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LECTURE 8: Basic Methods in Antenna Measurements 

(Antenna ranges and anechoic chambers. Measuring far-field patterns, gain, 

directivity, radiation efficiency, input impedance and polarization.) 
 
1.  Introduction* 

Many of the basic methods for measuring antenna characteristics were 
developed before and during World War II. However, new approaches and 
measurement technologies continue to emerge boosted by the rapid growth of 
mobile communications and wireless networks. The methods for measuring 
antenna far-field patterns, polarization, input impedance, gain and directivity 
have been developed in conjunction with the design of novel radiating 
structures, which are needed in the telecommunications and radar technologies. 

Antenna metrology requires not only sound theoretical background in 
antenna theory and radiation but also sophisticated equipment capable of 
providing the necessary accuracy and purity of the measured data. Commercial 
equipment specifically designed for antenna measurements became available in 
the 1960s due, in part, to the requirements of the aerospace, space and defence 
industries. 

The antenna measurement equipment includes: antenna ranges, antenna 
positioners, pattern recorders, scalar and/or vector network analyzers, signal 
generators, antenna gain standards, etc. Later on, sophisticated computer 
systems were developed to provide automated control of pattern measurements 
as well as fast calculations related to antenna directivity, 2-D to 3-D pattern 
conversion, near-to-far field transformations (in compact antenna ranges), etc. 

 
2.  General Requirements for Antenna Measurement Procedures* 

The ideal condition for measuring the far-field pattern and antenna gain is 
an illumination by a uniform plane wave. This is a wave, which has a plane 
wave front with the field vectors being constant over an area that extends well 
beyond the aperture of the antenna under test (AUT). For example, the E field 
vector of a uniform non-attenuating plane wave propagating in the z+ -direction 
is described by the 1-D wave expression 

 ˆ( ) jkz
w mz E e−=E ρ . (1) 

Here, ˆ wρ  is the wave polarization vector, which must remain constant within 
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the volume of the AUT. The same holds for the magnitude mE , which must 
remain constant across the AUT aperture.  

In practice, antennas generate far fields in 3-D space which are closely 
approximated by spherical wave fronts when the observation point is 
sufficiently far from the source. Also, at large distances from the source 
antenna, the curvature of the phase front is small at the aperture of the AUT and 
it is well approximated by a uniform plane wave. 
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If the distance from the source is equal or greater than the inner boundary of 
the far-field region 2

min max,Tx2 /R D λ= , then the maximum phase difference 
between the actual incident field and its far-zone approximation (remember the 
1st order binomial approximation max,Tx / 2R r D≈ − ) does not exceed 

max 22.5 / 8e π≈ =�  rad. Here, max,TxD  is the maximum dimension of the source 
(or transmitting) antenna. 

Conversely, we can show that if max,Rx maxD D≡  is the maximum dimension 
of the receiving AUT, a distance  

 2
min max2 /R D λ=  (2) 
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from the source of a spherical wave ensures that the maximum phase difference 
between a plane wave and the spherical wave at the aperture of the AUT is 

max 22.5 / 8e π≈ =�  rad. Consider a source of a spherical wave and an AUT 
located a distance R away. 
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The largest phase difference between the spherical wave and the plane wave 
appears at the edges of the AUT, which corresponds to the difference in the 
wave paths δ . This phase difference must fulfil the requirement: 

 / 8kδ π≤ . (3) 

The difference in the wave paths δ  is determined by noticing that 

 2 2 2
max( ) ( / 2)R R Dδ+ = + . (4) 

The real-positive solution of this quadratic equation for δ  is 

 2 2
max( / 2)R D Rδ = + − . (5) 

Next, the above expression is approximated by the use of the binomial 
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expansion (the first two terms only) as 

 
2 2 2

max max max1
1 1 1 1

2 2 2 8

D D D
R R

R R R
δ

       = + − ≈ + − =    
       

. (6) 

The minimum distance from the source of the spherical wave is now 
determined from the requirement in (3), 

 
2 2
max max2

8 8 8

D D
k

R R

π π

λ
= ≤ . (7) 

Thus, 

 2
min max2 /R D λ= . (8) 

It is now clear that the antenna far-field characteristics must be measured at 
a sufficiently large distance between the source antenna and the AUT. This 

distance must be greater than the larger of the two inner limits of the far 

zones of the transmitting and receiving antennas, i.e., the two antennas must 

be in each other’s far zones. 
The above requirement leads to a major difficulty in antenna measurements 

– large separation distances are required between the source antenna and the 
AUT. The larger the AUT, the larger the measurement site. While the size of 
the site may not be a problem, securing its reflection-free, noise-free, and EM 
interference-free environment is extremely difficult. 

Special attention must be paid to minimizing unwanted reflections from 
nearby objects (equipment, personnel, buildings), from the ground or the walls 
of the site. This makes the open sites for antenna measurements (open ranges) 
a rare commodity since they have to provide free-space propagation. Such ideal 
conditions are found only in unpopulated (desert) areas of predominantly flat 
terrain. The other alternative is offered by indoor chambers (anechoic 

chambers), which minimize reflections by special wall lining with 
RF/microwave absorbing material. They are much preferred to open ranges 
because of their controlled environment. Unfortunately, the anechoic chambers 
are very expensive and often they cannot accommodate large antennas. 

There are cases in which the antenna operates in a very specific environment 
(mounted on an aircraft, mobile system, etc.). Then, it is better to measure the 
antenna as it is mounted, i.e., in its own environment. Such measurements are 



Nikolova 2020 5

very specific and usually cannot be performed in anechoic chambers. 
Below is a summary of the challenges in antenna measurements: 

• affected by unwanted reflections; 

• often require too large separation distances; 

• very complicated when a whole antenna system (e.g., on-craft mounted 
antenna) is to be measured; 

• outdoor sites have uncontrollable EM environment, which, besides all, 
depends on the weather; 

• indoor sites cannot accommodate large antenna systems; 

• the instrumentation is expensive. 

