LECTURE 14: LINEAR ARRAY THEORY - PART 11
(Linear arrays: Hansen-Woodyard end-fire array, directivity of a linear array,
linear array pattern characteristics — recapitulation; 3-D characteristics of an

N-element linear array.)

1. Hansen-Woodyard End-fire Array (HWEFA)

The end-fire arrays (EFA) have relatively large HPBW as compared to
broadside arrays.
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[Fig. 6-11, p. 270, Balanis]
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To enhance the directivity of an end-fire array, Hansen and Woodyard
proposed that the phase shift of an ordinary EFA

S =xkd (14.1)
be increased as
ﬁ:—(kd+%) for a maximum at 8 =0°, (14.2)
2.94 :
B=+|kd +T for a maximum at 8 =180°. (14.3)

Conditions (14.2)—(14.3) are known as the Hansen—Woodyard conditions for
end-fire radiation. They follow from a procedure for maximizing the directivity,
which we outline below.

The normalized pattern AF,, of a uniform linear array is

sin{N(kd cost9+,6’)}
AF, 2

ZZ(deOSH+,B)

(14.4)

if w=kdcos@+ [ is sufficiently small (see previous lecture). We are looking
for an optimal £, which results in maximum directivity. Let

B=-pd, (14.5)

where d is the array spacing and p is the optimization parameter. Then,

sin{]\;d(kcosﬁ— p)}

A;d(kcose—p)

AF, =

For brevity, use the notation Nd /2=gq. Then,

AF = sin[g(kcos@— p)]

, (14.6)
q(kcos@— p)

inZ
or AF, =%, where Z =qg(kcos@—p).
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The radiation intensity becomes
sin? Z

2
U(0)=|AF,| = o (14.7)
2
: .
U(&:O):{SIH[Q( p)]} , (14.8)
q(k = p)
: 2
Z
U, (6) =—&) =( Z_ s j (14.9)
U@=0) \sinz Z
where
z=q(k—p),
Z =¢g(kcos@— p), and
U,(0) is normalized power pattern with respect to 8 =0°.
The directivity at 8 =0° is
p, = U ©0=0) (14.10)

Prad
where P, = C_[]SQU" (6)d2. To maximize the directivity, Uy = P, /47 1is

minimized.
2
1 %% 7z sinZ) .
UO:—H : sin 8d0de, (14.11)
4y s\sinz Z
2 (. 2
k cos@ —
UOZE(L) j{sm[Q( co° p)]} $in6do, (14.12)
2\sinz) | gq(kcosé-p)
2
UO:L[ £ j {£+M+Si(2z)}:Lg(z). (14.13)
2kg\sinz ) | 2 27 2kq

Here, Si(z)= IOZ (sint / t)dt . The minimum of g(z) occurs when

z=q(k—p)=-1417, (14.14)
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:N—d(k p)=~—147.
_, Ndk _ Ndp

5 ~—1.47, where dp=-p

:ﬁ(dmﬁ) ~—1.47

2.94 2.94
=~=———" —fkd=-—|kd + 14.15
p=- ( 2 j (14.15)

Equation (14.15) gives the Hansen-Woodyard condition for improved directivity
along @ =0°. Similarly, for 8 =180°,

2.94
B= (kd Nj (14.16)

Usually, conditions (14.15) and (14.16) are approximated by
ﬁzi[km%j, (14.17)

which is easier to remember and gives almost identical results since the curve
g(2) at its minimum is fairly flat.

Conditions (14.15)-(14.16), or (14.17), ensure maximum directivity in the
end-fire direction. There 1s, however, a trade-off in the side-lobe level, which is
higher than that of the ordinary EFA. Besides, conditions (14.15)-(14.16) have
to be complemented by additional requirements, which would ensure low level
of the radiation in the direction opposite to the main beam.

(a) Maximum at € =0° [reminder: ¥ =kd cos@+ []

2.94
2.94
kd +
oY)

Wogr = ————
N Jos (14.18)
0=0° |y 500 = —2kd — .
Wo-130 N

Since we want to have a minimum of the pattern in the 8 =180° direction, we
must ensure that

Nikolova 2023 4



|V lp=180-= 7. (14.19)

The condition in (14.19) ensures that the AF argument /2 falls in the middle
between two major maxima, where minor maxima are the smallest; see the plot
in page 13 of Lecture 13. It is easier to remember the Hansen-Woodyard
conditions for maximum directivity in the 8 = 0° direction as

294 &

o= —— = =TT. 14.20
|V =0 N N |V |g=150° ( )

