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LECTURE 10: Reciprocity. Cylindrical Antennas – Analytical Models 

(Reciprocity theorem. Implications of reciprocity in antenna measurements. Self-

impedance of a dipole using the induced emf method.) 
 
1. Reciprocity Theorem for Antennas 
 
1.1. Reciprocity theorem in circuit theory 

If a voltage (current) generator is placed between any pair of nodes of a linear 
circuit, and a current (voltage) response is measured between any other pair of 
nodes, the interchange of the generator’s and the measurement’s locations would 
lead to the same measurement results. 
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1.2. Reciprocity theorem in EM field theory (Lorentz’ reciprocity theorem) 

Consider a volume [ ]SV  bounded by the surface S, where two pairs of sources 
exist: 1 1( , )J M  and 2 2( , )J M . The medium is linear. We denote the field 
associated with the 1 1( , )J M  sources as 1 1( , )E H , and the field generated by 

2 2( , )J M  as 2 2( , )E H . 
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The vector identity 
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2 1 1 2 1 2 2 1 1 2 2 1( )⋅∇ × − ⋅∇ × − ⋅∇ × + ⋅∇ × = ∇ ⋅ × − ×H E Ε H H E E H E H E H  

is used along with (10.2) and (10.3) to obtain 

1 2 2 1 1 2 1 2 2 1 2 1( )∇ ⋅ × − × = − ⋅ + ⋅ + ⋅ − ⋅E H E H E J H M E J H M .         (10.4) 

Equation (10.4) is written in its integral form as 

[ ]

1 2 2 1 1 2 1 2 2 1 2 1( ) ( )

SS V

d dv× − × ⋅ = − ⋅ + ⋅ + ⋅ − ⋅ E H E H s E J H M E J H M� .(10.5) 

Equations (10.4) and (10.5) represent the general Lorentz reciprocity theorem in 

differential and integral forms, respectively. 
One special case of the reciprocity theorem is of fundamental importance to 

antenna theory, namely, its application to unbounded (open) problems. In this 
case, the surface S is a sphere of infinite radius. Therefore, the fields integrated 
over it are far-zone fields. This means that the left-hand side of (10.5) vanishes: 

1 2 1 2| || | | || |
cos cos 0

S

dsγ γ
η η

 
− = 

 


E E E E
� .                       (10.6) 

Here, γ  is the angle between the polarization vectors of both fields, 1E  and 2E . 
Note that in the far zone, the field vectors are orthogonal to the direction of 
propagation and, therefore are orthogonal to ds. Thus, in the case of open 
problems, the reciprocity theorem reduces to 

[ ] [ ]

1 2 1 2 2 1 2 1( ) ( )

S SV V

dv dv⋅ − ⋅ = ⋅ − ⋅ E J H M E J H M .                 (10.7) 

Each of the integrals in (10.7) can be interpreted as coupling energy between the 
field produced by some sources and another set of sources generating another 
field. The quantity 

 

[ ]

1 2 1 21,2 ( )

SV

dv= ⋅ − ⋅ E J H M  

is called the reaction of the field 1 1( , )E H  to the sources 2 2( , )J M . Similarly, 

 

[ ]

2 1 2 12,1 ( )

SV

dv= ⋅ − ⋅ E J H M  

is the reaction of the field 2 2( , )E H  to the sources 1 1( , )J M . Thus, in a shorthand 
notation, the reciprocity equation (10.7) is 1,2 2,1= . 
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The Lorentz reciprocity theorem is the most general form of reciprocity in 
linear EM systems. Circuit reciprocity is a special case of lumped element 
sources and responses (local voltage or current measurements).  

To illustrate the above statement, consider the following scenario. Assume 
that the sources in two measurements have identical amplitude and phase 
distributions in their respective volumes: 1J  and 1M  reside in V1 whereas 2J  and 

2M  reside in V2. Note that the volumes 1V  and 2V  may or may not overlap. We 
can associate a local coordinate system with each source volume where the 
position is given by ( , , )i i i ir θ ϕ=x , 1,2i = . If the sources have identical 
distributions in their respective volumes, i.e., 1 1 2 2( ) ( )= =J x J x J , and 1 1( ) =M x

2 2( ) =M x M , then, according to (10.7), 

2 1

1 1 2 2 2 1( ) ( )
V V

dv dv⋅ − ⋅ = ⋅ − ⋅ E J H M E J H M .                   (10.8) 