 
3.  Antenna Ranges (AR)* 

The antenna measurement sites are called antenna ranges (AR). They can 
be categorized as outdoor ranges and indoor ranges (anechoic chambers). 
According to the principle of measurement, they can be also categorized as 
reflection ranges, free-space ranges, and compact ranges. 
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The reflection ranges are designed so that the direct and reflected (usually 
from ground) waves interfere constructively and form a uniform (in both 
magnitude and phase) wave front in the region of the AUT. Such a region is 
called the quite zone. Reflection ranges are usually of the outdoor type. They 
are used to measure antennas of moderately broad patterns operating in the 
UHF frequency bands (500 MHz to 1000 MHz). 

The reflection-range design is complicated and depends on the reflection 
coefficient of the ground (the range surface), its smoothness, as well as the 
pattern of the source antenna. The parameter to be determined is the height rh  
of the mast, on which the AUT is to be mounted, provided that the height of the 
transmitting antenna th  is known. More information can be found in 

L.H. Hemming and R.A. Heaton, “Antenna gain calibration on a ground 
reflection range,” IEEE Trans. on Antennas and Propagation, vol. AP-21, 
pp. 532-537, July 1977. 

The free-space ranges provide reflection-free propagation. They can be 
outdoor or indoor. Outdoor free-space ranges are carefully built in such a way 
that reflections from buildings and other objects are minimized. They can be 
realized as elevated ranges and slant ranges. Indoor ranges (anechoic 
chambers) suppress reflections (echoes) by lining the walls, the floor and the 
ceiling with special RF/microwave absorbers.  

The elevated ranges are characterized by the following features: 

• Both antennas (the transmitting and the receiving) are mounted on high 
towers or buildings. 

• The terrain beneath is smooth. 

• The source antenna has very low side lobes so that practically there is 
no energy directed toward the surface below (the ground) or the 
buildings behind. 

• The line-of-sight is always clear. 

 



Nikolova 2020 7

 

 

The slant ranges need less space than the elevated ranges. The test antenna 
is mounted at a fixed height on a non-conducting tower (e.g. made of fiber 
glass), while the source antenna is mounted near the ground. The source 
antenna must have its pattern null pointed toward ground. It is desirable that it 
has very low side lobes and narrow beamwidth. Slant ranges still require wide 
open space to minimize reflections from surrounding buildings. 
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The anechoic chambers are the most popular antenna measurement sites 
especially in the microwave frequency range. They provide convenience and 
controlled EM environment. However, they are expensive to build and 
maintain. An anechoic chamber is a large room, the walls, floor and ceiling of 
which are lined with steel sheets. In effect, an anechoic chamber is a huge 
Faraday cage, which provides near ideal protection against external EM noise 
and interference. In addition, all inner surfaces of the chamber are lined with 
RF/microwave absorbers. An anechoic chamber is shown in the photo below. A 
comprehensive description of the EM anechoic chambers can be found in 

L.H. Hemming, Electromagnetic Anechoic Chambers: A Fundamental 

Design and Specifications Guide, IEEE Press/Wiley, 2002. 
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The first EM wave absorbers were developed during World War II in both 
US and German laboratories. The manufacturing of anechoic chambers became 
possible after RF/microwave absorbing materials with improved characteristics 
had become commercially available. The first broadband absorbers were made 
of a material called hairflex consisting of animal fibres sprayed with (or dipped 
in) conducting carbon in neoprene. A historical summary of the development of 
EM wave absorbing materials is given by Emerson in his paper: 

W.H. Emerson, “Electromagnetic wave absorbers and anechoic chambers 
through the years,” IEEE Trans. on Antennas and Propagation, vol. AP-21, 
pp. 484-489, July 1973. 

Nowadays, absorbing elements are with much improved characteristics 
providing reflection coefficients as low as –50 dB at normal incidence. 
Reflection increases as the angle of incidence increases. For example, a typical 
reflection of –25 dB is related to an angle of incidence of about 70 degrees. 

A typical absorbing element has the form of a pyramid or a wedge. 
Pyramids are designed to absorb the waves at normal (nose-on) incidence best. 
They do not perform well at large angles of incidence. They act, in effect, as a 
tapered impedance transition for normal incidence of the EM wave from the 
intrinsic impedance of 377 Ω  to the short of the chamber’s wall. Their 
resistance gradually decreases as the pyramid’s cross-section increases. 
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Wedges, on the other hand, perform much better than pyramids for waves, 
which travel nearly parallel to their ridges. 
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For more detailed information on absorbing materials and shapes see: 

John Kraus, Antennas, 2nd edition, McGraw-Hill, Inc. 

B.T. DeWitt and W.D. Burnside, “Electromagnetic scattering by pyramidal 
and wedge absorber,” IEEE Trans. on Antennas and Propagation, 1988. 

An anechoic chamber lined with both types of absorbing shapes is shown 
below. 
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There are two types of anechoic chambers: rectangular and tapered. The 
design of both chamber types is based on the principles of geometrical optics. 
The goal is to minimize the amplitude and phase ripples in the test zone (the 
quiet zone), which are due to the imperfect absorption by the wall lining. The 
tapered chamber has the advantage of tuning by moving the source antenna 
closer to (at higher frequencies) or further from (at lower frequencies) the apex 
of the taper. Thus, the reflected rays are adjusted to produce nearly constructive 
interference with the direct rays at the test location. 

 
 

l nλ∆ ≈

 

 
 
Anechoic chambers are limited by the distance requirements of the far-field 

measurements of large antennas or scatterers. There are two basic approaches to 
overcome this limitation. One is presented by the Compact Antenna Test 

Ranges (CATRs), which produce a nearly uniform plane wave in a very short 
distance via a system of reflectors (or a single paraboloidal reflector). Another 
approach is based on near-to-far field transformation, where the measurements 
are performed in the near-field zone or in the Fresnel zone of the AUT. 

