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LECTURE 16: PLANAR ARRAYS AND CIRCULAR ARRAYS 

 
1. Planar Arrays 

Planar arrays provide directional beams, symmetrical patterns with low side 
lobes, much higher directivity (narrow main beam) than that of their individual 
element. In principle, they can point the main beam toward any direction. 

Applications – tracking radars, remote sensing, communications, etc. 
 
A. The array factor of a rectangular planar array in the xy plane 

 

 
Fig. 6.23b, p. 310, Balanis 
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The AF of a linear array of M elements along the x-axis is 
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where sin cos cos xθ φ γ=  is the directional cosine with respect to the x-axis (γx is 
the angle between r and the x axis). It is assumed that all elements are equispaced 
with an interval of xd  and a progressive shift xβ . 1mI  denotes the excitation 
amplitude of the element at the point with coordinates ( 1) xx m d= − , 0y = . In 
the figure above, this is the element of the m-th row and the 1st column of the 
array matrix. Note that the 1st row corresponds to x = 0. 

If N such arrays are placed at even intervals along the y direction, a 
rectangular array is formed. We assume again that they are equispaced at a 
distance yd  and there is a progressive phase shift yβ  along each row. We also 
assume that the normalized current distribution along each of the x-directed 
arrays is the same but the absolute values correspond to a factor of 1nI  
( 1,..., )n N= . Then, the AF of the entire M×N array is 
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or 

 
M Nx yAF S S= , (16.3) 

where 

( )( )1 sin cos
1 1

1

x x
M

M
j m kd

x x m

m

S AF I e θ φ β− +

=

= = , and 

( )( )1 sin sin
1 1

1

y y
N

N
j n kd

y y n

n

S AF I e θ φ β− +

=

= = . 

In the array factors above, 
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The pattern of a rectangular array is the product of the array factors of the linear 
arrays in the x and y directions. 
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In the case of a uniform planar rectangular array, 1 1 0m nI I I= =  for all m 

and n, i.e., all elements have the same excitation amplitudes. Thus, 
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The normalized array factor is obtained as 
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The major lobe (principal maximum) and grating lobes of the terms 
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and 

 

sin
2

sin
2

N

y

y
y

N

S

N

ψ

ψ


 
 =


 
 

 (16.8) 

are located at angles such that 

 sin cos 2 , 0,1,x m m xkd m mθ φ β π+ = ± = …, (16.9) 

 sin sin 2 , 0,1,y n n ykd n nθ φ β π+ = ± = … . (16.10) 

The principal maximum corresponds to 0m = , 0n = . 
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In general, xβ  and yβ  can be independent from each other. But, if it is 
required that the main beams of 

MxS  and 
NyS  intersect (which is usually the 

case), then the common main beam is in the direction: 

 0θ θ=  and 0φ φ= , 0m n= = . (16.11) 

With the principal maximum specified by 0 0( , )θ φ , the progressive phase shifts 

xβ  and yβ  must satisfy 

 0 0sin cosx xkdβ θ φ= − , (16.12) 

 0 0sin siny ykdβ θ φ= − . (16.13) 

If xβ  and yβ  are specified, then the direction of the main beam can be found by 
solving (16.12) and (16.13) as a system of equations: 
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The grating lobes can be located by substituting (16.12) and (16.13) in (16.9) 
and (16.10): 
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To avoid grating lobes, the spacing between the elements must be less than λ , 
i.e., xd λ<  and yd λ< . In order a true grating lobe to occur, both equations 
(16.16) and (16.17) must have a real solution ( , )mn mnθ φ . 

The array factors of a 5 by 5 uniform array are shown below for two spacing 
values: / 4d λ=  and / 2d λ= . Notice the considerable decrease in the 
beamwidth as the spacing is increased from / 4λ  to / 2λ . 
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DIRECTIVITY PATTERNS OF A 5-ELEMENT SQUARE PLANAR UNIFORM ARRAY 

WITHOUT GRATING LOBES 0x yβ β= = : (a) / 4d λ= , (b) / 2d λ=  

  

0 10.0287 (10.0125 dB)D =  0 33.2458 (15.2174 dB)D =  

(a) (b) 
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B. The beamwidth of a planar array 
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A simple procedure, proposed by R.S. Elliot1 is outlined below. It is based on 
the use of the beamwidths of the linear arrays building the planar array. 

For a large array, the maximum of which is near the broad side, the elevation 

plane HPBW is approximately 
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where 

 
1 “Beamwidth and directivity of large scanning arrays”, The Microwave Journal, Jan. 1964, pp.74-82. 
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 0 0( , )θ φ  specifies the main-beam direction; 

 xθ∆  is the HPBW of a linear BSA of M elements and an amplitude 
distribution which is the same as that of the x-axis linear arrays 
building the planar array; 

 yθ∆  is the HPBW of a linear BSA of N elements and amplitude 
distribution which is the same as that of the y-axis linear arrays 
building the planar array. 