It follows that 1 2 2 1( ) ( )=E x E x  and 1 2 2 1( ) ( )=H x H x . Here, 1E  and 1H  describe 
the observed field in 2V  (the volume where the sources 2J  and 2M  reside but are 
inactive), this field being due to the sources 1J  and 1M  (in 1V ) which are active. 
Conversely, 2E  and 2H  describe the observed field in 1V  (the volume where 1J  
and 1M  reside but are inactive), that field being due to the sources 2J  and 2M  
(in V2) which are active. These are two measurement scenarios which differ only 
in the interchanged locations of the source and the observation: in the former 
scenario, the observation is in 2V  whereas the source is in 1V ; in the latter 
scenario, the observation is in 1V  whereas the source is in 2V . The field equality, 

1 2=E E  and 1 2=H H , tells us that interchanging the locations of excitation and 

observation leaves the observed field unchanged. This result is general in the 
sense that it holds in a heterogeneous medium. This is essentially the same 
principle that is postulated as reciprocity in circuit theory (see Section 1.1). Only 
that Lorentz’ EM reciprocity considers volumes instead of nodes and branches, 
and field vectors instead of voltages and currents. 

The reciprocity theorem can be postulated also as: any network constructed 

of linear isotropic matter has a symmetrical impedance matrix. This “network” 
can be two antennas and the space between them. 
 
1.3. Implications of reciprocity for the received-to-transmitted power ratio 

Using the reciprocity theorem, we next prove that the ratio of received to 

transmitted power /r tP P  does not depend on whether antenna #1 transmits 
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and antenna #2 receives or vice versa. We should reiterate that the reciprocity 
theorem holds only if the whole system (antennas + propagation environment) is 
isotropic and linear. 

In this case, we view the two-antenna system as a two-port microwave 
network; see the figure below. Port 1 (P1) connects to antenna 1 (A1) while port 
2 (P2) is at the terminals of antenna 2 (A2). Depending on whether an antenna 
transmits or receives, its terminals are connected to a transmitter (Tx) or a 
receiver (Rx), respectively. We consider two measurement setups. In Setup #1, 
A1 transmits and A2 receives whereas in Setup #2 A1 receives and A2 transmits. 
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The volume V in both setups excludes the power sources in the respective 
transmitters and, therefore, it does not have impressed currents sources, i.e., 

1 2 0= =J J  and 1 2 0= =M M . The reciprocity integral (10.5) becomes 

 1 2 2 1( ) 0

VS

d× − × ⋅ = E H E H s�  (10.9) 

where the subscripts refer to the measurement setups. Part of the surface SV 
extends to infinity away from the antennas (top and bottom lines in the plots 
above) but it also crosses through P1 and P2. At infinity, the surface integration 
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in (10.9) produces zero; however, at the cross-sections S1 and S2 of ports 1 and 
2, respectively, the contributions are not zero. Then,  

 

1 2

1 2 2 1 1 2 2 1( ) ( ) 0
S S

d d× − × ⋅ + × − × ⋅ = E H E H s E H E H s . (10.10) 

Let us now assume that the transmit power in both setups is 1 W. This is not 
going to affect the generality of the result. Let us denote the field vectors in the 
transmission lines of ports 1 and 2 corresponding to 1-W transferred power as 

P1 P1( , )e h  and P2 P2( , )e h , respectively.1 We assume that these vectors correspond 
to power transfer from the antenna (out of V and toward the Tx or the Rx circuit). 
When the power is transferred toward the antenna (from the Tx or Rx circuit), 
due to the opposite direction of propagation, we have to change the sign of either 
the e or the h vector (but not both!) in the respective pair.  

At P1, in Setup #1, the incident field is the 1-W field generated by Tx1, which 
is P1 P1( , )−e h . There could be a reflected field due to impedance mismatch at the 
A1 terminals, which can be expressed as 1 P1 P1( , )Γ e h  where Γ1 is the reflection 
coefficient at P1. At P1, in Setup #2, there is the field (E2,H2) due to the radiation 
from A2.  

Analogous field components can be identified at P2 in both setups: (i) 

P2 P2( , )−e h  is the field when in Setup #2 the Tx at A2 provides 1 W of power to 
the antenna, (ii) (E1,H1) is the field received at P2 in Setup #1. Equation (10.10) 
now becomes 
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[ ]
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( ) ( )

( ) ( ) 0.

S
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d

d

× + × + Γ × − × ⋅ +
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
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 (10.11) 

Next, the received fields in both scenarios, (E1,H1) at P2 and (E2,H2) at P1, 
can be expressed in terms of P2 P2( , )e h  and P1 P1( , )e h , which represent 1-W 
received powers at the respective ports: 

 

2 2 1,2 P1 P1P1

1W power

1 1 2,1 P2 P2P2

1W power

( , ) ( , )

( , ) ( , ).

