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LECTURE 14: LINEAR ARRAY THEORY - PART II 

(Linear arrays: Hansen-Woodyard end-fire array, directivity of a linear array, 

linear array pattern characteristics – recapitulation; 3-D characteristics of an 

N-element linear array.) 
 
1. Hansen-Woodyard End-fire Array (HWEFA) 

The end-fire arrays (EFA) have relatively large HPBW as compared to 
broadside arrays. 

 
[Fig. 6-11, p. 270, Balanis] 
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To enhance the directivity of an end-fire array, Hansen and Woodyard 
proposed that the phase shift of an ordinary EFA 

 kdβ = ±  (14.1) 

be increased as 
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Conditions (14.2)–(14.3) are known as the Hansen–Woodyard conditions for 
end-fire radiation. They follow from a procedure for maximizing the directivity, 
which we outline below. 

The normalized pattern AFn of a uniform linear array is 
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if coskdψ θ β= +  is sufficiently small (see previous lecture). We are looking 
for an optimal β , which results in maximum directivity. Let 

 pdβ = − , (14.5) 

where d is the array spacing and p is the optimization parameter. Then, 
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For brevity, use the notation / 2Nd q= . Then, 
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The radiation intensity becomes 
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where 

( )z q k p= − , 
( cos )Z q k pθ= − , and 

( )nU θ  is normalized power pattern with respect to 0θ = ° . 
 

The directivity at 0θ = °  is 
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where ( )rad nP U dθ
Ω

= Ω� . To maximize the directivity, 0 / 4radU P π=  is 

minimized. 
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Equation (14.15) gives the Hansen-Woodyard condition for improved directivity 
along 0θ = ° . Similarly, for 180θ = ° , 
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Usually, conditions (14.15) and (14.16) are approximated by 
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, (14.17) 

which is easier to remember and gives almost identical results since the curve 
( )g z  at its minimum is fairly flat. 

Conditions (14.15)-(14.16), or (14.17), ensure maximum directivity in the 
end-fire direction. There is, however, a trade-off in the side-lobe level, which is 
higher than that of the ordinary EFA. Besides, conditions (14.15)-(14.16) have 
to be complemented by additional requirements, which would ensure low level 
of the radiation in the direction opposite to the main beam. 

(a) Maximum at 0θ = °  [reminder: coskdψ θ β= + ] 
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 (14.18) 

Since we want to have a minimum of the pattern in the 180θ = °  direction, we 
must ensure that 
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 180| |θψ π= ° ≈ . (14.19) 

The condition in (14.19) ensures that the AF argument / 2ψ  falls in the middle 

between two major maxima, where minor maxima are the smallest; see the plot 
in page 13 of Lecture 13. It is easier to remember the Hansen-Woodyard 
conditions for maximum directivity in the 0θ = °  direction as 
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(b) Maximum at 180θ = °  
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In order to have a minimum of the pattern in the 0θ = °  direction, we must ensure 
that 

 0| |θψ π= ° ≈ . (14.22) 

We can now summarize the Hansen-Woodyard conditions for maximum 
directivity in the 180θ = °  direction as 
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If (14.19) and (14.22) are not observed, the radiation in the opposite of the 
desired direction might even exceed the main beam level. It is easy to show (use 
the relation 2 /kd Nπ π+ ≈ ) that the complementary requirement | |ψ π=  at the 
opposite direction can be met if the following relation is observed: 
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If N is large, / 4d λ≈ . Thus, for a large uniform array, Hansen-Woodyard 
condition can yield improved directivity only if the spacing between the array 
elements is approximately / 4λ  or slightly less. 
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ARRAY FACTORS OF A 10-ELEMENT UNIFORM-AMPLITUDE HW EFA 

 

Solid line: / 4d λ=  

Dash line: / 2d λ=  

N = 10 
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Fig. 6.12, p. 273, Balanis 
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2. Directivity of a Linear Array 