The CATR utilizes a precision paraboloidal antenna to collimate the energy 
of a primary feed antenna in a short distance. Typical arrangement of a compact 
range is shown below. 
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The linear dimensions of the reflector must be at least three to four times 
those of the AUT so that its illumination is sufficiently close to a uniform plane 
wave. An offset feed is used for the reflector to prevent aperture blockage and 
to reduce the diffraction from the primary feed structure. The paraboloidal 
reflector surface must be fabricated with high precision to obtain fairly uniform 
amplitude distribution of the incident field at the test antenna. 

A perfect plane wave is produced by the CATR if the paraboloidal reflector 
has a perfect surface, infinite size, and if the feed is a point source with a 
pattern which compensates for the space attenuation. Of course, such ideal 
conditions cannot be achieved, and the field distribution in a real CATR 
deviates from the uniform plane wave. However, it is within acceptable 
parameters in the quite zone. 

The quiet zone is typically 50% to 60% the aperture of the reflector. The 
imperfections of the field in the quiet zone are measured in terms of phase 
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errors, ripple-amplitude deviations, and taper-amplitude deviations. 
Acceptable deviations for most CATRs are: less than 10% phase error, less than 
1 dB ripple and taper amplitude deviations. 

Amplitude taper in the quiet zone is due to two reasons: the primary feed 
pattern and the space attenuation. The primary feed cannot be isotropic; 
therefore, its pattern has variations with direction. Usually, the pattern 
gradually decreases as the directional angles point away from the antenna axis. 
This is called feed-amplitude taper. That portion of the feed pattern, which 
illuminates the CATR surface, is directly transferred into the quiet zone, thus 
contributing to the field amplitude-taper deviation from the ideal uniform plane 
wave. 
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It is obvious that if the feed pattern is nearly isotropic for the angles 
illuminating the reflector, the feed-amplitude taper will be very small. That is 
why low-directivity antennas are preferred as feeds. However, the feed cannot 
be omnidirectional because direct illumination of the AUT by the primary feed 
is unacceptable. The careful choice of the feed antenna and its location is of 
paramount importance for the CATR design. 

The 21 / r  power space attenuation occurs with the spherical spreading of the 
uncollimated energy radiated by the primary feed toward the reflector. The 
paths of these primary EM rays from the feed to the reflector are of different 
lengths, which results in different amplitude across the front of the reflected 
collimated EM wave. This is yet another reason for amplitude taper deviations 
in the quiet zone. 
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Amplitude and phase ripples in the quiet zone are primarily caused by 
diffraction from the edges of the reflector. The diffracted field is spread in all 
directions interfering with the major reflected field in constructive and 
destructive patterns. The result is the appearance of maxima and minima of the 
field amplitude across the plane wave front in the quiet zone. Diffraction from 
edges causes deviation of the phase of the plane wave, too. 
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There are two common ways to reduce diffraction from reflector edges: 
serrated-edge reflectors and rolled-edge reflectors. Rolled-edge modifications at 
the edge of the reflector are introduced to direct the diffracted field mainly to 
the side and the back of the reflector. 
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Serrated edges of reflectors produce multiple low-amplitude diffractions, 
which are randomized in amplitude, phase and polarization. That is why the 
probability of their cancellation in any point of the quiet zone is high. 
Serrations are typically of irregular triangular shape. To further reduce the 
diffraction in the direction of the test zone, the serrated edges may be also 
rolled backwards. A photograph of a compact range whose reflector has 
serrated edges is shown below. 
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4. Near-to-far Field Transformations for Compact Ranges 

Another approach for measuring far-field patterns, which allows for the 
most compact chambers, is the near-field/far-field (NF/FF) method. The field 
amplitude, phase and polarization are measured in the near field of the AUT, 
which is in radiating mode. The near-field data is transformed to far-field 
patterns via analytical techniques implemented in the sophisticated software run 
by an automated computer system, which controls the measurement procedure. 

The magnitude and phase of the tangential E field are measured at regular 
intervals over a cannonical surface (plane, cylinder, or sphere) located close to 
the AUT. The sampled E field is used to calculate the angular spectrum of the 
plane, the cylindrical or the spherical wave. This spectrum matches closely the 
radiated field angular distribution. This is called modal expansion of the 
radiated field. 
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Here, we consider the simplest data acquisition over a planar surface and its 
modal expansion. We show that the far-field radiation pattern of any aperture 

(surface) is the Fourier transform of the aperture field distribution. We next 
derive the formulas in the case of a planar acquisition aperture. 

Assume that in the near-field measurements, the E vector is measured over a 
planar surface, which is our aperture. According to the equivalence principle, 
we can now assume that the field behind the surface (on the side of the antenna) 
is equal to zero, and its impact on the field on the other side of the surface is 
due to equivalent surface currents: 

 
ˆ

.

s a

s a

= ×

= − ×

J n H

M n E
 (9) 

Here, aE  and aH  represent the field vectors at the aperture (the surface) due to 
the antenna behind it. sJ  is the equivalent electric surface current density, sM  
is the equivalent magnetic surface current density, and n̂  is the surface unit 
normal pointing toward the region of observation (away from the antenna). 

Since the field behind the planar surface is now set to zero, we can as well 
assume that the medium behind the surface is a perfect conductor. In the case of 
a flat surface of size much larger than a wavelength, the image theory can be 
applied. Now the equivalent surface sources become 

 ˆ0; (2 )s s a= = − ×J M n E . (10) 

The equivalent surface magnetic currents sM  create an electric vector 



Nikolova 2020 20

potential F, which, in the far zone, is 

 ˆ ˆ( ) 2 ( ) ( )
4 2

a a

j r j r
j j

a a

S S

e e
P e ds e ds

r r

β β

ε ε
π π

− −
′ ′⋅ ⋅′ ′ ′ ′≈ − × = − × k r k rF n E r n E r  (11) 

where β ω µε=  is the wavenumber, ˆ ˆx y′ ′ ′= +r x y  is the position vector of the 
integration point, and r is the distance from the observation point P to the 
origin. 