R

R

=

=

E H e h

E H e h

�����

�����

 (10.12) 

 
1 It can be shown that a propagating mode in a transmission line or a waveguide can be represented by real-valued phasor 
vectors e and h, known as modal vectors. 
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Note that (10.12) implies that the respective received-to-transmitted power ratios 
in Setup #1 and Setup #2 are 

 2
1 1 2,1/r tP P R=  (10.13) 

 2
2 2 1,2/r tP P R= . (10.14) 

Substituting (10.12) into (10.11) leads to 

 

[ ]

[ ]
1

2

1,2 P1 P1 P1 P1 1 P1 P1 P1 P1

2,1 P2 P2 P2 P2 2 P2 P2 P2 P2

( ) ( )

( ) ( ) 0.

S

S

R d

R d

× + × + Γ × − × ⋅ +

− × − × + Γ × − × ⋅ =





e h e h e h e h s

e h e h e h e h s
 (10.15) 

Since the fields P P( , )n ne h , 1,2n = , correspond to 1 W of transferred power, 
their respective integrals over the port cross-sections (integration over the 
Poynting vector) have the same value: 

 P P
1

( ) 1 W, 1,2
2

n

n n

S

d n× ⋅ = = e h s . (10.16) 

Note that here we have assumed that the fields P P( , )n ne h , 1,2n = , are 
“magnitude” (not RMS) phasors. It follows from (10.15) and (10.16) that 
 1,2 2,1R R= . (10.17) 

This result together with (10.13) and (10.14) leads to the conclusion that the 
received-to-transmitted power ratio in a two-antenna system does not depend on 
which antenna transmits and which receives. 
 
1.4. Reciprocity of the radiation pattern 

The measured radiation pattern of an antenna is the same in receiving and 

in transmitting mode if the system is linear. Nonlinear devices such as diodes 
and transistors may make the system nonlinear, therefore, nonreciprocal. 

In a two-antenna pattern measurement system, the pattern would not depend 
on whether the antenna under test (AUT) receives and the other antenna 
transmits, or vice versa. The pattern depends only on the mutual angular 
orientation of the two antennas (the distance between the two antennas must 
remain the same regardless of the angular orientation of the antennas). It also 
does not matter whether the AUT rotates and the other antenna is stationary, or 
vice versa.  
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(a) 
 

 
(b) 
 

Scenario (a) is obviously more practical especially because the distance between 
the antennas must be sufficiently large to ensure a measurement in the far zone. 
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2. Self-impedance of a Dipole Using the Induced EMF Method 

The induced emf (electro-motive force) method was developed by Carter2 in 
1932, when computers were not available and analytical (closed-form) solutions 
were much needed to calculate the self-impedance of wire antennas. The method 
was later extended to calculate mutual impedances of multiple wires (see, e.g., 
Elliot, Antenna Theory and Design). The emf method is restricted to straight 
parallel wires. 

Measurements and full-wave simulations indicate that the current distribution 
on thin dipoles is nearly sinusoidal (except at the current minima). The induced 
emf method assumes this type of idealized distribution. It results in satisfactory 
accuracy for dipoles with length-to-diameter ratios larger than 100. The accuracy 
deteriorates closer to the feed point and is particularly poor for dipoles, the length 
of which approaches a wavelength. 
 
 

 
[Balanis] 

 
2 P.S. Carter, “Circuit relations in radiating systems and applications to antenna problems,” Proc. IRE, 20, pp.1004-1041, June 
1932. 
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Consider a tubular dipole the arms of which are made 
of perfect electric conductor (PEC). When excited by a 
voltage-gap source at its base, the dipole supports surface 
current along z, which radiates. This surface current 
density is s ( ) ( )zJ z H zϕ′ ′=  as per the boundary conditions 
at the PEC surface where ( ) 0zE z′ = .  

Using the equivalence principle, we consider an 
equivalent problem where s s( ) ( )a

z zJ z J z′ ′=  is a cylindrical 
current sheet that exists over a closed cylindrical surface 
S tightly enveloping the dipole. It radiates in open space 
generating the field ( , )a aE H  such that 

in / ,  / 2 / 2,
( , )

0,                     elsewhere.

a
a
z

V z
E a zρ

 ′∆ − ∆ ≤ ≤ ∆
′≤ = 


 (10.18) 

Here, ∆  is the feed-gap length. Note that the E-field 
inside the tubular volume (except in the gap) is zero. 

