LECTURE 16: PLANAR ARRAYS AND CIRCULAR ARRAYS

1. Planar Arrays

Planar arrays provide directional beams, symmetrical patterns with low side
lobes, much higher directivity (narrow main beam) than that of their individual
element. In principle, they can point the main beam toward any direction.

Applications — tracking radars, remote sensing, communications, etc.

A. The array factor of a rectangular planar array in the xy plane

ry

Fig. 6.23b, p. 310, Balanis

Nikolova 2023 1



The AF of a linear array of M elements along the x-axis is

AF, = ilmlej(m_l)(kdx sin @cos g+ Ly ) (161)
m=1

where sin @ cos @ = cos ¥, 1is the directional cosine with respect to the x-axis (), 1s
the angle between r and the x axis). It is assumed that all elements are equispaced
with an interval of d, and a progressive shift .. I, denotes the excitation
amplitude of the element at the point with coordinates x=(m—1)d,, y=0. In
the figure above, this is the element of the m-th row and the 1% column of the
array matrix. Note that the 1% row corresponds to x = 0.

If N such arrays are placed at even intervals along the y direction, a
rectangular array is formed. We assume again that they are equispaced at a
distance d, and there is a progressive phase shift £, along each row. We also
assume that the normalized current distribution along each of the x-directed
arrays is the same but the absolute values correspond to a factor of Iy,
(n=1,...,N). Then, the AF of the entire MXN array is

M N
AF = Z Imlej(m—l)(kdx sin @ cos 9+ [y ) % lenej(n—l)(kdy sin @sin g+ 3y ) , (162)
m=1 n=l1
or
AF =SS, . (16.3)
where

M
SxM =AF, = Zlmlej(m—l)(kdx sin @cos 9+ Ly ) _and

m=1
N . .
Syzv — AFly — Z Ilnej(n—l)(kdy sm951n¢+,8y).
n=l1
In the array factors above,
sin@cos@=X-T =cos¥,,
: : 4 A 4 (16.4)
sin@sin@ =y -r =cos yy.

The pattern of a rectangular array is the product of the array factors of the linear
arrays in the x and y directions.
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In the case of a uniform planar rectangular array, 1,, =1,, = I, for all m
and n, 1.e., all elements have the same excitation amplitudes. Thus,

M N
AF:IOZ ej(m—l)(kdxsinecos¢+,6’x)XZ ej(n—l)(kdysianin¢+,By). (16.5)

The normalized array factor is obtained as

sin(M %j sin(Nijyj
AF,(0,9) = 2 (16.6)

Msin(%) Nsin[%j
i 2 )] 2

where
W, =kd,sin@cos@d+ [,
W, =kd,sin@sing+ p,.

The major lobe (principal maximum) and grating lobes of the terms

sin(M %]
Sy, = 2 (16.7)

and

|
] (16.8)
|

are located at angles such that
kd,sin8,,cos@, + B, =2mmx, m=0,1,..., (16.9)
kd,sin@,sing, + B, =+2nx, n=0,1,.... (16.10)

The principal maximum corresponds to m =0, n=0.
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In general, B, and [, can be independent from each other. But, if it is
required that the main beams of §,, and §,, intersect (which is usually the
case), then the common main beam is in the direction:

=6 and ¢ =g, m=n=0. (16.11)

With the principal maximum specified by (6,,¢), the progressive phase shifts
p, and [, must satisfy

By = —kd, sin 6, cos ¢, (16.12)
By =—kd, sin@,singy. (16.13)

If B, and fB, are specified, then the direction of the main beam can be found by
solving (16.12) and (16.13) as a system of equations:

By
IBxdy

2 2
sin@ozi\/(lﬁcj _{%] : (16.15)
x y

The grating lobes can be located by substituting (16.12) and (16.13) in (16.9)
and (16.10):

tan ¢y = (16.14)

sin 6, sin ¢y * Ay
tan @, =— VR (16.16)
sin 8, cos ¢ im%lx
sin @, cos ¢y mA sin@ysing@y =7
siné,,, = %lx = . Ay . (16.17)
COS Py, sin @,

To avoid grating lobes, the spacing between the elements must be less than A,
ie., dy <A and d, <A. In order a true grating lobe to occur, both equations
(16.16) and (16.17) must have a real solution (6,,,,9,.,) -

The array factors of a 5 by 5 uniform array are shown below for two spacing
values: d=A/4 and d=A/2. Notice the considerable decrease in the
beamwidth as the spacing is increased from A/4 to A/2.
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DIRECTIVITY PATTERNS OF A 5-ELEMENT SQUARE PLANAR UNIFORM ARRAY
WITHOUT GRATING LOBES S, =8, =0:(a) d=A4/4,(b) d=4/2

D, =10.0287 (10.0125 dB) D, =33.2458 (15.2174 dB)

(a) (b)



B. The beamwidth of a planar array

A simple procedure, proposed by R.S. Elliot! is outlined below. It is based on
the use of the beamwidths of the linear arrays building the planar array.

For a large array, the maximum of which is near the broad side, the elevation
plane HPBW is approximately

gh"’ 1

~ (16.18)
cos 490\/A6?;2 cos? gy + A6y sin? ¢

where

! “Beamwidth and directivity of large scanning arrays”, The Microwave Journal, Jan. 1964, pp.74-82.
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(6y,0y) specifies the main-beam direction;

AB,  is the HPBW of a linear BSA of M elements and an amplitude
distribution which is the same as that of the x-axis linear arrays
building the planar array;

A6, is the HPBW of a linear BSA of N elements and amplitude
distribution which is the same as that of the y-axis linear arrays
building the planar array.