 

x∆

y∆
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z

( , )x y′ ′

′r

P

r R≃

R

 

 

Note that the far-field approximations have been applied to the amplitude 
and phase terms of the vector-potential integral. The propagation vector ˆβ=k r  
shows the direction of propagation and has a magnitude equal to the wave 
number β. The scalar product ˆ ˆrβ′ ′ ′⋅ = ⋅k r r r  yields the familiar phase term 
accounting for the phase delay associated with the source point location. 

We now remember that the far-field E vector is related to the far-field 
vector potential F as  
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 far ˆjωη= − ×E F r . (12) 

Here, /η µ ε=  is the intrinsic impedance of the medium. Substituting (11) in 
(12) yields: 

 far ˆ ˆ( )
2

a

j r
j

a

S

e
j e dx dy

r

β

β
π

−
′⋅ ′ ′≈ − × × k rE r n E . (13) 

In the case of a planar surface, the unit normal is constant, and we can assume 
that ˆ ˆ=n z . Having in mind that the rectangular components of the radial unit 
vector are 

 ˆ ˆ ˆ ˆsin cos sin sin cosθ ϕ θ ϕ θ= + +r x y z , (14) 

we can calculate the x and y components of farE  as 

 ( )far cos ( , )
2

x y

a

j r
j k x k y

x xa

S

e
E j E x y e dx dy

r

β

β θ
π

−
′ ′+′ ′ ′ ′≈ ⋅ ⋅  , (15) 

 ( )far cos ( , )
2

x y

a

j r
j k x k y

y ya

S

e
E j E x y e dx dy

r

β

β θ
π

−
′ ′+′ ′ ′ ′≈ ⋅ ⋅  . (16) 

Here, kx and ky are the spectral variables, which are the components of the 
propagation vector k in the xy plane: 

 
sin cos ,

sin sin  .

x

y

k

k

β θ ϕ

β θ ϕ

=

=
 (17) 

The z-component of the far E field is found as 

far

( ) ( )

sin
2

   cos ( , ) sin ( , ) .x y x y

a a

j r

z

j k x k y j k x k y
xa ya

S S

e
E j

r

E x y e dx dy E x y e dx dy

β

β θ
π

ϕ ϕ

−

′ ′ ′ ′+ +

≈ − ⋅ ⋅

 
′ ′ ′ ′ ′ ′ ′ ′+ 

  
 

 (18) 

It is obvious from (15), (16) and (18) that if the components far
xE  and far

yE  are 
known, the far

zE  component can be calculated (if need be) as 

 far far fartan cos sinz x yE E Eθ ϕ ϕ= − ⋅ +   . (19) 

Let us examine the integrals appearing in (15) and (16): 
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 ( )( , ) ( , ) x y

a

j k x k y
x x y xa

S

f k k E x y e dx dy′ ′+′ ′ ′ ′=  , (20) 

 ( )( , ) ( , ) x y

a

j k x k y
y x y ya

S

f k k E x y e dx dy′ ′+′ ′ ′ ′=  . (21) 

These integrals are the 2-D Fourier transforms of the tangential field 
distribution, ( , )xaE x y′ ′− −  and ( , )yaE x y′ ′− − , over the area of the surface aS . 
The surface is ideally infinite ( x′−∞ < < +∞ , y′−∞ < < +∞ ). In practice, the 
surface where the field is measured is finite and designed so that the field 
components outside of it are negligible. The functions fx and fy depend on the 
spectral variables kx and ky.  

Note that the functions ( , )x x yf k k  and ( , )y x yf k k  give the far-field pattern in 
terms of the field x and y components for small θ  when cos 1θ ≈ : 

 
far

far

( , ) ( , )

( , ) ( , )

x x x y

y y x y

E f k k

E f k k

θ ϕ

θ ϕ

≈ 


≈ 
 for cos 1θ ≈ , where 

sin cos ,
sin sin  .

x

y

k
k

β θ ϕ
β θ ϕ

=
=

. (22) 

This finally clarifies the statement that the far-field pattern is the Fourier 

transform of the aperture field distribution. 
The far-field z-component can be expressed by its spectral counterpart 

( , )z x yf k k  in the same manner as the x and y components: 

 far cos ( , )
jkr

z z x y

e
E jk f k k

r
θ

−

= ⋅ ⋅ . (23) 

Having in mind (18) and (19), it becomes clear that ( , )z x yf k k  is not an 
independent function but is related to the other two spectral components as 

 ( , ) tan ( , )cos ( , )sinz x y x x y y x yf k k f k k f k kθ ϕ ϕ= − ⋅ +   . (24) 

We can now define the vector plane-wave spectral function: 

 ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )x y x x y y x y z x yk k f k k f k k f k k= + +f x y z  (25) 

the spatial components of which are calculated via (20), (21) and (24). The far-
field E vector can be calculated from the spectral function as 

 ( , , ) cos ( , )
2

j r

x y

e
r j k k

r

β

θ ϕ β θ
π

−

≈ ⋅E f . (26) 
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We can express the vector equation (26) in terms of the θ  and ϕ  
components of the far-field E vector: 

 

( , , ) cos ( , ),
2

( , , ) cos ( , ).
2

j r

x y

j r

x y

e
E r j f k k

r

e
E r j f k k

r

β

θ θ

β

ϕ ϕ

θ ϕ β θ
π

θ ϕ β θ
π

−

−

≈ ⋅

≈ ⋅

 (27) 

Since the spectral function f is derived via its rectangular components during 
the data acquisition over a planar surface, it is desirable to convert fθ  and fϕ  to 

xf  and yf . Following the standard transformation from spherical to rectangular 
components, we obtain 

 ( )cos cos cos cos cos sin sinx y zf f f fθθ θ θ ϕ θ ϕ θ⋅ = + − . (28) 