(b) Maximum at 8 =180°

2.94
3 94 Wo=180° = T
B =kd+ = (14.21)
N 9=180° Voo = 2kd + 294

In order to have a minimum of the pattern in the 8 =0° direction, we must ensure
that

W |o=0o= T . (14.22)

We can now summarize the Hansen-Woodyard conditions for maximum
directivity in the € =180° direction as
294 7@

|‘//|9=180°—T N W |p-0o= T . (14.23)

If (14.19) and (14.22) are not observed, the radiation in the opposite of the
desired direction might even exceed the main beam level. It is easy to show (use
the relation 2kd + 7/ N = xr) that the complementary requirement |y |= 7 at the
opposite direction can be met if the following relation is observed:

d = (N _lji. (14.24)
N )4

If N is large, d = A/4. Thus, for a large uniform array, Hansen-Woodyard
condition can yield improved directivity only if the spacing between the array
elements is approximately A/4 or slightly less.
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ARRAY FACTORS OF A 10-ELEMENT UNIFORM-AMPLITUDE HW EFA
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Fig. 6.12, p. 273, Balanis
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2. Directivity of a Linear Array
2.1. Directivity of a BSA

Using the approximate expression for the AF, the normalized radiation intensity
1s obtained as

sin(l;[kdcose) L 2
2
U®)=|aF,[ =| —; =(SHZ‘ j (14.25)
—kd cos@
- 2 -
p, =4z 2o - Yo (14.26)
Prad Uav

where U,, = P, / (4x). The radiation intensity in the direction of maximum
radiation @ =7 /2 in terms of AF, is unity:

Uy=Unx =U@O=7/2)=1,

= Dy =U,. (14.27)
The radiation intensity averaged over all directions is calculated as
2
| W ¥ sin(];kdcosﬁj
Uw=— | [=—;=sin0d0d¢=—] N sin 6d6.
AT oo 2 2% —kd cos @
2
Change variable:
Zzgkdcosé’:dZ:—%kdsiané’. (14.28)
Then,
_Nkd
: 2
Uy =’ (sz j dz, (14.29)
2N kd i, \ Z
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Nkd

2 . 2
U, = | (szj dz. (14.30)
Nkd 3.\ Z

2

The function (Z-'sinZ)? is a relatively fast decaying function as Z increases.
That is why, for large arrays, where Nkd /2 is big enough (=20), the integral
(14.30) can be approximated by

1 T(sinz) T
U, =~ j dZ =——, (14.31)
Nkd * \ Z Nkd
Dy = ! =~ Nkd =2N (ij (14.32)
U, T A
Substituting the length of the array L= (N —1)d in (14.32) yields
L\ d
Dy =2 1+—|| —|. 14.33
’ ( dj(ﬂj 9
%/_/
N
For a large array (L>d),
Dy=2L/A. (14.34)

2.2. Directivity of ordinary EFA

Consider an EFA with maximum radiation at € =0°,i.e., 8=—kd .
N2

. 2
7
- j 14.35
( ~ ( )

sin{];]kd (cosd - 1)}
U0 =|AF,| =]

L[de@m@—n}

where Z = Ekd (cos@—1). The averaged (isotropic) radiation intensity is

QAT /- 2 T/ . 2
U, =1 :ijjtsmzj sin9d9d¢:lj(8m2j $in6d6 .
4 Ty YA 2O YA
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Since
N N .
Zz;kd(cosé’—l) and dZ:—Ekd sin@d @, (14.36)

1t follows that

. ‘N’j””z sin Z de
2 Nkd Z ’

| M2 N2
Uy, =—— (—j dZ . (14.37)
Nkd Z
If ( Nkd ) 1s sufficiently large, the above integral can be approximated as
w /. 2
U =——[[ L) sz =—_ .2 (14.38)
Nkd 3\ Z Nkd 2
The directivity then becomes
= Dy = ! = 2Nkd =4N (ij (14.39)
U, T A

The comparison of (14.39) and (14.32) shows that the directivity of an EFA is
approximately twice as large as the directivity of the BSA.