 
The azimuth HPBW is the HPBW in the plane orthogonal to the elevation 

plane and contains the maximum. It is 
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For a square array ( )M N=  with the same amplitude distributions along the x 
and y axes, equations (16.18) and (16.19) reduce to 
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 h x yφ θ θ= ∆ = ∆ . (16.21) 

From (16.20), it is obvious that the HPBW in the elevation plane depends on the 
elevation angle 0θ  of the main beam whereas the HPBW in the azimuthal plane 

hφ  does not. 
The antenna solid angle of the planar array can be approximated by 

 A h hθ φΩ ≈ , (16.22) 

where hθ  and hφ  are in radians. Substituting (16.18) and (16.19), yields 
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C. Directivity of planar rectangular array 

The general expression for the calculation of the directivity of an array is 
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For large planar arrays, which are nearly broadside, (16.24) reduces to 

 0 0cosx yD D Dπ θ=  (16.25) 

where 

 xD  is the directivity of the respective linear BSA, x-axis; 

 yD  is the directivity of the respective linear BSA, y-axis. 

We can also use the array solid angle AΩ  in (16.23) to calculate the 
approximate directivity of a nearly broadside planar array: 
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Remember:  

1) The main beam direction is controlled through the phase shifts, xβ  and yβ . 

2) The beamwidth and side-lobe levels are controlled through the amplitude 
distribution. 

 
2 A steradian relates to square degrees as 1 sr = (180/π)2 ≈ 3282.80635 deg. Note that this formula is only approximate and the 
relationship between the exact values of D0 and ΩA is D0 = 4π/ΩA. 
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2. Circular Array 

 

 



Nikolova 2023 10

A. Array factor of circular array 

The normalized field can be written as 
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where 

 2 2 2 cosn nR r a ar ψ= + − . (16.28) 

For r a≫ , (16.28) reduces to 

 ,ˆ ˆcos ( )n n nR r a r a ρψ≈ − = − ⋅a r . (16.29) 

In a rectangular coordinate system, 
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Therefore, 

 ( )sin cos cos sin sinn n nR r a θ φ φ φ φ≈ − + , (16.30) 

or 

 ( )sin cosn nR r a θ φ φ≈ − − . (16.31) 

For the amplitude term, the far-zone approximation 
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is made. 
With the approximations in (16.31) and (16.32), the far-zone array field is 

obtained as: 
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where 

 na  is the complex excitation coefficient (amplitude and phase); 

 2 /n n Nφ π= is the angular position of the n-th element. 
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In general, the excitation coefficient can be represented as 

 nj
n na I e α= , (16.34) 

where nI  is the amplitude and nα  is the phase of the excitation of the n-th element 
relative to a chosen array element of zero phase. Substituting (16.34) into (16.33) 
leads to: 
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The AF is then 
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Expression (16.36) represents the AF of a circular array of N equispaced 
elements. The maximum of the AF occurs when all exponential terms in (16.36) 
equal unity, or, 

 ( )sin cos 2 , 0, 1, 2, alln nka m m nθ φ φ α π− + = = ± ± . (16.37) 

The principal maximum ( 0m = ) is defined by the direction 0 0( , )θ φ , for which 

 ( )0 0sin cos , 1,2,...,n nka n Nα θ φ φ= − ⋅ − = . (16.38) 

For example, for maximum radiation along 0 0 ,180θ = ° °  (along the axis of the 
circular array), all elements must be fed in-phase, i.e., 0nα =  for all n. For 
maximum radiation along 0 90θ = °  and 0 0φ =  (along the x axis in the array’s 
plane), ( )cosn nkaα φ= − , 1,2,...,n N= . 

If a circular array is required to have maximum radiation along 0 0( , )θ φ , then 
the phases of its excitations have to fulfil (16.38). Substituting (16.38) into 
(16.36) shows that the AF of such an array is 
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Here, [ ]arccos sin cos( )n nψ θ φ φ= −  is the angle between r̂  and ,ˆ nρa  whereas 

[ ]0, 0 0arccos sin cos( )n nψ θ φ φ= −  is the angle between ,ˆ nρa  and 0r̂ , where 0r̂  
points in the direction of maximum radiation. 

As the radius of the array a becomes large compared to λ, the directivity of 
the uniform circular array ( 0 , allnI I n= ) approaches the value of N. 

UNIFORM CIRCULAR ARRAY 3-D PATTERN (N = 10, 2 / 10ka aπ λ= = ): 
MAXIMUM AT 0 ,180θ = ° °  ( 0nα =  for all n) 

 

0 11.6881 (10.6775 dB)D =  
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UNIFORM CIRCULAR ARRAY 3-D PATTERN (N = 10, 2 / 10ka aπ λ= = ): 
MAXIMUM AT 90 , 0θ φ= ° = °  

 
0 10.589 (10.2485 dB)D =  

 