Next, consider a fictitious linear current source ( )bI z′  along the axis of the 
cylinder (z axis) where bI  is nonzero only for / 2 / 2l z l′− < < . It also radiates in 
open space and its field is denoted as ( , )b bE H . We require that ( )bI z′  represents 
the actual current distribution on the metallic surface of the dipole, i.e., 

s( ) 2 ( )b a
zI z aJ zπ′ ′= . 

In the volume (air) bound by S, we apply the reciprocity formula (10.7): 

[ ]

( ) 0

S

a b b a

V

dv⋅ − ⋅ = E J E J .                                  (10.19) 

Bearing in mind the surface nature of the current source a, the linear nature of 
current source b, and equation (10.18), we write (10.19) as 

 
2 /2 /2

s

0 /2 /2

l

b a a b
z z z

l

E J adz d E I dz

π

ϕ
∆

− −∆

′ ′=   . (10.20) 

In (10.20), we assumed that the electric fields of the two sources have only z 
components.  

Assuming constant current distribution in the feed gap, we obtain 

 
2 /2

s in in

0 /2

l

b a b a
z z

l

E J adz d I V

π

ϕ
−

′ = −   (10.21) 
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where 

 
/2

in

/2

a a
zV E dz

∆

−∆

′= −   (10.22) 

is the voltage at the terminals of the generator driving the current s ( )a
zJ z′ . The 

minus sign in (10.22) reflects the fact that a positive in
aV , which implies a 

“positive” current Iin, i.e., current flowing in the positive z direction, relates to a 
“negative” electric field at the dipole’s base, i.e., Ez points in the negative z 
direction. This is illustrated below. 
 

inI

inV (0)E

inI

z

 
 

Further, due to the cylindrical symmetry, all quantities in the integral in 
(10.21) are independent of ϕ . Thus, 

 ( )
/2

s in in

/2

2
l

b a b a
z z

l

E aJ dz I Vπ
−

′ = − . (10.23) 

The quantity in the brackets in (10.23) is the total current Ia at position z′ . Thus, 

 
/2

in in

/2

l

b ab a
z

l

E I dz I V

−

′ = − . (10.24) 



Nikolova 2023 11

Here, Ia is the actual current distribution along the surface of the dipole’s arms. 
Since we require the distribution of Ia and Ib along z′  to be the same, we can now 
drop the superscripts: 

 
/2

in in

/2

l

z

l

E Idz I V

−

′ = − . (10.25) 

As a reminder, Ez 
b
zE≡  is the field at the fictitious cylindrical surface enveloping 

the dipole volume (air) due to ( ) ( )b a
I z I z′ ′= . The above result leads to the 

following self-impedance expression: 

 
/2

in in in
in 0 2 2

in in in /2

1
( ) ( )

l

zz

l

V V I
Z E z I z dz

I I I′=
−

⋅
′ ′ ′= = = −  . (10.26) 

In the classical emf method, we assume that the current has a sinusoidal 
distribution: 

 

0

0

sin , 0 / 2
2

( )

sin , / 2 0.
2

l
I z z l

I z
l

I z l z

β

β

  
′ ′− ≤ ≤   

   
′ = 

  ′ ′+ − ≤ ≤     

 (10.27) 

So far, we have obtained only the far-field components of the field generated by 
the current in (10.27) (see Lecture 9). However, when the input resistance and 
reactance are needed, the near field must be known. In our case, we are interested 
in zE , which is the field produced by the filamentary current ( )I z′  at the fictitious 
cylindrical surface enveloping the dipole volume (air). If we know it, we can 
calculate the integral in (10.26) since we already know ( )I z′  from (10.27). 

We use cylindrical coordinates to describe the locations of the integration 
point (primed coordinates) and the observation point. The electric field can be 
expressed in terms of the VP A and the scalar potential φ  (see Lecture 2): 

 jφ ω= −∇ −E A , (10.28) 

 z zE j A
z

φ
ω

∂
 = − −

∂
. (10.29) 

The VP A is z-polarized, 
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/2

/2

( )
4

l j R

z z

l

e
A I z dz

R

βµ

π

−

−

′ ′=  . (10.30) 

The scalar potential is 

 
/2

/2

1
( )

4

l j R

l

l

e
q z dz

R

β

φ
πε

−

−

′ ′=  . (10.31) 

Here, lq  stands for linear charge density in C/m. Knowing that the current 
depends only on z′ , the continuity relation is written as 

 z
l

I
j q

z
ω

∂
= −

′∂
. (10.32) 

