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LECTURE 2:  Introduction into the Theory of Radiation 

(Maxwell’s equations – revision. Power density and Poynting vector – revision. 

Radiated power – definition. Basic principle of radiation. Vector and scalar 

potentials – revision. Far fields and vector potentials.) 
 

1. Maxwell’s Equations – Revision 

(a) the law of induction (Faraday’s law): 

 
t

∂
−∇× = +

∂

B
E M ♣ (2.1) 
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∂ ∂Ψ
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∂ ∂ E c B s�  

 E (V/m)  electric field (electric field intensity) 
 B (T=Wb/m2) magnetic flux density 
 M (V/m2)  magnetic current density 0F

♣ 
 Ψ  (Wb=V s⋅ ) magnetic flux 

 e  (V)   electromotive force 
 

(b) Ampere’s law, generalized by Maxwell to include the displacement 
current / t∂ ∂D : 

 
t

∂
∇× = +

∂

D
H J  (2.2) 
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D
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 H (A/m) magnetic field (magnetic field intensity) 
 D (C/m2) electric flux density (electric displacement) 
 J (A/m2) electric current density 
 I (A)  electric current 

 

 
♣ M is a fictitious quantity, which renders Maxwell’s equations symmetrical and which proves a useful mathematical tool when 

solving EM boundary value problems applying equivalence theorem. 

(2.1-i) 

(2.2-i) 
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(c) Gauss’ law of electricity: 

 ρ∇ ⋅ =D  (2.3) 

 

[ ]SS V

d dv Qρ⋅ = = D s�  

 ρ  (C/m3) electric charge density 

 Q  (C)  electric charge 

 
Equation (2.3) follows from equation (2.2) and the continuity relation: 

 
t

ρ∂
∇ ⋅ = −

∂
J . (2.4) 

 
Hint: Take the divergence of both sides of (2.2). 
 

(d) Gauss’ magnetic law: 

 mρ∇ ⋅ =B 1F

♣♣ (2.5) 

The equation 0∇⋅ =B  follows from equation (2.1), provided that 0=M . 
Maxwell’s equations alone are insufficient to solve for the four vector 

quantities: E, D, H, and B (twelve scalar quantities). Two additional vector 
equations are needed. 

 
(e) Constitutive relationships 

The constitutive relationships describe the properties of matter with respect 
to electric and magnetic forces. 

 = ⋅D ε E
�

 (2.6) 
 = ⋅B μ H

�
. (2.7) 

In an anisotropic medium, the dielectric permittivity and the magnetic 
permeability are tensors. In vacuum, which is isotropic, the permittivity and the 
permeability are constants (or tensors whose diagonal elements only are non-zero 
and are the same): 12

0 8.854187817 10ε −≈ ×  F/m, 7
0 4 10µ π −= ×  H/m. In an 

isotropic medium, D and E are collinear, and so are B and H. 
The dielectric properties relate to the electric field (electric force). Dielectric 

materials with relative permittivity rε  > 1 are built of atomic/molecular sub-

 
♣♣ mρ  is a fictitious quantity introduced via the continuity relation /m tρ∇ ⋅ = −∂ ∂M . As per experimental evidence, 0∇⋅ =B . 

(2.3-i) 
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domains, which have the properties of dipoles. In an external electric field, the 
dipoles tend to orient in such a way that their own fields have a cancellation effect 
on the external field. The electric force e Q=F E  exerted on a test point charge 

tQ  from a source sQ  in such medium is rε  times weaker than the electric force 
of the same source in vacuum. 

On the contrary, magnetic materials with relative permeability rµ  > 1 are 
made of sub-domains, which tend to orient in the external magnetic field in such 
a way that their own magnetic fields align with the external field. The magnetic 
force m tQ= ×F v B  exerted on a moving (with velocity v ) test point charge tQ  
in such a medium is rµ  times stronger than the force that this same source (e.g. 
electric currents) would create in vacuum. 

We are mostly concerned with isotropic media, i.e., media where the 
equations 0 rµ µ=B H  and 0 rε ε=D E  hold. 