After substituting zf  from (24), we arrive at 

 cos cos sinx yf f fθθ ϕ ϕ⋅ = + . (29) 

In analogous manner, it can be shown that 

 cos sin cosx yf f fϕθ ϕ ϕ⋅ = − + . (30) 

The substitution of (29) and (30) into (27) finally gives 

 

( , , ) ( cos sin )
2

( , , ) ( sin cos ).
2

jkr

x y

jkr

x y

e
E r jk f f

r

e
E r jk f f

r

θ

ϕ

θ ϕ ϕ ϕ
π

θ ϕ ϕ ϕ
π

−

−

≈ +

≈ − +

 (31) 

We can now summarize the procedure of the NF/FF pattern measurement in 
three basic steps: 

• Measure the tangential E field components ( , , 0)xaE x y z′ ′ ′ =  and 

( , , 0)yaE x y z′ ′ ′ =  over the near-field aperture (data acquisition). 

• Calculate the plane-wave spectral functions ( , )x x yf k k  and ( , )y x yf k k  

using (20) and (21). 
• Calculate the normalized far-field components using 

 
( , ) cos sin ,

( , ) sin cos ,

x y

x y

E f f

E f f

θ

ϕ

θ ϕ ϕ ϕ

θ ϕ ϕ ϕ

= +

= − +
 (32) 
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and the total normalized field pattern using 

 2 2 2 2( , ) ( , ) ( , ) ( , ) ( , )x x y y x yE E E f k k f k kϕθθ ϕ θ ϕ θ ϕ= + = + . (33) 

In the actual test procedure, a planar surface is chosen a distance 0z  away 
from the test antenna, which is in radiating mode. This surface is called the 
measurement aperture. The distance 0z  is at least three wavelengths away from 
the antenna, so that the measurement is carried out in the radiating near-field 
region (Fresnel zone) rather than in the reactive near-field region where the 
amplitude and phase variations of the field are too rapid and the sampling 
intervals must be very small. 

The measurement aperture is rectangular of dimensions a b× . It is divided 
into M×N points spaced evenly x∆  and y∆  apart. The relation between the 
number of points and the respective spacing is then 

 1,   1
a b

M N
x y

= + = +
∆ ∆

. (34) 

Thus, the sampling points are located at coordinates ( , ,0)m x n y∆ ∆  where 
0 1m M≤ ≤ −  and 0 1n N≤ ≤ − . The separation distances x∆  and y∆  must be 
less than half a wavelength in order to satisfy Nyquist’s sampling criterion and 
such that the equations in (34) yield integer numbers. The measurement 
aperture must be large enough so that the signal at its edges is at least 45 dB 
down from the maximum measured signal on the acquisition surface. 

The plane-wave spectral function ( , )x yk kf  can be evaluated at a discrete set 
of wave numbers as dictated by the discrete Fourier transform: 

 

2 2

( 1)

2 2
 .

( 1)

x

y

x

k

y

k

k m m
a M x

k n n
b N x

π π

π π

∆

∆

= =
− ∆

= =
− ∆

�����

�����

 (35) 

Conventional two-dimensional FFT (Fast Fourier Transform) techniques are 
used to perform this transformation. 

The acquisition of the planar near-field data is done by a computer-
controlled probe antenna (typically a waveguide horn or an open waveguide), 
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which is moved to each grid node over the measurement aperture by a high-
precision positioning system (positioner). The probe’s axis is held stationary 
and normal to the measurement aperture. The probe must be linearly polarized 
so that separate measurements of the two tangential field components xE  and 

yE  become possible. 
As the probe location changes, its pattern orientation with respect to the 

AUT changes, too, as shown below. The probe’s partial directivities in the 
direction of the test antenna must be taken into account using probe 
compensation techniques. 

Probe

⋮

⋮
Test antenna

⋮  

 

The principal advantage of the planar NF/FF transformation over the 
cylindrical and the spherical one is its mathematical simplicity. Its major 
disadvantage is that it cannot cover all directional angles. In the ideal case of 
infinite planar measurement surface, only one hemisphere of the antenna 
pattern can be measured. Thus, the back lobes and the side lobes of the antenna 
cannot be measured together with the main beam. Of course, the AUT can be 
rotated in different positions, so that the overall pattern can be reconstructed. 

The reader interested in the subject of NF/FF transforms and measurements 
is referred to the following introductory sources: 

R.C. Johnson, H.A. Ecker, and J.S. Hollis, “Determination of far-field 
antenna patterns from near-field measurements,” Proc. IEEE, vol. 61, No. 
12, pp. 1668-1694, Dec. 1973. 
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D.T. Paris, W.M. Leach, Jr., and E.B. Joy, “Basic theory of probe 
compensated near-field measurements,” IEEE Trans. on Antennas and 

Propagation, vol. AP-26, No. 3, pp. 373-379, May 1978. 

E.B. Joy, W.M. Leach, Jr., G.P. Rodrigue, and D.T. Paris, “Applications of 
probe compensated near-field measurements,” IEEE Trans. on Antennas 

and Propagation, vol. AP-26, No. 3, pp. 379-389, May 1978. 

A.D. Yaghjian, “An overview of near-field antenna measurements,” IEEE 

Trans. on Antennas and Propagation, vol. AP-34, pp. 30-45, January 1986. 
 

5.  Far-field Pattern Measurements* 

The far-field patterns are measured on the surface of a sphere of constant 
radius. Any position on the sphere is identified by the directional angles θ  and 
ϕ  of the spherical coordinate system. In general, the pattern of an antenna is 3-
D. However, 3-D pattern acquisition is difficult – it involves multiple 2-D 
pattern measurements. The minimal number of 2-D patterns is two, and these 
two patterns must be in two orthogonal principal planes. A principal plane must 
contain the direction of maximum radiation. A simplified block diagram of a 
pattern measurement system is given below. 