 

0

0

cos , 0 / 2
2

( )

cos , / 2 0
2

l

I l
j z z l

c
q z

I l
j z l z

c

β

β

   
′ ′− − ≤ ≤   

   
′ = 

   ′ ′+ + − ≤ ≤     

 (10.33) 

where /c ω β=  is the speed of light. Now, we express A and φ  as 

0 /2

0

/2 0

sin sin
4 2 2

lj R j R

z

l

l e l e
A I z dz z dz

R R

β βµ
β β

π

− −

−

        
′ ′ ′ ′= + + −       

        
  (10.34) 

0 /2
0

/2 0

cos cos
4 2 2

lj R j R

l

I l e l e
j z dz z dz

R R

β βη
φ β β

π

− −

−

        
′ ′ ′ ′= − + + −       

        
  . (10.35) 

Here, /η µ ε=  is the intrinsic impedance of the medium.  

The distance between integration and observation point is 

 2 2( )R z zρ ′= + − . (10.36) 

Equation (10.36) is substituted in (10.34) and (10.35). In addition, the resulting 
equations for Az and φ  are modified making use of Moivre’s formulas: 

 
( )

( )

cos 0.5

sin 0.5

jx jx

jx jx

x e e

x j e e

−

−

= +

= − −
, where 

2

l
x zβ

 
′= ± 

 
. (10.37) 
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Then, the equations for Az and φ  are substituted in (10.29) to derive the 
expression for zE  valid at any observation point P. This is a rather lengthy 
derivation, and we give the final result only: 

 
1 2

0

1 2

( ) 2cos
4 2

j R j R j r

z

I e e l e
E P j

R R r

β β βη β

π

− − −  
= − + −   

  
. (10.38) 

Here, r is the distance from the observation point to the dipole’s center, while 1R  

and 2R  are the distances to the lower and upper vertices of the dipole, 

respectively (see figure below). The result in (10.38) is exact. 

 

 

x

y

z

dz′

( , , )P zρ ϕ

R

1R

2R

r

ρ
ϕ

 

 
We need ( )zE z′  at the dipole’s surface where we employ the thin-wire 

approximation assuming that a l≪ : 

 r z′≈ , 1 / 2R z l′= + , and 2 ( / 2)R l z′= − , ( )a a lρ ≤ ≪ . (10.39) 

The final goal of this development is to find the self-impedance (10.26) of the 
dipole. We substitute (10.39) in (10.38). The result for ( )zE z′  is then substituted 
in (10.26), and the integration is performed. We give the final results for the real 
and imaginary parts of inZ : 
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[ ]in
1

ln( ) ( ) sin( ) (2 ) 2 ( )
2 2

1
       cos( ) ln (2 ) 2 ( )  ,

2 2 2

i i i

i i

R k C l C l l S l S l

l
l C C l C l k

η
β β β β β

π

β η
β β β

π


= ⋅ + − + − +



  
+ + + − ⋅ ℑ  

  
=

   (10.40) 

[ ]{in

2

2 ( ) cos( ) (2 ) 2 ( )
4

sin( ) (2 ) 2 ( ) (2 / ) ,} 

i i i

i i i

X k S l l S l S l

l C l C l C a l

η
β β β β

π

β β β β

= − − +

+ − +  

           (10.41) 

where 21 / sin ( / 2)k lβ=  is the coefficient accounting for the difference between 
the maximum current magnitude along the dipole and the magnitude of the input 
current at the dipole’s center [see Lecture 9, section 2]. Also, C is the Euler’s 
constant, Si is the sine integral and Ci is the cosine integral. 

Equation (10.40) is identical with the expression found for the input resistance 
of an infinitesimally thin wire [see Lecture 9, Eqs. (9.37) and (9.38)]. Expression 
(10.41) for the dipole’s reactance however is new. For a short dipole, the input 
reactance can be approximated by a simpler formula: 

 [ ]120 ln( / ) 1 / tan( )inX l a lβ≈ − − . (10.42) 

The output of (10.40) and (10.41) versus /l λ  is given below for 510a λ−=  . 
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Note that: 
• the reactance does not depend on the radius a , when the dipole length is a 

multiple of a half-wavelength ( / 2l nλ= ), as follows from (10.41); 
• the resistance does not depend on a  according to the assumptions made in 

the emf method (see equation (10.40)). 
• In the plots above, mR  and mX  correspond to impedance values computed 

without the factor 21 / sin ( / 2)k lβ= . 

 