 
(f) Time-harmonic field analysis 

In harmonic analysis of EM fields, the field phasors are introduced: 

 
{ }
{ }

( , , , ) Re ( , , )

( , , , ) Re ( , , ) .
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=

=
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 (2.8) 

For example, the phasor of ( , , , ) ( , , )cos( )m Ee x y z t E x y z tω ϕ= +  is ( , , )E x y z =  
Ej

mE e ϕ . For clarity, from this point on, we will denote time-dependent field 
quantities with lower-case letters (bold for vectors), while their phasors will be 
denoted with upper-case letters. Complex-conjugate phasors will be denoted with 
an asterisk *. 

The frequency-domain Maxwell equations are obtained from the time-
dependent equations using the following correspondences: 

( , , , )

( , , , ) ( , , )

( , , )

, , , .
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f x y z t F x y z
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f F
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∂ ∂
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Thus, Maxwell’s equations in phasor form are: 
 jωε∇ × = +H Ε Jɶ , ( )' " /jε ε ε σ ω= − +ɶ  (2.9) 

 jωµ−∇ × = +E H Mɶ , ' "jµ µ µ= −ɶ . (2.10) 
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These equations include the equivalent (fictitious) magnetic currents M. The 
imaginary part of the complex dielectric permittivity εɶ  describes loss. Often, the 
dielectric loss is represented by the dielectric loss angle dδ : 

 d

"
' 1 ' 1 tan

' ' '
j j

ε σ σ
ε ε ε δ

ε ωε ωε

      
= − + = − +            
ɶ . (2.11) 

Since it is difficult to separate conduction loss (σ) from polarization loss (ε ′′), 
usually the high-frequency loss is represented with only one effective loss 
parameter: effσ , effε ′′ , or dtanδ . We can switch between these parameters using: 

 eff 0 r 0 r dtanσ ωε ωε ε ωε ε δ′′ ′′ ′= = =  (2.12) 

or 
 eff 0 r,eff /ε ε ε σ ω′′ ′′= = . (2.13) 

Similarly, the magnetic loss is described by the imaginary part of the complex 

magnetic permeability µɶ  or by the magnetic loss angle mδ : 

 ( )m

"
' " ' 1 ' 1 tan

'
j j j

µ
µ µ µ µ µ δ

µ

 
= − = − = − 

 
ɶ . (2.14) 

In antenna theory, we are mostly concerned with isotropic, homogeneous and 
loss-free propagation media. 

The complex permittivity and permeability determine the intrinsic 
propagation constant jγ α β= +  of a medium since 

 j jγ α β ω µε= + = ɶɶ . (2.15) 

It is also customary to describe the medium through the (complex) wavenumber 

k, which relates to the propagation constant as jkγ = , and, thus k ω µε= ɶɶ .  

The penetration of the high-frequency waves into conductive (or lossy) media 
is often described in terms of the penetration (or skin) depth sδ , which is defined 

by 
 s 1/ 1 / Reδ α γ= = . (2.16) 

This is the depth at which the field strength is e (2.71828…) times weaker 
compared to its value upon entering the medium. In the case of very good 
conductors, e.g., metals, for which σ ωε ′≫ , there is a much simpler (but 
approximate) formula, namely,  

 s
1

f
δ

π µσ
= . (2.17) 
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2.  Power Density, Poynting Vector, Radiated Power 

2.1. Poynting vector – revision 

In the time-domain analysis, the Poynting vector is defined as 
 ( ) ( ) ( )t t t= ×p e h , W/m2. (2.18) 

As follows from Poynting’s theorem, p is a vector representing the density and 
the direction of the EM power flow. Thus, the total power leaving certain 
volume V is obtained as 

 
[ ]

( ) ( )
VS

t t dΠ = ⋅ p s� , W. (2.19) 

Since 

 { } ( )1
( ) Re

2
j t j t j t

t e e e
ω ω ω∗ −= = +e E E E , (2.20) 

 { } ( )1
( ) Re

2
j t j t j t

t e e e
ω ω ω∗ −= = +h H H H , (2.21) 

the instantaneous power-flow density can be represented as 

 { } { }2 2( ) 0.5Re  W0.5Re /m

av

j tt e ω⋅∗× ⋅= + ×

p

p E HE H
���	��


. (2.22) 

In a time-domain form, this can be written as: 

 0 0
ˆˆ( ) 0.5( ) [ coss (2 )]co

avp

t E H tω ϕϕ= × − + ∆∆p e h
�����	����


 (2.23) 

where E Hϕ ϕ ϕ∆ = −  is the phase difference between the electric and magnetic 
fields. 