 

 

 

Test
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Positioner
Control

Receiver
Positioner
Indicators

Pattern Recorder
(Data Processing Unit)

Source
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Polarization
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Control
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The total amplitude pattern is described by the vector sum of the two 
orthogonally polarized radiated field components: 

 2 2| | | | | |E Eθ ϕ= +E . (36) 

Rarely, the separate patterns for both components are needed. This is the case 
when the polarization of the test antenna must be characterized in addition to its 
pattern. 

For antennas of low directivity, at least three 2-D pattern cuts are necessary 
in order to obtain good 3-D pattern approximation: in the two elevation planes 
at 0 /180ϕ = � �  and 90 / 270ϕ = � �  as well as the azimuth pattern at 90θ = � .  

For high-directivity antennas, only two orthogonal 2-D elevation patterns 
often suffice. Assuming that the antenna boresignt is along the z-axis, these are 
the patterns at 0 /180ϕ = � �  and 90 / 270ϕ = � � . The 3-D pattern approximation 
from 2-D patterns is discussed below. 

High-directivity aperture antennas such as horn and reflector antennas can 
have their far-field components expressed as 

 ( , ) cos sin cos ( cos sin )
4

j r
E E H H
x y y x

e
E j

r

β

θ θ ϕ β ϕ ϕ η θ ϕ ϕ
π

−

= + + −  I I I I , (37) 

 ( , ) ( cos sin ) cos ( cos sin )
4

j r
H H E E
x y y x

e
E j

r

β

ϕ θ ϕ β η ϕ ϕ θ ϕ ϕ
π

−

= + + −  - I I I I . (38) 

Here, E
xJ , E

yJ , H
xJ  and H

yJ  are the plane-wave spectral functions: 

 ( sin cos sin sin )( , ) ( , )

A

E j x y
x ax

S

E x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= I , (39) 

 ( sin cos sin sin )( , ) ( , )

A

E j x y
y ay

S

E x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= I , (40) 

 ( sin cos sin sin )( , ) ( , )

A

H j x y
x ax

S

H x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= I , (41) 

 ( sin cos sin sin )( , ) ( , )

A

H j x y
y ay

S

H x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= I . (42) 

From equations (37) and (38) it follows that the field components in the 
principal planes are 
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 ( ,0) ( ,0) ( ,0) cos
4

j r
E H
x y

e
E j

r

β

θ θ β θ θ η θ
π

−

= + ⋅  J J  (43) 

 ( ,90 ) ( ,90 ) ( ,90 ) cos
4
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e
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r

β

θ θ β θ θ η θ
π

−

 = ⋅ 
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 ( ,0) ( ,0) ( ,0) cos
4
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H E
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e
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r

β

ϕ θ β η θ θ θ
π

−

= − + ⋅  J J  (45) 

 ( ,90 ) ( ,90 ) ( ,90 ) cos
4

j r
H E
y x

e
E j

r

β

ϕ θ β η θ θ θ
π

−

 = − ⋅ 
� � �J - J . (46) 

The 3-D field dependence on the directional angles can be approximated 
from the 2-D dependences in the equations (43) through (46) as 

 ( , ) cos ( ,0) sin ( ,90 )
4

j re
j

r

β

θ ϕ β ϕ θ ϕ θ
π

−

 ≈ ⋅ + ⋅ E E E � , (47) 

The total 3-D amplitude pattern of the field defined in (47) is obtained as 

 
{

}

2 2 2 2 2 2

1/2

| ( , ) | cos ( ,0) ( ,0) sin ( ,90 ) ( ,90 )

sin(2 ) ( ,0) ( ,90 ) ( ,0) ( ,90 ) .

E E E E
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θ ϕ ϕ θ θ ϕ θ θ

ϕ θ θ θ θ

   ≈ ⋅ + + ⋅ +   
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E � �

� �
 (48) 

In the pattern calculation, we drop the factor / (4 )j rj e rββ π− . Also, it can be 
shown that the last term in (48) is 

 

2

2

( ,0) ( ,90 ) ( ,0) ( ,90 ) (1 cos )

( ,0) ( ,90 ) ( ,90 ) ( ,0) .E E H H
x y x y

E E E Eθ θ ϕ ϕθ θ θ θ θ

θ θ η θ θ

+ = − ⋅

 + 

� �

� �J J J J
 (49) 

For high-directivity antennas, the angles θ , at which the antenna has 
significant pattern values, are small, and the term given in (49) can be 
neglected. Thus, the approximation of the 3-D pattern in terms of two 
orthogonal 2-D patterns reduces to the simple expression 

 2 2 2 2| ( , ) | cos | ( ,0) | sin | ( ,90 ) |θ ϕ ϕ θ ϕ θ≈ ⋅ + ⋅E E E � . (50) 

Sometimes, the phase pattern of the far field is also measured. This requires 
phase reference and can be performed using vector network analyzers. 
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6.  Gain Measurements* 

The gain measurements require essentially the same environment as the 
pattern measurements. To measure the gain of antennas operating above 1 GHz, 
usually, anechoic chambers are used. Between 0.1 GHz and 1 GHz, ground-
reflection ranges are used. 

Below 0.1 GHz, directive antennas are very large and the ground effects 
become increasingly pronounced. Usually the gain at these frequencies is 
measured directly in the environment of operation. Same holds for high-
frequency antennas operating in a complicated environment (mounted on 
vehicles or aircrafts). 

We consider three gain-measurement techniques. The first two belong to the 
so-called absolute-gain measurements, and they are: the two-antenna method, 
and the three-antenna method. The third method is called the gain-transfer (or 
gain-comparison) method. 

A. The two-antenna method 

The two-antenna method is based on Friis transmission equation and it 
needs two identical samples of the tested antenna. One is the radiating antenna, 
and the other one is receiving. Assuming that the antennas are well matched in 
terms of impedance and polarization, the Friis transmission equation is 

 
2

, where
4

r
t r t r

t

P
G G G G G

P R

λ

π

 
= = = 
 

, (51) 

or, in dB, 

 dB 10 10
1 4

20log 10log
2

r

t

R P
G

P

π

λ

   
= +   

    
. (52) 

One needs to know accurately the distance between the two antennas R, the 
received power rP , the transmitted power tP , and the frequency /f c λ= . 

