, according to BA [2]. The noisy PSFs are then
submitted to the algorithm to check whether the systematically added 3 dB noise evaluates
to a complex magnitude CNR of approximately 3 dB.

After confirming the accuracy of the CNR estimate, white Gaussian noise is added to
a select number of frequencies. Reconstruction with Born-based QMH (BA-QMH) is per-
formed on three cases. The first case adds noise to randomly selected frequencies, the second
adds noise to only the lower frequencies, and the third adds noise to the higher frequencies.
The default reconstruction, which uses all frequencies, is compared to the reconstructions
that use the algorithm’s ‘good’ frequencies, classified by a 3 dB threshold.

4.1 Generating White Gaussian Noise

The generated noise must be scaled to the contrast signal, which is defined in the al-
gorithm as the numerator in (7). The analogous contrast signal, C, for CO and RO mea-
surements is defined in (10) as the difference between the mean of the ROI of the CO (the
‘central signal’) and the mean of the RO. The average contrast signal is taken across all
z-planes of the CO.

The wgn MATLAB function is used to create an Nx by Ny complex-valued white Gaus-
sian noise matrix. The real and imaginary components are scaled to have half power, shown
in (11). The power of the noise is calculated in (11) for each frequency and S-parameter in
order to achieve a desired, consistent 3 dB CNR.

C = |mean(ROICO)| − |mean(RO)| (10)

power = 10 ∗ log10(C
2)− 3. (11)

After adding noise to the RO, CO and OUT, the PSFs for each S-parameter are fed into
the classification algorithm. The results of the CNR evaluations are shown in Fig. 3. The
average complex magnitude CNR across all z-planes is approximately around or under 3 dB.
This is consistent with the noise addition, which was scaled in accordance to the contrast
signal to output a predicted CNR of 3 dB.

7



(a) (b)

(c) (d)

Fig. 3. Complex magnitude CNR values for the PSF of (a) S11 (b) S21 (c) S12 (d) S22 with
noise added to dataset. All S-parameters show average CNR values across all z-planes of
approximately 3 dB.

4.2 Corrupting Frequencies with White Gaussian Noise

4.2.1 Corrupting Random Frequencies

In the first case, white Gaussian noise is added to the dataset at 5, 11 and 15 GHz.
Fig. 4 shows the complex magnitude CNR calculations for each S-parameter PSF. The CNR
at the intended frequencies show a significant drop in quality. The default reconstruction
is shown in Fig. 5 and is noticably affected by the addition of white Gaussian noise. The
reconstruction is then performed with the good frequencies, as classified by the algorithm
using a 3 dB threshold (see Table 1). The resulting reconstruction is shown in Fig. 6 and is
seen to be an improvement from the default reconstruction.

4.2.2 Corrupting Low Frequencies

In the next case, white Gaussian noise is added to the low frequency range. The frequen-
cies chosen are 3 - 9 GHz. Fig. 7 shows the complex magnitude CNR calculations at each
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(a) (b)

(c) (d)

Fig. 4. Complex magnitude CNR values for the PSF of (a) S11 (b) S21 (c) S12 (d) S22 with
noise added at 5, 11 and 15 GHz. At those select frequencies, all S-parameters show CNR
values of approximately 3 dB.

S-parameter ‘Good’ Frequencies (GHz) ‘Bad’ Frequencies (GHz)
S11 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16 5, 11, 15
S21 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16 5, 11, 15
S12 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16 5, 11, 15
S22 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16 5, 11, 15

Table 1. Classification of frequencies for simulated dataset with noise added at random
frequencies.

S-parameter PSF. The CNR at the intended frequencies show a significant drop in quality.
The default reconstruction is shown in Fig. 8. Reconstruction is then is performed with the
classified good frequencies in Fig. 9 (see Table 2). The reconstruction performed after the
classification algorithm demonstrates improvement.
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(a) (b) (c)

Fig. 5. Reconstructions of the (a) magnitude (b) real part (c) imaginary part of the permit-
tivity of the simulated OUT with 3 dB noise added to 5, 11 and 15 GHz.