The first term in (2.22) and (2.23), avp , has no time dependence. It is the 
time-average value, about which the power flux density fluctuates in time with 
double frequency 2ω . The time-average Poynting vector avp  is a vector of 
constant value and direction because it is the time-averaged flow of EM power 
density. It is used to calculate the active (or time-average) power flow as 

 
[ ]S V

avav dΠ = ⋅ p s� , W. (2.24) 

The second term in (2.22) and (2.23) is a vector changing its value and 
direction with a double frequency 2ω . It describes power flow, which fluctuates 
in space (propagates to and fro) without contribution to the power transport.  

If there is no phase difference between E  and H , ( )tp  always maintains the 
same direction (the direction of the outgoing wave relative to the antenna) 
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although it changes in intensity. This is because the 2nd term in (2.22) does not 
exceed in magnitude the first term, avp . This indicates that the power moves 
away from the source at every instant of time, with the Poynting vector never 
directed toward the source. However, if E  and H  are out of phase ( ϕ∆ =  

0E Hϕ ϕ− ≠ ), during certain time periods the Poynting vector does reverse its 
direction toward the source.  

In fact, the time-dependent Poynting vector can be decomposed into two 
parts: (i) a positive (active) part fluctuating with double frequency about the 
time-average value 0.5 Re{ }av

∗= ⋅ ×p E H , swinging between zero and 

0 0 cosE H ϕ∆ , and (ii) reactive part of magnitude 0.5 Im{ }∗⋅ ×E H , which also 
fluctuates with double frequency and has zero time-average value: 

 [ ]{ } 2
0 0 cos 1 cˆˆ( ) 0.5( 2 sin sin(2 ) /os( ))  W mt E H ttϕ ϕ ωω= × ⋅ + ∆ ⋅∆ ⋅ −p e h . (2.25) 

 
Example for the time-domain Poynting vector: 1f =  GHz, 30ϕ∆ = ° , 0 0 1E H =   

 
 

Definition:  The complex Poynting vector is the vector 

 0.5 ∗= ×P E H , (2.26) 
the real part of which is equal to the time-average power flux density: Re .av =p P  

 

2.2. Radiated power 

Definition:  Radiated power is the time-average power radiated by the antenna: 

P
o

y
n

ti
n

g
 V

ec
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r 
[W

/m
2
)

total 

active 

reactive 

time average 
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 { }
[ ] [ ] [ ]

1
Re Re

2
S S SV V V

avrad d d d
∗Π = ⋅ ⋅ × ⋅  = =p s P s E H s� � � . (2.27) 

3.  Basic Principle of Radiation 

 
 
 

3.1. Current element 

Definition: A current element ( I l∆ ), A m× , is a filament of length l∆  carrying 
current I. It is a fairly abstract concept as it features constant magnitude of the 
current along . 

The time-varying current element is the elementary source of EM radiation. 
It has fundamental significance in radiation theory similar to the fundamental 
concept of a point charge in electrostatics. The field radiated by a complex 
antenna in a linear medium can be analyzed using the superposition principle 
after decomposing the antenna into elementary sources, i.e., current elements. 

The time-dependent current density vector j depends on the charge density ρ 
and its velocity v as 

 2, A / mρ= ⋅j v . (2.28) 

If the current flows along a wire of cross-section S∆ , then the product 

l Sρ ρ= ⋅ ∆  [C/m] is the charge per unit length (charge line density) along the 
wire. Thus, for the current i = ⋅ ∆j S  it follows that 

 li v ρ= ⋅ , A. (2.29) 

Then 

 l l

di dv
a

dt dt
ρ ρ= = ⋅ , A/s, (2.30) 

where a (m/s2) is the acceleration of the charge. The time-derivative of a current 
element i l∆  is then proportional to the amount of charge q enclosed in the 
volume of the current element and to its acceleration: 

 ,  A m/sll
di

a
dt

al qρ= ∆ ⋅ ⋅ ×⋅=∆ . (2.31) 

3.2. Mathematical description of the accelerated charge as a radiation source 

It is not immediately obvious from Maxwell’s equations that the time-varying 
current is the source of radiation. A transformation of the time-dependent 
Maxwell equations, 

l∆

Radiation is produced by accelerated or decelerated charge (time-
varying current element, infinitesimal dipole, Hertzian dipole). 
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,

t

t

µ

ε

∂
−∇ × =

∂

∂
∇ × = +

∂

h
e

e
h j

   

 