B. The three-antenna method 

The three-antenna method is used when only one sample of the test antenna 
is available. Then, any other two antennas can be used to perform three 
measurements, which allow the calculation of the gains of all three antennas. 
All three measurements are made at a fixed known distance R between the 
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radiating and the transmitting antennas. 
It does not matter whether an antenna is in a transmitting or in a receiving 

mode. What matters is that the three measurements involve all three possible 
pairs of antennas: antenna #1 and antenna #2; antenna #1 and antenna #3; 
antenna #2 and antenna #3. The calculations are again based on Friis 
transmission equation, which in the case of two different antennas (antenna #i 
and antenna #j) measured during experiment #k ( 1,2,3k = ) becomes 

 

( )

dB dB 10 10
4

20log 10log
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r
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t
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π
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+ = +   

   
. (53) 

The system of equations describing all three experiments is 
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 (54) 

The right-hand sides of the equations in (54) are known if the distance R and 
the ratios of the received-to-transmitted power are known. Thus, the following 
system of three equations with three unknowns is obtained 
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 (55) 

The solution to the system of equations in (55) is 
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C. The gain-comparison method 

The gain-comparison method requires an antenna the gain of which is 
exactly known (called gain standard) and a transmitting antenna the gain of 
which does not need to be known. Two sets of measurements are performed. 

1) The test antenna is in a receiving mode, and its received power AUTP  is 
measured. 

2) The gain standard is in a receiving mode in exactly the same arrangement 
(the distance R and the transmitted power 0P  are kept the same), and its 
received power GSP  is measured. 

In both measurements, the receiving antennas must be matched to their loads 
(the receiver). 

The calculation of the test antenna gain in dB uses Friis’ transmission 
equation. The two measurements lead to the following system of equations: 
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 (57) 

Here, 

AUT dBG  is the gain of the test antenna; 

GS dBG  is the gain of the gain standard; and 

0 dBG  is the gain of the transmitting antenna. 

From (57), we derive the expression for the gain of the test antenna: 

 AUT
AUT dB GS dB 10

GS

10 log
P

G G
P

 
= + ⋅  

 
. (58) 

If the test antenna is circularly or elliptically polarized, two orthogonal 
linearly polarized gain standards must be used in order to obtain the partial 
gains corresponding to each linearly polarized component. The total gain of the 
test antenna is 

 AUT dB 10 AUT AUT10log ( )v hG G G= + , (59) 
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where AUTvG  is the dimensionless gain of the test antenna measured with the 
vertically polarized gain standard and AUThG  is the dimensionless gain of the 
test antenna measured with the horizontally polarized gain standard. 
 

7.  Directivity Measurements* 

The directivity measurements are directly related to the pattern 
measurements. Once the pattern is found over a sphere, the directivity can be 
determined using the definition: 

 max 0 0
0 2

0 0

( , )
4

( , )sin
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F d d

π π
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π

θ ϕ θ θ ϕ

=

 
, (60) 

where ( , )F θ ϕ  is the power pattern of the test antenna and 0 0( , )θ ϕ  is the 
direction of maximum radiation. 

Generally, ( , )F θ ϕ  is measured by sampling the field over a sphere of 
constant radius R. The spacing between the sampling points depends on the 
directive properties of the antenna and on the desired accuracy. The integral 
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is computed numerically, e.g., 
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  . (62) 

If the antenna is circularly or elliptically polarized, two measurements of the 
above type must be carried out in order to determine the partial directivities, Dθ  
and Dϕ . Then, the total directivity is calculated as 

 0D D Dθ ϕ= + , (63) 

where the partial directivities are defined as 

 max4
F

D
θ

θ
θ ϕ

π=
Π + Π

, (64) 
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4 .
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D
ϕ

ϕ
θ ϕ
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Π + Π

 (65) 

 

8.  Radiation Efficiency, cde  * 

In order to calculate the radiation efficiency, the gain and the directivity 
must be measured first. Factors like impedance mismatch and polarization 
mismatch have to be minimized during these measurements. The radiation 
efficiency is then calculated using its definition: 

 
Gain

Directivity
cde = . (66) 

 

9.  Impedance Measurements* 

The input impedance of an antenna is calculated via the reflection 
coefficient at its terminals Γ , which are connected to a transmission line of 
known characteristic impedance cZ . If the magnitude and the phase of Γ  are 
known, then, the antenna input impedance is calculated as 

 
1

1
A cZ Z

+ Γ 
=  

− Γ 
, Ω . (67) 

Γ is usually measured using a vector network analyzer (VNA). The VNA 
measures the complex S-parameters of microwave networks. The antenna is a 
single-port device, therefore, 11SΓ = .  
 

10.  Polarization Measurements* 

A complete description of the antenna polarization is given by the 
polarization ellipse (the axial ratio and the tilt angle), as well as the sense of 
rotation (clockwise, or counter-clockwise). In general, the polarization of an 
antenna is not the same in every direction, i.e., it depends on the observation 
angle. That is why, often, many measurements are required according to the 
desired degree of polarization description. 

The polarization measurement methods are classified into three general 
categories. 
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• Partial methods give incomplete information about the polarization but are 
simple and require conventional equipment. 

• Comparison methods yield complete polarization information; however, 
they require a polarization standard. 

• Absolute methods yield complete polarization information; and, they do 
not require a polarization standard. 

The polarization-pattern method is a common partial method. It produces 
the polarization ellipse parameters (the axial ratio and the tilt angle) in a given 
direction of radiation. It cannot determine however the sense of rotation. The 
AUT can be either in transmitting or in receiving mode. The other antenna (the 
probe) must be linearly polarized, e.g., a dipole, and its pattern must be 
accurately known. A typical arrangement for the polarization-pattern 
measurement is given below. 