(a) (b) (c)

Fig. 6. Reconstructions, with classification algorithm, of the (a) magnitude (b) real part (c)
imaginary part of the permittivity of the simulated OUT with 3 dB noise added to 5, 11 and
15 GHz.

S-parameter ‘Good’ Frequencies (GHz) ‘Bad’ Frequencies (GHz)
S11 3, 6, 10, 11, 12, 13, 14, 15, 16 4, 5, 7, 8, 9
S21 10, 11, 12, 13, 14, 15, 16 3, 4, 5, 6, 7, 8, 9
S12 10, 11, 12, 13, 14, 15, 16 3, 4, 5, 6, 7, 8, 9
S22 3, 6, 10, 11, 12, 13, 14, 15, 16 4, 5, 7, 8, 9

Table 2. Classification of frequencies for simulated dataset with noise added at low frequen-
cies.

4.2.3 Corrupting High Frequencies

In the final case, white Gaussian noise is added to high frequencies. The frequencies
chosen are 10 - 16 GHz. Fig. 10 shows the complex magnitude CNR calculations at each
S-parameter PSF. The CNR at the intended frequencies show a significant drop in qual-
ity. The default reconstruction is shown in Fig. 11. Reconstruction is performed with the
classified good frequencies in Fig. 12 (see Table 3). The reconstruction performed after the
classification algorithm demonstrates improvement.
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(a) (b)

(c) (d)

Fig. 7. Complex magnitude CNR values for the PSF of (a) S11 (b) S21 (c) S12 (d) S22 with
noise added at 3 - 9 GHz. At the low frequency range, all S-parameters show average CNR
values across all z-planes of approximately 3 dB.

S-parameter ‘Good’ Frequencies (GHz) ‘Bad’ Frequencies (GHz)
S11 3, 4, 5, 6, 7, 8, 9, 10, 16 11, 12, 13, 14, 15
S21 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13, 14, 15, 16
S12 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13, 14, 15, 16
S22 3, 4, 5, 6, 7, 8, 9, 10, 16 11, 12, 13, 14, 15

Table 3. Classification of frequencies for simulated dataset with noise added at high frequen-
cies.
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(a) (b) (c)

Fig. 8. Reconstructions of the (a) magnitude (b) real part (c) imaginary part of the permit-
tivity of the simulated OUT with 3 dB noise added to 3 - 9 GHz.

(a) (b) (c)

Fig. 9. Reconstructions, with the classification algorithm, of the (a) magnitude (b) real part
(c) imaginary part of the permittivity of the simulated OUT with 3 dB noise added to 3 - 9
GHz.
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(a) (b)

(c) (d)

Fig. 10. Complex magnitude CNR values for the PSF of (a) S11 (b) S21 (c) S12 (d) S22 with
noise added at 10 - 16 GHz. At the high frequency range, all S-parameters show average
CNR values across all z-planes of approximately 3 dB.

(a) (b) (c)

Fig. 11. Reconstructions of the (a) magnitude (b) real part (c) imaginary part of the per-
mittivity of the simulated OUT with 3 dB noise added to 10 - 16 GHz.
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(a) (b) (c)

Fig. 12. Reconstructions, with the classification algorithm, of the (a) magnitude (b) real
part (c) imaginary part of the permittivity of the simulated OUT with 3 dB noise added to
10 - 16 GHz.
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5 Validation of Algorithm on Experimental Datasets

In order to determine an appropriate default threshold for use in the classification algo-
rithm, two experimental datasets are used for validation. BA-QMH and Rytov-based QMH
(RA-QMH) are used for reconstruction to determine any differences the algorithm makes in
their usages. Different thresholds of 0, 1, 2 and 3 dB for the complex magnitude CNR are
used to analyze the differences in reconstructions and select a good threshold.

5.1 Alginate Reconstruction

The first experimental dataset is a scan of a phantom with alginate embedded within
a peanut-butter and jam (PBJ) mixture as shown in Fig. 13 [3]. The reconstructions are
performed with BA-QMH and RA-QMH, separately. The CNR calculations for the PSFs are
shown in Fig. 14 and indicate higher CNR values for higher frequencies in both BA-QMH
and RA-QMH.

Fig. 13. An OUT constructed from absorber sheets, a PBJ mixture, and alginate embedded
on the side.