 (2.32) 

into a single second-order equation either for E or for the H field proves this 
statement. By taking the curl of both sides of the first equation in (2.32) and by 
making use of the second equation in (2.32), we obtain 

 
2

2 tt
µε µ

∂ ∂
∇×∇× + = −

∂∂

e j
e . (2.33) 

From (2.33), it is obvious that the time derivative of the electric current is the 
source for the wave-like vector ( , )te r . Time-constant currents do not radiate. In 

an analogous way, one can obtain the wave equation for the magnetic field H and 
its sources: 

 
2

2
t

µε
∂

∇×∇× + = ∇×
∂

h
h j . (2.34) 

Notice that curl-free currents (e.g., ψ= ∇j ) do not radiate either. 

To accelerate/decelerate the charges, one needs sources of electromotive 
force and/or discontinuities of the medium in which the charges move. Such 
discontinuities can be bends or open ends of wires, change in the electrical 
properties of the region, etc. In summary: 

• If charge is not moving, current is zero  no radiation. 
• If charge is moving with a uniform velocity (DC)  no radiation. 
• If charge is accelerated due to electromotive force or due to 

discontinuities, such as terminations, bends, curvatures  radiation 
occurs. 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 

 

 

 

 

 

3.1. Intuitive representation of radiation from simple sources 

 

 
(a) Illustration of the E-field lines in a transmission (feed) line and at the 

antenna aperture [Balanis, 3rd ed.] 
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(b) Snapshots of the E-field lines around a dipole 

 
(c) animations of the E-field lines of infinitesimal dipole 

[https://www.en.didaktik.physik.uni-muenchen.de/multimedia/dipolstrahlung/index.html] 

 
4. Radiation Boundary Condition 

With few exceptions, antennas are assumed to radiate in open (unbounded) 
space. This is a critical factor determining the field behavior. Often, the EM 
sources (currents and charges on the antenna) are more or less accurately known. 
These sources are then assumed to radiate in unbounded space and the resulting 
EM field is determined from integrals over the currents on the antenna. Such 
problems, where the field sources are known and the resulting field is to be 
determined are called analysis (forward, direct) problems.2F

1 To ensure the 
uniqueness of the solution in an unbounded analysis problem, we have to impose 

 
1 The inverse (or design) problem is the problem of finding the sources of a known field. 

0t = / 8t T=

/ 4t T=
3 / 8t T=
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the radiation boundary condition (RBC) on the EM field vectors, i.e., for 
distances far away from the source ( r → ∞ ), 

 

ˆ( ) 0,

1
ˆ( ) 0 .

r

r

η

η

− × →

− × →

E H r

H r E  
 (2.35) 

The above RBC is known as the Sommerfeld vector RBC or the Silver-Müller 
RBC. Here, η is the intrinsic impedance of the medium; 0 0/ 377 η µ ε= ≈ Ω  in 
vacuum. 

Antenna analysis benefits from the introduction of auxiliary vector potential 

functions, which allow simpler and more compact solutions. 
It is customary to perform the EM analysis for the case of time-harmonic 

fields, i.e., in terms of phasors. This course adheres to this tradition. Therefore, 
from now on, all field quantities (vectors and scalars) are to be understood as 
complex phasor quantities, the absolute values of which correspond to the 
magnitudes (not the RMS value!) of the respective sine waves. 
 
 
5. Vector and Scalar Potentials – Review 

In radiation theory, the potential functions are almost exclusively in the form 
of retarded potentials, i.e., the magnetic vector potential A and its scalar 
counterpart Φ  form a 4-potential in space-time and they are related through the 
Lorenz gauge. We next introduce the retarded potentials. 

5.1. The magnetic vector potential A 

We first consider only electric sources (J and ρ , jωρ∇ ⋅ = −J ). 