( , )θ ϕ

 

The signal at the output of the probe depends on the PLF for the test and 
probe antennas. This PLF is determined by two factors: the polarization vector 
of the test antenna AUTρ̂  and the angle of the probe’s rotation ψ , which is also 
the angle of the probe’s polarization vector PAρ̂  relative to a chosen reference 
angle. Since the probe has linear polarization, we can state that 

 PAˆ ˆ ˆ( ) cos sinψ ψ ψ= +ρ x y . (68) 

The axes x and y must be perpendicular to the line connecting the two antennas. 
The signal level is recorded and plotted versus the angle of rotation ψ . This is 
the polarization pattern in the considered direction of radiation.  

Let us first consider the case of an AUT which is linearly polarized with a 
polarization vector AUTˆ ˆ=ρ x . Then the PLF is 2

PA AUTˆ ˆ| |∗⋅ρ ρ  = 2cos ψ . The 
figure below shows the polar plot of this PLF. This PLF pattern is the AUT 
polarization pattern. 
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xψ

 

In general, if the AUT is linearly polarized, the polarization pattern will be 
the same as the cosine pattern shown above but it may be tilted depending on 
the initial angle 0ψ  between the polarization axes of the probe and the AUT; 
see the illustration below.  

 

If the AUT is circularly polarized, the polarization pattern is a circle 
regardless of the initial mutual orientation of the probe and the AUT (see the 
illustration below). 

 

This follows from the PLF derivation as: 

2 2ˆ ˆ ˆ ˆ( ) | ( cos sin ) ( ) / 2 | | cos sin | /2 0.5PLF j jψ ψ ψ ψ ψ= + ⋅ ± = ± =x y x y . (69) 
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In the general case of an elliptically polarized AUT, the polarization pattern 
is a dumb-bell contour, which allows for the direct calculation of the axial ratio 
and the tilt angle τ  of the polarization ellipse as is shown in the figure below. 

xτ

 

The polarization-pattern method cannot provide information about the sense 
of rotation. However, this can be easily established by the use of circularly 
polarized probes (e.g. spiral antennas): one of a clockwise polarization, and the 
other one of a counter-clockwise polarization. Whichever receives a stronger 
signal determines the sense of rotation. 

Another partial method is the axial-ratio pattern method. The arrangement 
is very similar to that of the polarization-pattern method. The only difference is 
that now the AUT (which is usually in a receiving mode) is rotated in θ  or φ  
by the antenna positioner. The probe rotates in the polarization plane (this plane 
is perpendicular to the line connecting the two antennas) with much larger 
angular speed than the AUT so as to complete one full turn at approximately 
every degree of rotation of the test antenna. 

 

Test Antenna Rotating Probe

probe axis of rotation

AUT axis of rotation

 

slow fast 
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As a result of the measurement described above, a 2-D pattern is obtained in 
θ  or φ , which allows for the calculation of the axial ratio of the polarization at 
any observation direction. Such a pattern (in dB) of an antenna, which is nearly 
circularly polarized along θ = 0, is shown below. 

 

 

[Balanis] 
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From the plot above, it is obvious that the axial-ratio pattern has an inner 
envelope and an outer envelope. The ratio of the outer envelope to the inner one 
for a given angle gives the axial ratio of the field polarization in this direction. 
For example, the pattern above shows that the test antenna is nearly circularly 
polarized along boresight (θ = 0), where the axial ratio is close to one. At 
greater observation angles, however, its polarization becomes elliptical of 
increasingly larger axial ratio. 

The axial-ratio pattern method yields only the axial ratio of the polarization 
ellipse. It does not give information about the tilt angle and the sense of 
rotation. However, it is very fast and convenient to implement in any antenna 
test range. The tilt angle at selected directional angles can be always clarified 
later with the polarization-pattern method. The sense of rotation can also be 
determined in a subsequent measurement with circularly polarized probes. 

The most general absolute polarization measurement method is the three-

antenna method. It yields full polarization information for all three antennas. 
The only a-priori knowledge required is the approximate tilt angle of one of the 
three antennas. 

The method requires the measurement of the amplitude and the phase of the 
normalized received voltage in three experiments, which involve: 1) antenna #1 
and antenna #2; 2) antenna #1 and antenna #3; and 3) antenna #2 and antenna 
#3. All three experiments must use the same measurement set-up. The three 
complex voltage phasors are measured as a function of the angles ϕ  and χ , 
which are the angles of rotation of the antennas about the antenna-range axis 
(the line connecting the antenna centers).  

An example set-up is shown in the figure below. First, the AUT#1 is 
scanned for [0 ,360 ]φ ∈ � �  usually with a step of 1φ∆ = � . Then, the angle of 
AUT#2 is incremented by χ∆  (usually, 15χ∆ ≈ � ) and AUT#1 is scanned again 
for [0 ,360 ]φ ∈ � � . This is repeated until the angle χ  sweeps the whole range 
from 0�  to 360� . 
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Three complex quantities ,m nM  are then calculated from the double Fourier 
transform of the voltage phasor patterns: 
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It can be shown (see references [6],[7],[8]) that ,m nM  are equal to the dot 
products of the circular polarization ratios (see reference [3]; for definition of 
polarization ratio refer to Lecture 5, eq. 5.21) of the two antennas used in the 
respective measurement: 
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 (71) 
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The system in (71) is used to solve for the three circular polarization ratios: 

 12 13 12 23 23 13
1 2 3

23 13 12

ˆ ˆ ˆ; ;c c c

M M M M M M

M M M
= = =ρ ρ ρ . (72) 

The square root of a complex number implies ambiguity in the phase 
calculations for the polarization vectors. This is why we need to have an 
approximate knowledge of the tilt angle of one of the antennas. The circular 
polarization ratios are directly related to the polarization ellipse; see Lecture 5, 
[2], [3]. 
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