The BA-QMH reconstructions of the alginate phantom are shown in Fig. 15. Each re-
construction uses a set of frequencies, determined by the classification algorithm as having
an average complex magnitude CNR across all z-planes above 0, 1, 2 and 3 dB. The total
number of good and bad frequencies for each threshold is reported in Table 4. Similar re-
constructions for the alginate phantom using RA-QMH are shown in Figure 16.

BA-QMH shows clear improvement with the classification algorithm. With an imposed
3 dB threshold, it outputs a reconstruction with visible alginate, and decreased rippling.
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(a) (b)

Fig. 14. Complex magnitude CNR of the alginate experimental dataset for (a) S21 PSF,
using BA. (b) S21 PSF, using RA.

Threshold Number of ‘Good’ Frequencies Number of ‘Bad’ Frequencies
Born Rytov Born Rytov

0 dB 41 37 10 14
1 dB 33 32 18 19
2 dB 25 24 26 27
3 dB 12 14 39 37

Table 4. Thresholding results for experimental alginate dataset.

RA-QMH does not show significant improvement with any threshold. This may be due to
the phase wrapping issues commonly associated with RA, which would affect the accuracy
of the calculated CNR.

5.2 Bowtie Reconstruction

The second experimental dataset uses bowtie antennas to scan a 5 layer, 5.5 cm thick
phantom. The layer of interest is the second layer, which consists of a PBJ mixture within
absorber sheets, and two blueberries embedded on the side. The phantom is shown in Fig. 17.
The reconstructions are performed with BA-QMH and RA-QMH, separately. The dataset
includes five separate CO measurements, labelled as S31a, S31b, S31c, S31d and S41, with each
having measurements for five depth layers. Fig. 18 shows the CNR calculations for each
CO measurement at z-plane 2 using BA-QMH. Similar CNR calculations with RA-QMH are
shown in Fig. 19.

The reconstruction of the final images using the second z-plane of each CO measurement
are shown in Fig. 20 and Fig. 21 for BA-QMH and RA-QMH, respectively. Each recon-
struction uses a set of frequencies, determined by the classification algorithm as having an
average complex magnitude CNR across all CO measurements above 0, 1, 2 and 3 dB. The
thresholding results for BA-QMH and RA-QMH are reported in Table 5 and Table 6.
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(a)

(b)

(c)

(d)

(e)

Fig. 15. (a) BA-QMH reconstructions of the alginate experimental dataset with all frequen-
cies. BA-QMH reconstructions of the alginate experimental dataset using frequencies with
an average complex magnitude CNR above (b) 0 dB (c) 1 dB (d) 2 dB (e) 3 dB.
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(a)

(b)

(c)

(d)

(e)

Fig. 16. (a) RA-QMH reconstructions of the alginate experimental dataset with all frequen-
cies. RA-QMH reconstructions of the alginate experimental dataset using frequencies with
an average complex magnitude CNR above (b) 0 dB (c) 1 dB (d) 2 dB (e) 3 dB.
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Fig. 17. The second layer of an OUT constructed from absorber sheets, a PBJ mixture, and
two blueberries embedded on the side.

Threshold Number of ‘Good’ Frequencies Number of ‘Bad’ Frequencies
S31a S31b S31c S31d S41 S31a S31b S31c S31d S41

0 dB 40 46 37 38 45 11 5 14 13 6
1 dB 37 46 35 33 45 14 5 16 18 6
2 dB 34 46 35 33 41 17 5 16 18 10
3 dB 30 42 28 24 36 21 9 23 27 15

Table 5. Thresholding results for experimental bowtie dataset, z-plane = 2, using BA.

BA-QMH shows clear improvement with the classification algorithm. At the 3 dB im-
posed threshold, the reconstruction of the imaginary permittivity shows the structure of the
two blueberries, which is not evident in the reconstruction with all frequencies.

19



Threshold Number of ‘Good’ Frequencies Number of ‘Bad’ Frequencies
S31a S31b S31c S31d S41 S31a S31b S31c S31d S41

0 dB 39 46 36 38 44 12 5 15 13 7
1 dB 36 46 36 32 41 15 5 15 19 10
2 dB 31 45 30 30 40 20 6 21 21 11
3 dB 25 45 25 26 38 26 6 26 25 13

Table 6. Thresholding results for experimental bowtie dataset, z-plane = 2, using RA.