 
,

.

j

j

ωµ

ωε

∇× = −

∇× = +

E H

H E J
 (2.36) 

Since 0∇ ⋅ =B , we can assume that 
 = ∇ ×B A . (2.37) 

Substituting (2.37) in (2.36) yields 

 

,

1
.

j

j

ω

ωε
µ

= − − ∇Φ

 
= ∇× ∇× − 

 

E A

E A J
 (2.38) 

From (2.38), a single equation can be written for A in a uniform medium: 
 ( )j jωµε ω µ∇×∇× + + ∇Φ =A A J . (2.39) 
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Here, Φ  denotes the electric scalar potential, which plays an essential role in the 
analysis of electrostatic fields. To uniquely define A, we need to define not only 
its curl, but also its divergence. There are no restrictions in defining ∇ ⋅ A . Since 

2∇ ×∇× = ∇∇ ⋅ −∇ , equation (2.39) can be simplified by assuming that 
 jωµε∇ ⋅ = − ΦA . (2.40) 

Equation (2.40) is known as the Lorenz gauge. It reduces (2.39) to 

 2 2ω µε µ∇ + = −A A J . (2.41) 

If the region is lossless, then µ  and ε  are real, and (2.41) can be written as 

 2 2β µ∇ + = −A A J , (2.42) 

where β ω µε=  is the phase constant of the medium. If the region is lossy, the 
complex permittivity εɶ  and permeability µɶ  are introduced. Then, (2.41) 
becomes 

 2 2γ µ∇ − = −A A J . (2.43) 

Here, j jγ α β ω µε= + = ɶɶ  is the propagation constant and α  is the attenuation 

constant.  

5.2. The electric vector potential F 

The magnetic field is a solenoidal field, i.e., 0∇ ⋅ =B , because there are no 
magnetic charges. Therefore, there are no physically existing magnetic currents 
either. However, the fictitious (equivalent) magnetic currents (density is denoted 
as M) are a useful tool for antenna analysis when applied with the equivalence 
principle. These currents are introduced in Maxwell’s equations in a manner dual 
to that of the electric currents J. Now, we consider the field due to magnetic 

sources only, i.e., we set 0=J  and 0ρ = , and therefore, 0∇ ⋅ =D . Then, the 
system of Maxwell’s equations is 

 
,

.

j

j

ωµ

ωε

∇× = − −

∇× =

E H M

H E 
 (2.44) 

Since D here is solenoidal (i.e. 0∇ ⋅ =D ), it can be expressed as the curl of a 
vector, namely, the electric vector potential F: 

 = −∇ ×D F . (2.45) 
Equation (2.45) is substituted into (2.44). All mathematical transformations are 
analogous to those made in Section 5.1. Finally, it is shown that a field due to 
magnetic sources M is described by the vector F alone, where F satisfies 

 2 2ω µε ε∇ + = −F F M  (2.46) 

provided that the Lorenz gauge is imposed as 
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 jωµε∇ ⋅ = − ΨF . (2.47) 

Here, Ψ  is the magnetic scalar potential. 
In a linear medium, a field due to both types of sources (magnetic and electric) 

can be found by superimposing the partial field due to the electric sources only 
and that due to the magnetic sources only. 

 
TABLE 2.1: FIELD VECTORS IN TERMS OF VECTOR POTENTIALS 

Magnetic vector-potential A 
(electric sources only) 

Electric vector-potential F 
(magnetic sources only) 

= ∇ ×B A , 
1

µ
= ∇×H A  

j
jω

ωµε
= − − ∇∇ ⋅E A A  or 

1

j jωµε ωε
= ∇ ×∇× −

J
E A  

= −∇ ×D F , 
1

ε
= − ∇×E F  

j
jω

ωµε
= − − ∇∇ ⋅H F F  or 

1

j jωµε ωµ
= ∇×∇× −

M
H F  

 

 

6.  Retarded Potentials – Review  

Retarded potential is a term usually used to denote the solution of the 
inhomogeneous Helmholtz’ equation (in the frequency domain) or that of the 
inhomogeneous wave equation (in the time domain) in an unbounded region. 

Consider the z-directed electric current density ˆ zJ=J z . According to (2.42) 
the magnetic vector potential A is also z-directed and is governed by the 
following equation in a lossless medium: 

 2 2
z z zA A Jβ µ∇ + = − . (2.48) 

Eq. (2.48) is a Helmholtz equation and its solution in open space is determined 
by the integral 

 [ ]( ) ( , ) ( )

Q

z z Q

V

A P G P Q J Q dvµ= ⋅ −  (2.49) 

where ( , )G P Q  is the open-space Green’s function of the Helmholtz equation 
(see the Appendix), P is the observation point, and Q is the source point. 
Substituting (2.89) from the Appendix into (2.49) gives 
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 ( ) ( )
4

PQ

Q

j R

z z Q

PQV

e
A P J Q dv

R

β

µ
π

− 
= ⋅  

 
  (2.50) 

where PQR  is the distance between P and Q. 
 