2.1. Directivity of a BSA 

Using the approximate expression for the AF, the normalized radiation intensity 
is obtained as 
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where / (4 )av radU P π= . The radiation intensity in the direction of maximum 
radiation / 2θ π=  in terms of nAF  is unity: 

 0 max ( / 2) 1U U U θ π= = = = , 

 1
0 avD U − = . (14.27) 

The radiation intensity averaged over all directions is calculated as 
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Then, 
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The function 1 2( sin )Z Z−  is a relatively fast decaying function as Z increases. 
That is why, for large arrays, where / 2Nkd  is big enough ( )20≥ , the integral 
(14.30) can be approximated by 
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Substituting the length of the array ( )1L N d= −  in (14.32) yields 
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For a large array ( )L d≫ , 

 0 2 /D L λ≈ . (14.34) 

 

2.2. Directivity of ordinary EFA 

Consider an EFA with maximum radiation at 0θ = °, i.e., kdβ = − . 
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where (cos 1)
2

N
Z kd θ= − . The averaged (isotropic) radiation intensity is 
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If ( Nkd ) is sufficiently large, the above integral can be approximated as 
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The directivity then becomes 
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The comparison of (14.39) and (14.32) shows that the directivity of an EFA is 
approximately twice as large as the directivity of the BSA.  

Another (equivalent) expression can be derived for D0 of the EFA in terms of 
the array length L = (N−1)d: 
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For large arrays, the following approximation holds: 

 0 4 / ifD L L dλ= ≫ . (14.41) 

 

2.3. Directivity of HW EFA 

If the radiation has its maximum at 0θ = ° , then the minimum of avU  is 
obtained as in (14.13): 
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where min 1.47 / 2Z π= − ≈ − . 
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The directivity is then 
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From (14.44), we can see that using the HW conditions leads to improvement of 
the directivity of the EFA with a factor of 1.789. Equation (14.44) can be 
expressed via the length L of the array as 

 0 1.789 4 1 1.789 4
L d L

D
d λ λ

       
= + =       

       
. (14.45) 

 

Example: Given a linear uniform array of N isotropic elements (N = 10), find the 
directivity 0D  if: 

a) 0β =  (BSA) 

b) kdβ = −  (ordinary EFA) 

c) /kd Nβ π= − −  (Hansen-Woodyard EFA) 

In all cases, / 4d λ= . 
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c) HW EFA 

 ( )0 1.789 4 17.89 12.53 dB
d

D N
λ

  
≈ =  

  
 

 

3. Pattern Characteristics of Linear Uniform Arrays – Recapitulation  

A. Broad-side array 

NULLS ( 0nAF = ): 
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FIRST SIDE LOBE BEAMWIDH (FSLBW): 
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B. Ordinary end-fire array 

NULLS ( 0nAF = ): 
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C. Hansen-Woodyard end-fire array 

NULLS: 
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4. 3-D Characteristics of a Linear Array 

In the previous considerations, it was always assumed that the linear-array 
elements are located along the z-axis, which is convenient to analyze in spherical 
coordinate system. If the array axis has an arbitrary orientation, the array factor 
can be expressed as 
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where na  is the excitation amplitude and coskdψ γ β= + . 
The angle γ  is subtended by the array axis and the position vector to the 

observation point. Thus, if the array axis is along the unit vector â , 

 ˆ ˆ ˆ ˆsin cos sin sin cosa a a a aθ φ θ φ θ= + +a x y z  (14.47) 

and the position vector to the observation point is 

 ˆ ˆ ˆ ˆsin cos sin sin cosθ φ θ φ θ= + +r x y z  (14.48) 

the angle γ  can be found as 

ˆ ˆcos sin cos sin cos sin sin sin sin cos cos ,a a a a aγ θ φ θ φ θ φ θ φ θ θ= ⋅ = + +a r  

 cos sin sin cos( ) cos cosa a aγ θ θ φ φ θ θ = − + . (14.49) 

If ˆ ˆ ( 0 )aθ= = °a z , then cos cos ,γ θ γ θ= = . 