(a) (b)

(c) (d)

(e)

Fig. 18. Complex magnitude CNR for z-plane = 2 of the PSF for (a) S31a (b) S31b (c) S31c

(d) S31d (e) S41, using BA.
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(a) (b)

(c) (d)

(e)

Fig. 19. Complex magnitude CNR for z-plane = 2 of the PSF for (a) S31a (b) S31b (c) S31c

(d) S31d (e) S41, using RA.
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(a)

(b)

(c)

(d)

(e)

Fig. 20. (a) BA-QMH reconstructions with all frequencies. BA-QMH reconstructions using
frequencies with an average complex magnitude CNR above (b) 0 dB (c) 1 dB (d) 2 dB (e)
3 dB.
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(a)

(b)

(c)

(d)

(e)

Fig. 21. (a) RA-QMH reconstructions with all frequencies. RA-QMH reconstructions using
frequencies with an average complex magnitude CNR above (b) 0 dB (c) 1 dB (d) 2 dB (e)
3 dB.

23



6 Conclusion

The classification algorithm is able to automatically classify the quality of a PSF dataset
at each frequency and improve the reconstructions of experimental datasets with BA-QMH
moreso than RA-QMH. The algorithm performs well when executed in its default mode of
evaluating complex-magnitude CNR with a 3 dB classification threshold.
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Appendix A Help documentation for PSF classifica-

tion algorithm

1 % PSF CLASSIFICATION Determine f r e q u e n c i e s at which PSF q u a l i t y i s
2 % s u f f i c i e n t f o r use in image r e c o n s t r u c t i o n .
3 %
4 % [ f r eq good ] = P S F c l a s s i f i c a t i o n (CO) re tu rn s the f requency i n d i c e s o f
5 % CO that has CNR or SNR va lues above the user th r e sho ld . The d e f a u l t
6 % mode eva lua t e s complex magnitude CNR with a th r e sho ld o f 2 ( l i n e a r ;
7 % 3 on dB s c a l e ) .
8 %
9 % INPUTS: CO: Ca l i b ra t i on Object dataset , normal ized [ x , y , f , z ]