PQR

r

′r

 
 
To further generalize the above formula, one assumes the existence of source 

currents of arbitrary directions, which would produce partial magnetic vector 
potentials in any direction. Note that a current element in the ξ̂  direction results 
in a vector potential ˆAξ=A ξ  in the same direction (unless the medium is 
inhomogeneous and/or anisotropic). Thus, 

 ( ) ( )
4

PQ

Q

j R

Q

PQV

e
P Q dv

R

β

µ
π

− 
=   

 
A J . (2.51) 

The solution for the electric vector potential due to magnetic current sources 
( )QM  is analogous: 

 ( ) ( )
4

PQ

Q

j R

Q

PQV

e
P Q dv

R

β

ε
π

− 
=   

 
F M . (2.52) 

Finally, we recall that not only volume sources are used to model current 
distributions. A useful approximation, especially for currents on a conductor 
surface, is the surface current density (or simply surface current): 

 
/2

/2

0( , ) lim ( , , )s x y x y z dz

δ

δ

δ

−

→= J J , A/m. (2.53) 

The magnetic vector potential A produced by distributed surface currents is then 
expressed as 
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 ( ) ( )
4

PQ

Q

j R

s Q

PQS

e
P Q ds

R

β

µ
π

− 
=  

 
A J . (2.54) 

Currents on a very thin wire are usually approximated by a linear source, 
which is the current I flowing through the wire: 

 0
0

( ) ( ) ( ) lim ( , , )
x

y
x y

lz I z z x y z dxdy

δ δ

δ
δ

→
→

= = I a J , A. (2.55) 

The vector potential of a line current is 

 ( ) ( ) ( )
4

PQ

Q

j R

l Q

PQL

e
P I Q Q dl

R

β

µ
π

− 
=   

 
A a . (2.56) 

 

z

y
x

0δ →
(a) surface current on a sheet 

y

x

z

xδ

yδ

 
(b) linear current on a thin wire 

 
7. Far Fields and Vector Potentials 

7.1. Potentials 

Antennas are sources of finite physical dimensions. The further away from the 
antenna the observation point is, the more the wave looks like a spherical wave 
(locally) and the more the antenna looks like a (directed) point source regardless 
of its actual shape. For such observation distances, we talk about far field and far 

zone. The exact meaning of these terms will be discussed later. For now, we will 
simply accept that the vector potentials behave locally like spherical waves, when 
the observation point is far from the source: 

 
�

dependence on observation angles only dependence on distance only
(directionality of wave) (spherical-wave dependence)

ˆˆ ˆ( , ) ( , ) ( , ) ,
jkr

r

e
A A A r

r
θ ϕθ ϕ θ ϕ θ ϕ

−

 ≈ + + ⋅ → ∞ A r θ φ
�������	������


. (2.57) 

Here, ˆˆ ˆ( , , )r θ φ  are the unit vectors of the spherical coordinate system (SCS) 
centered on the antenna and k ω µε=  is the wave number (or the phase 

sJ I
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constant). The phase-delay (retardation) term jkr
e

−  shows propagation along r̂  
away from the antenna at the speed of light. The amplitude-decay term 1/ r  shows 
the potential’s decrease in strength with distance. 

Notice an important feature of the far-field potential: the dependence on the 
distance r is separable from the dependence on the observation angle ( , )θ ϕ , and 

it is the same for any antenna: /jkre r− . 
Formula (2.57) is a far-field approximation of the vector potential at distant 

points. We arrive at it starting from the integral in (2.51). When the observation 
point P is very far from the source, the distance PQR  varies only slightly as Q 

sweeps the volume of the source. It is almost the same as the distance r from the 
origin (the antenna center) to P. The following first-order approximation 
(attributed to Kirchhoff) is made for the integrand: 

 
ˆ( )PQjkR jk r

PQ

e e

R r

− ′− − ⋅

≈
r r

. (2.58) 

Here, r is the position vector of the observation point P and | |r = r  is its length. 
Its direction is given by the unit vector r̂ , so that ˆr=r r . The position vector of 
the integration point Q is ′r . Equation (2.58) is called the far-field 

approximation. The approximation in the phase term (in the exponent) is 
illustrated in the figures below. The first figure shows the real problem. The 
second one shows the (Kirchhoff) approximated problem, where, in effect, the 
vectors PQR  and r are parallel. 
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(a) original problem  
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(b) far-field approximation of the original problem 