Another (equivalent) expression can be derived for Dy of the EFA in terms of
the array length L = (N-1)d:

Dy :4(1+£j(ij. (14.40)
d )\ A
For large arrays, the following approximation holds:
Dy=4L/A if L>d. (14.41)

2.3. Directivity of HW EFA

If the radiation has its maximum at & =0°, then the minimum of U, is
obtained as in (14.13):
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2
gmn = L 2| Zwin || 2 COSCZmn) L Gnr 1 (1442)
2k Nd Sll’lZmin 2 2me
where Zj, =—147T=-7/2.
2
pmn— L [ZVEL 2 gs5|20878 (14.43)
Nd\2) |2 =« Nkd
The directivity is then
Dy = = Nk} g9 4N(ij . (14.44)
Umin  (.878 p)

From (14.44), we can see that using the HW conditions leads to improvement of
the directivity of the EFA with a factor of 1.789. Equation (14.44) can be
expressed via the length L of the array as

T F e

Example: Given a linear uniform array of N isotropic elements (N = 10), find the
directivity Dy if:

a) =0 (BSA)

b) f=—kd (ordinary EFA)

¢) f=—kd —n/ N (Hansen-Woodyard EFA)
In all cases, d=A/4.

a) BSA
d
Dy zszj:s (6999 dB)
b) Ordinary EFA

D0z4N£%j:10 (10 dB)
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c) HW EFA

Dy z1.789{4N (%H:nw (12.53 dB)

3. Pattern Characteristics of Linear Uniform Arrays — Recapitulation

A. Broad-side array
NULLS (AF, =0):

6, = arccos(i%gj, where n=1,2,3,4,... and n# N,2N,3N,...
MAXIMA (AF, =1):
6, = arccos(im?/lj, where m=0,1,2,3,...

HALF-POWER POINTS:

6, = arccos(i 1391/1), where ”—d <1
TNd A
HALF-POWER BEAMWIDTH:
AG, =2 z—arccos 13914 ) 7d <1
2 TNd A
MINOR LOBE MAXIMA:
6, = arccos ii(zs il 1) , where s =1,2,3,... and ﬂ-—d <1
2d\ N A

FIRST-NULL BEAMWIDTH (FNBW):

AG, = 2{£ — arccos(iﬂ
2 Nd

FIRST SIDE LOBE BEAMWIDH (FSLBW):
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AG, =2 z—arccos 34 ,ﬂ—d<<1
2 2Nd A

B. Ordinary end-fire array
NULLS (AF, =0):

6, :arccosil—%gj, where n=1,2,3,... and n# N,2N,3N,...
MAXIMA (AF, =1):
6, = arccos(l —%ﬂj, where m=0,1,2,3,...

HALF-POWER POINTS:

g, - arccos(l— 1.3911) zd

, Where — <1
TNd A

HALF-POWER BEAMWIDTH:

<1

AG, = 2arccos(1 —
TNd A

1.3911) 7wd
MINOR LOBE MAXIMA:

2s+1)A

6, = arccos l—u , where s=1,2,3,... and ”—d <1

2Nd A
FIRST-NULL BEAMWIDTH:

AG, = 2arccos[1 — ij

Nd

FIRST SIDE LOBE BEAMWIDH:

AQS:Zarccosil— 34 j, zd

2Nd
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C. Hansen-Woodyard end-fire array
NULLS:

6, = arccos{1+ (1-2n) A }, where n=1,2,... and n# N,2N,...
2Nd
MINOR LOBE MAXIMA:
6, = arccos(l —ij, where s=1,2,3,... and ”—d <1
Nd A
SECONDARY MAXIMA:
6,, = arccos {1 +[1-C2m+ 1)]i}, where m=1,2,... and E—d <1
2Nd A
HALF-POWER POINTS:
A zd
6, = arccos| 1 -0.1398— |, where — <« 1, N-large
Nd A
HALF-POWER BEAMWIDTH:
AG, = 2arccos(1—0.139sij, where 74 < 1. N-Large
Nd A
FIRST-NULL BEAMWIDTH:
A

A6, = 2arccos(1 s
2Nd
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4. 3-D Characteristics of a Linear Array

In the previous considerations, it was always assumed that the linear-array
elements are located along the z-axis, which is convenient to analyze in spherical
coordinate system. If the array axis has an arbitrary orientation, the array factor
can be expressed as

AF = Zane” (kdcosy+f) — Za (=1 (14.46)

n=l1

where a, is the excitation amplitude and ¥ =kd cosy+ [3.
The angle ¥ is subtended by the array axis and the position vector to the
observation point. Thus, if the array axis is along the unit vector a,

a=sind, cos@,X+sind, sin@,y +cos b,z (14.47)
and the position vector to the observation point is
I' = sin @ cos ¢X + sin @sin @y + cos Oz (14.48)
the angle ¥ can be found as
cosy=a-r =sin@cos @sin b, cos @, + sin @sin @sin 6, sin ¢, + cos & cos b,
= cos ¥ =sin@sin 6, cos(Pp—@,) +cosBcosb, . (14.49)
=7 (6,=0°), then cosy=cosd, y=4.
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