10 %
11 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 %
13 % PSF CLASSIFICATION uses the c l u s t e r ROI method by
14 % d e f a u l t . The user can use the f o l l o w i n g op t i ona l inputs , wr i t t en in a
15 % ’ key ’ , va lue p a i r i n g during the func t i on c a l l :
16 %
17 % OPTIONAL INPUTS:
18 % ’ CNR thresholds ’ , [ a b c d ] : S e l e c t CNR c a l c u l a t i o n s to execute
19 % by a s s i g n i n g l i n e a r t h r e s h o l d s .
20 % a = magn , b = phase , c = avg r e a l /imag , d = complex mag
21 % i e . to c a l c u l a t e magn CNR only , f e ed in ’ CNR thresholds ’ ,
22 % [ a 0 0 0 ] where a i s the i n t e g e r th r e sho ld f o r mag CNR.
23 %
24 % ’ SNR thresholds ’ , [ e f g h ] : S e l e c t SNR c a l c u l a t i o n s to execute
25 % by a s s i g n i n g l i n e a r t h r e s h o l d s .
26 % e = magn , f = phase , g = avg r e a l /imag , h = complex mag
27 %
28 % ’maxima ROI ’ , 1 : S e l e c t maxima method to es t imate PSF ROI ;
29 % d e f a u l t i s c l u s t e r method .
30 %
31 % ’ probe s i z e ’ , [ x , y ] : S i z e o f s c a t t e r i n g probe [ x , y ] in mm.
32 % Defau l t i s 10x10 .
33 %
34 % ’ peak s i gna l ’ , 1 : S e l e c t peak s i g n a l method o f eva lua t ing CNR/SNR;
35 % d e f a u l t i s mean method .
36 %
37 % ’ plot ROI summation ’ , 1 : Plot automated ROI aga in s t f r e q summation .
38 %
39 % ’ c l u s t e r t h r e s h o l d ’ , i : S e l e c t th r e sho ld c u t o f f f o r determining
40 % c l u s t e r ROI . Defau l t i s 3dB .
41 % i = thre sho ld in dB i e . i = 3 .5dB, tak ing s i g n a l above
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42 % 55% of b a s e l i n e mininum as p o t e n t i a l c l u s t e r po in t s .
43 %
44 % ’ plot CNR SNR ’ , 1 : Plot CNR and/ or SNR aga in s t f r e q index
45 % ( d e f a u l t − s e e ’ f t a b l e ’ ) .
46 %
47 % ’ dB scale ’ , 0 : Plot CNR and/ or SNR in l i n e a r s c a l e .
48 % Defau l t i s dB s c a l e (10∗ l og10 ( r a t i o ) ) .
49 %
50 % ’ f t a b l e ’ , f t a b l e : Plot CNR and/ or SNR aga in s t sampled f r e q u e n c i e s .
51 % f t a b l e = vec to r o f sampled f r e q ( in GHz) i e . 3 . 0 : 0 . 1 : 8 . 0
52 %
53 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 %
55 % OUTPUTS:
56 % freq good : St ruc ture r e tu rn ing i n d i c e s o f good f r e q s f o r a
57 % p a r t i c u l a r c a l c u l a t i o n . F i e ld w i l l be blank i f
58 % c a l c u l a t i o n was not eva luated by the a lgor i thm .
59 % i e . i f phase CNR was chosen to be evaluated , use
60 % freq good . CNR phase i to a c c e s s the good f r e q u e n c i e s .
61 %
62 % OPTIONAL OUPUTS:
63 % ROI mask : Ce l l matrix conta in ing l o g i c a l ROI mask [ f , z ]
64 %
65 % e x c l u s i o n z o n e : S t ruc ture conta in ing f i e l d s . . .
66 % 1) ’ Ez mask ’ − c e l l matrix conta in ing l o g i c a l
67 % e x c l u s i o n zone mask [ f , z ]
68 % 2) ’ c en te r coo rds ’ − matrix conta in ing x , y coo rd ina t e s
69 % of cent e r coo rd ina t e s o f c i r c l e
70 % 3) ’ radius ’ − matrix conta in ing rad iu s o f each c i r c l e [ f , z ]
71 %
72 % CO invers ion : I n i t i a l magnitude CO datase t with i n v e r s i o n performed
73 %
74 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75 %
76 % Example 1
77 % −−−−−−−−−
78 % Evaluate phase SNR ( l i n e a r th r e sho ld = 4) and complex SNR ( l i n e a r
79 % thre sho ld = 10) with ROI c l u s t e r method . Plot r e s u l t s in dB s c a l e .
80 % [ f r eq good ] = S N R c l a s s i f i c a t i o n (CO, ’ plot ROI summation ’ , 1 ,
81 % ’ plot CNR SNR ’ , 1 , ’ SNR thresholds ’ , [ 0 4 0 1 0 ] , ’ dB scale ’ , 1 ) ;
82 %
83 %
84 % Example 2
85 % −−−−−−−−−
86 % Evaluate r e a l / imag CNR ( l i n e a r th r e sho ld = 5) with ROI maxima method
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87 % and s p e c i f i c s c a t t e r i n g probe s i z e . Ret r i eve op t i ona l outputs .
88 % [ freq good , ROI mask , exc lu s i on zone , CO invers ion ] =
89 % S N R c l a s s i f i c a t i o n (CO, ’maxima ROI ’ , 1 , ’ p r obe s i z e ’ , [ 2 0 , 1 0 ] ,
90 % ’ CNR thresholds ’ , [ 0 0 5 0 ] ) ;
91 %
92 %
93 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94 %
95 % Written by J e s s i c a Trac , McMaster Univers i ty , EMVi Lab
96 % Adapted from Jus t in McCombe’ s SNR GUI code
97 % Direc to ry must a l s o have phase unwrap .m
98 %
99 % Created : May 3 2018

100 % Last Rev i s ion : July 23 2018
101 %
102 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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