 
We now apply the far-field approximation to the vector potential in (2.51): 

 
�

ˆ

dependence on distance
dependence on source distributionfrom origin
and angular orientation

( ) ( )
4

Q

jkr
jk

Q

v

e
P Q e dv

r
µ

π

−
′⋅= ⋅  r rA J

����	���


. (2.59) 

The integrand in (2.59) no longer depends on the distance r between the origin 
(the antenna center) and the observation point. It depends only on the current 
distribution of the source, ( ) ( )Q ′≡J J r , and the angle between the position 
vector of the integration point ′r  and the unit position vector of the observation 
point r̂ . This finally explains the general equation for the far-field vector 

potential in (2.57) and in particular the origin of its term in the square brackets, 
which is represented by the volume integral in (2.59). 

 
7.2. Far-zone field 

The far-field approximation of the vector potential leads to much simpler 
equations for the far-field vectors. Assume that there are only electrical currents 
J. Then the field is fully described only by the magnetic vector potential A. We 
have to substitute (2.57) into the equations of Table 2.1, where 0=F : 
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 ,
j

jω
ωµε

= − − ∇∇ ⋅E A A  (2.60) 

 
1

.
µ

= ∇×H A  (2.61) 

The differential operators ∇ ×  and ∇∇ ⋅  have to be expressed in spherical 
coordinates. All terms decreasing with the distance as 21/ r  and faster (near-field 
terms) are neglected. What remains is 

 { } { }
2

far-field term neglected

1 1ˆ ˆ( , ) ( , ) ,jkrj e A A r
r r

θ ϕω θ ϕ θ ϕ−  = − + + + → ∞ E θ φ ⋯

�������	������
 ��	�


, (2.62) 

 { }
2

neglectedfar-field term

1 1ˆ ˆ( , ) ( , ) ,jkrj e A A r
r r

ϕ θ
ω

θ ϕ θ ϕ
η

−
  = − + + → ∞   

H θ φ ⋯

��	�
�������	������


. (2.63) 

Here, /η µ ε=  is the intrinsic impedance of the medium. We write the far-field 

terms in equations (2.62) and (2.63) in a more compact way as 

 

0
ˆ ˆ,  where  

r

A

E

E j A j A A

E j A

θ θ θ ϕ

ϕ ϕ

ω ω

ω

⊥ ⊥

≈ 


≈ −  ≈ − = +
≈ − 

E A A θ φ , (2.64) 

 

 

0

1
ˆ ˆ

r

A A

H

E
H j A j

E
H j A

ϕ
θ ϕ

θ
ϕ θ

ω ω

η η η η

ω

η η


≈



≈ + = −  ≈ − × = ×



≈ − = + 


H r A r E . (2.65) 

In an analogous manner, we obtain the relations between the field vectors 
and the electric vector potential F, when only magnetic sources are present: 

 

0
ˆ ˆ, where 

r

F

H

H j F j F F

H j F

θ θ θ ϕ

ϕ ϕ

ω ω

ω

⊥ ⊥

≈ 


≈ −  ≈ − = +
≈ − 

H F F θ φ , (2.66) 
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0

ˆ ˆ

r

F F

E

E j F H j

E j F H

θ ϕ ϕ

ϕ θ θ

ωη η ωη η

ωη η

≈


≈ − =  ≈ × = − ×
≈ + = − 

E r F r Η . (2.67) 

In summary, the far field of any antenna has the following important features, 
which follow from equations (2.64) through (2.67): 

• The far field has negligible radial components, 0rE ≈  and 0rH ≈ . Since 
the radial direction is also the direction of propagation, the far field is a 
quasi-TEM (Transverse Electro-Magnetic) wave. 

• The far-field E vector and H vector are mutually orthogonal, both of them 
being also orthogonal to the direction of propagation r̂ . 

• The magnitudes of the electric field and the magnetic field are related 
always as | | | |η=E H . 