The azimuth HPBW is the HPBW in the plane orthogonal to the elevation
plane and contains the maximum. It is

1
~ . 16.19
P \/ AB;2sin? g + A6; cos? dh (16.19)

For a square array (M = N) with the same amplitude distributions along the x
and y axes, equations (16.18) and (16.19) reduce to

AB

g, =20 _ A0 (16.20)
cosf, cosb,

& =A6,=A0,. (16.21)

From (16.20), it is obvious that the HPBW in the elevation plane depends on the
elevation angle €, of the main beam whereas the HPBW in the azimuthal plane

@, does not.
The antenna solid angle of the planar array can be approximated by

Qp=6,0, (16.22)
where 6, and ¢, are in radians. Substituting (16.18) and (16.19), yields
AB,AD,

Q, = (16.23)

AG2 2
cos 6’0\/{sin2 & + Aé))ygcos2 %}{sinz @ + ig’ccos2 )

2
y
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C. Directivity of planar rectangular array

The general expression for the calculation of the directivity of an array is

Dy =475— | AF (6. #0) F . (16.24)
[ [1AF(6,9) sin6d6dy
00
For large planar arrays, which are nearly broadside, (16.24) reduces to
Dy =7D.D,cos 6, (16.25)

where
D, 1is the directivity of the respective linear BSA, x-axis;

D, is the directivity of the respective linear BSA, y-axis.

We can also use the array solid angle Q, in (16.23) to calculate the
approximate directivity of a nearly broadside planar array:

72 32400
QA[radZ] QA[degz]

Dy ~ (16.26)

Remember:

1) The main beam direction is controlled through the phase shifts, 3, and f, .

2) The beamwidth and side-lobe levels are controlled through the amplitude
distribution.

2 A steradian relates to square degrees as 1 sr = (180/x)> = 3282.80635 deg. Note that this formula is only approximate and the
relationship between the exact values of Dy and Q4 is Do = 47/QA.
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2. Circular Array
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A. Array factor of circular array

The normalized field can be written as

Er0.)=3 a, S (16.27)
n=1 R,
where
R, =/r? +a®—2arcosy, . (16.28)
For r > a, (16.28) reduces to
R, =r—acosy,=r—a(a,, r). (16.29)
In a rectangular coordinate system,
a,, =Xcos¢, +ysing,
I =Xsin@cos@+ysinfsin@+ zcosb.
Therefore,
R, = r—asin@(cos @, cos@+sing, sing), (16.30)
or
R, =r—asin@cos(¢p—g,). (16.31)
For the amplitude term, the far-zone approximation
Rinz%, all n (16.32)

1s made.
With the approximations in (16.31) and (16.32), the far-zone array field is
obtained as:
e~ hr X .
Zane]ka51n000s(¢—¢n) , (1633)

n=l1

E(r,0,9)=

where
a, 1s the complex excitation coefficient (amplitude and phase);

@, =27xn/ N is the angular position of the n-th element.
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In general, the excitation coefficient can be represented as
a, =1,e/% (16.34)

where [, is the amplitude and ¢, is the phase of the excitation of the n-th element
relative to a chosen array element of zero phase. Substituting (16.34) into (16.33)
leads to:

= E(r,0,0) = I,elkesindcoso-d)an ] (16.35)
n=1
The AF is then
N
AF(&, ¢) — Zlnej[kasinecos(¢—¢n )+an] . (1636)
n=1

Expression (16.36) represents the AF of a circular array of N equispaced
elements. The maximum of the AF occurs when all exponential terms in (16.36)
equal unity, or,

kasin@cos(@—¢, )+, =2mm, m=0,£1,12, all n. (16.37)

The principal maximum (m =0) is defined by the direction (6,,¢,), for which
&, =—kasin@, -cos(¢ —¢,), n=12,...N. (16.38)

For example, for maximum radiation along 6, =0°,180° (along the axis of the
circular array), all elements must be fed in-phase, i.e., &, =0 for all n. For
maximum radiation along 6, =90° and ¢, =0 (along the x axis in the array’s
plane), &, =—kacos(@,), n=1,2,....N.

If a circular array is required to have maximum radiation along (6,,4,), then
the phases of its excitations have to fulfil (16.38). Substituting (16.38) into
(16.36) shows that the AF of such an array is

N
AF (0, ¢) — Zlnejka[sin 8 cos(@—¢, )—sin 8y cos(dh—¢ ) | ’ (16.39)
n=l
N
= AF(0,0) = ) I,e/k(cosva—cosyon) (16.40)
n=l
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Here, v, =arccos[sin Gcos(¢—¢n)] is the angle between f and a,, whereas
Wo., = arccos|sin 6 cos(¢h — @,)] is the angle between a,, and F,, where Ky
points in the direction of maximum radiation.

As the radius of the array a becomes large compared to 4, the directivity of
the uniform circular array (1, = I, all n) approaches the value of N.

UNIFORM CIRCULAR ARRAY 3-D PATTERN (N = 10, ka=2xa/ A=10):
MAXIMUM AT 68 =0°,180° («,, =0 for all n)

&,

Dy =11.6881 (10.6775 dB)
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UNIFORM CIRCULAR ARRAY 3-D PATTERN (N = 10, ka =27a/ A =10):
MAXIMUM AT 8 =90°,¢ =0°

10 -4

Dy =10.589 (10.2485 dB)