 
 
APPENDIX 

Green’s Function for the Helmholtz Equation 

Suppose the following PDE must be solved: 
 ( ) ( )L fΦ =x x  (2.68) 

where x denotes the set of variables, e.g., ( , , )x y z=x  and L operates on x. Suppose also that a Green’s 

function exists such that it allows for the integral solution 

 ( ) ( , ) ( )
V

G f d

′

′ ′ ′Φ = ⋅x x x x x . (2.69) 

Applying the operator L to both sides of (2.62), leads to 

 [ ]( ) ( , ) ( ) ( )
V

L LG f d f

′

′ ′ ′Φ = ⋅ =x x x x x x . (2.70) 

Note that L operates on the variable x while the integral in (2.70) is over ′x . This allows for the insertion of 
L inside the integral. From (2.70), we conclude that Green’s function must satisfy the same PDE as Φ with 
a point source described by Dirac’s delta function: 

 ( , ) ( )LG δ′ ′= −x x x x . (2.71) 

Here, ( )δ ′−x x  is Dirac’s delta function in 3-D space, e.g., ( ) ( ) ( ) ( )x x y y z zδ δ δ δ′ ′ ′ ′− = − − −x x . If Green’s 
function of a problem is known and the source function ( )f x  is known, the construction of an integral 
solution is possible via (2.69). 

Consider Green’s function for the Helmholtz equation in open space. It must satisfy 

 2 2 ( ) ( ) ( )G G x y zβ δ δ δ∇ + =  (2.72) 

together with the scalar radiation condition 

 lim 0
r

G
r j G

r
β

→∞

∂ 
⋅ + = 

∂ 
 (2.73) 

if the source is centered at the origin of the coordinate system, i.e., 0x y z′ ′ ′= = = . Integrate (2.72) within 
a sphere with its center at (0,0,0) and a radius R: 
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 2 2 1
V V

Gdv Gdvβ∇ + =   (2.74) 

 

 
The function G is due to a point source and thus has a spherical symmetry, i.e., it depends on r only. 

The Laplacian 2∇  in spherical coordinates is reduced to derivatives with respect to r only: 

 
2

2

2

2
( ) ( ) ( )

d G dG
G x y z

r drdr
β δ δ δ+ + = . (2.75) 

Everywhere except at the point ( , , )x y z , G must satisfy the homogeneous equation 

 
2

2

2

2
0

d G dG
G

r drdr
β+ + =  (2.76) 

the solution of which is well known for outgoing waves: 

 ( )
jkr

e
G r C

r

−

= . (2.77) 

Here, C is a constant to be determined. Consider the 2nd integral from (2.74): 

 2
2

V

I Gdvβ=  . (2.78) 

 
2

0 0 0

2 2 2
2 sin

Rj r j r

v

e e
I C dv C r d d dr

r r

π πβ β

β β θ θ ϕ
− −

 = =     (2.79) 

 2

1
( ) 4

j R
j R e

I R j C R e
j j

β
βπβ

β β

−
− 

 = ⋅ + − 
 

. (2.80) 

To evaluate the integral at (0,0,0), we let 0R → , i.e., we let the sphere collapse into a point. We see that 

 0 2lim ( ) 0R I R→ = . (2.81) 

Now, consider the 1st integral in (2.74), 

 ( )2
1

V V S

I Gdv G dv G d= ∇ = ∇ ⋅ ∇ = ∇ ⋅   s� . (2.82) 

Here, 2 ˆsind R drd dθ θ ϕ= ⋅s r  is a surface element on S, and 

 
2

ˆ ˆ
jkr jkr

G e e
G C jk

r r r

− − ∂
∇ = = − + 

∂  
r r . (2.83) 

Substitute (2.83) in (2.82) and carry out the integration over the spherical surface: 

 ( )
2

0 0

1( ) sinjkR jkRI R C jkR e e d d

π π

θ ϕ θ− −= − ⋅ +    (2.84) 

 0 1lim ( ) 4R I R Cπ→ = − . (2.85) 

Substituting (2.85) and (2.81) into (2.74) and bearing in mind the limit 0limR→ , yields 

 
1

4
C

π
= − . (2.86) 

Finally, 

 ( )
4

jkr
e

G r
rπ

−

= − . (2.87) 

It is not difficult to show that in the general case when the source is at a point ( , , )Q x y z′ ′ ′ , 

R V 

[S] 
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 2 2 ( ) ( ) ( )G G x x y y z zβ δ δ δ′ ′ ′∇ + = − − −  (2.88) 

the Green function is 

 ( , )
4

PQjkR

PQ

e
G P Q

Rπ

−

= − , (2.89) 

where 2 2 2( ) ( ) ( )PQR x x y y z z′ ′ ′= − + − + −  is the distance between the observation source points.  


