LECTURE 21: MICROSTRIP ANTENNAS — PART I
(Transmission-line model. Design procedure for a rectangular patch. Cavity
model for a rectangular patch.)

1. Transmission Line Model — The Rectangular Patch

The TL model is the simplest of all, representing the rectangular patch as a
parallel-plate transmission line connecting two radiating slots (apertures), each
of width W and height h. In the figure below, z is the direction of propagation
of the transmission line.

Slot #2

The TL model is not very accurate and lacks versatility as far as patch
shapes are concerned. However, it gives a relatively good physical insight into
the physics of the patch antenna and the field distribution for all TMgo, modes.

The slots represent very high-impedance terminations on both sides of the
transmission line (almost an open circuit). Thus, the patch has highly resonant
characteristics depending crucially on its length L along z. The resonant length
of the patch, however, is not exactly equal to the physical length due to the
fringing effect. The fringing effect makes the effective electrical length of the
patch longer than its physical length, L¢ > L. Thus, the resonance condition
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BMWlgy =n-7/2,n=12,..., depends on Le, not L. A sketch of the E-field
distribution for the first (dominant) resonant mode, n=1, is shown in the
figure below.

Letr >L
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A. Computing the effective patch length
W
AL (eng + 0.3)(h + 0.264)
- 0.412 W : (21.1)
(en — 0.258)(h + o.sj
For the computation of &, , see previous Lecture. The effective length is
Lt = L+ 2AL. (21.2)
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B. Resonant frequency of the dominant TMgo; mode
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The resonant frequency of a patch is sensitive to L, therefore, the exact
calculation of Le is necessary to predict the antenna resonance:

f,(00D _ ¢ | (21.4)
2,/€rs (L+2AL)

The field of the TMoo1 mode does not depend on the x and y coordinates but it
strongly depends on the z coordinate, along which a standing wave is formed.
The figure below shows the vertical E-field distribution along z when the patch
IS in resonance.
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C. The patch width W

wo— L+ |2 _¢ |2 (21.5)
2 fr Ho&o \ &r +1 2 fr Er +1

Expression (21.5) makes the width W equal to about half a wavelength. It
leads to good radiation efficiencies and acceptable dimensions.

D. Equivalent circuit of the patch

The dominant TMoo1 mode has a uniform field distribution along the y-axis
at the slots formed at the front and end edges of the patch. The equivalent
conductance G is obtained from the theory of uniform apertures while B is
related to the fringe capacitance:

-
— W ]__i 2_7Z'h . for £<i, (21.6)
12049 24\ Ay A 10
2
B=L 1-0.6361In 2zh , for L<i (21.7)
1204, Ao Ao 10

The limitation (h/ 4y) <0.1 is necessary since a uniform field distribution
along the x-axis (vertical axis) is assumed. The patch has two radiating slots
(see the figure below).

The equivalent circuit of a slot is constructed as a parallel R-C circuit, using
the values computed by (21.6) and (21.7):

Nikolova 2019 4



G =1/R represents the radiation loss, while B= jwC is the equivalent

susceptance, which represents the capacitance of the slot.
More accurate values for the conductance G can be obtained through the
cavity model:

G =1/(12072), (21.8)

where

_ T{sin (0.5koW cos ) sin X
0

, (21.9)

2
} sin®0d@ =-2+cos X + X -§;(X)+
cosé

and X = koW, Ko=w+ sy . Si denotes the sine integral, S;j(x)=

jox (siny)/ ydy.

The equivalent circuit representing the whole patch in the TMgo: mode
includes the two radiating slots as parallel R-C circuits and the patch
connecting them as a transmission line, the characteristics of which are
computed in the same way as those of a microstrip line.

I‘l I"\
o e

B —/ G
CH ﬂg = ﬂogogre‘\ﬁ

Lt~y 12

Here, Z. is the characteristic impedance of the patch-equivalent microstrip
line and fy is its phase constant. When the losses are not neglected, we must
include also the attenuation constant « (see Lecture 20). For each slot, G
represents the radiation loss and B = oC represents the capacitance associated
with the fringe effect.
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E. Resonant input resistance

When the patch is resonant, the susceptances of both slots cancel out at the
feed point regardless of the position of the feed along the patch. Thus, the input
admittance is always purely real. This real value, however, strongly depends
on the feed position along z. This is easily shown on the Smith chart for the
admittance transformation through a transmission line.

At the feed point, the impedance of each slot is transformed by the respective
transmission line representing a portion of the patch:

Yin=Y1+Y, (21.10)
The admittance transformation is given by

YL+ jYctan(pBgl)
Yln :Yc ;
Yc + jYL tan(fBgl)

Y, = Z;1 (21.11)

YL|ﬂgL:7z !

if the line is loss-free. Below, the Smith charts illustrate the slot-impedance
transformations and their addition, which produces a real normalized
admittance, in three cases: (1) the patch is fed at one edge (L, =0, L, = L), (2)
the patch is fed at the center (Ly =L, =L/2), and (3) the patch is fed at a
distance (feed inset) zqg =0.165A4.



Smith Chart
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The edge feed and the inset feed are illustrated below.

slot #1 slot #2
\ ‘o,
l l
|
L |
Yin Yin'

The two slots are separated by an electrical distance of 180°. However,
because of the fringe effect the physical length L is slightly less than 4/2. The
reduction of the length is not much. Typically, itis 0.484 < L < 0.49A.

Ideally, the resonant input impedance of the patch for the dominant TMgo;
mode is entirely resistive and equal to half the transformed resistance of each
slot:

1 1

Y 2G]
In reality, there is some mutual influence between the two slots, described by
a mutual conductance and it should be included for more accurate calculations:

1
- 2(G{+Gy,)’

where the “+” sign relates to the odd modes, while the “— sign relates to the
even modes. Normally, G, < G;.

For most patch antennas fed at the edge, Rin is greater than the characteristic
impedance Z; of the microstrip feed line (typically Z; = 50 to 75 Q). That is
why, the inset-feed technique is widely used to achieve impedance match.

The figure below illustrates the normalized input impedance of a 1-D (along
the y axis) loss-free open-ended transmission-line, the behavior of which is
very close to that of the dominant mode of the patch.

in —

Rin. (21.12)

(21.13)

in
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Fig 14.14, pp 735, C. Balanis

Using modal expansion, the input resistance for the inset-feed at z =z, is
given approximately by

2 2
Rin (zo):;[cos2 [1 Zo j+Gl B sin2 (ﬁ zoj—ﬂsin (2—” zoﬂ (21.14)

Here, G, and B; are calculated using (21.6) and (21.7). For most feeding
microstrips, G; /Y, <1 and B; /Y, <«<1. Then,

1 T T
Rin(20) = C0S?| — 2y | = Rin(,-0)C0S%| —2Z9 |. (21.15
m( 0) Z(GliGlz) (L Oj in(z=0) (L Oj ( )
Notice that the inset feeding technique for impedance match of the microstrip
antennas is conceptually analogous to the off-center or asymmetrical feeding
techniques for dipoles. In both cases, a position is sought along a resonant
structure, where the current magnitude has the desired value.

11



2. Designing a Rectangular Patch Using the Transmission Line Model
Input data: &, h, fr

1) Calculate W using (21.5).
2) Calculate gerr using (21.5) and equation (6) from Lecture 20.

3) Calculate the extension AL due to the fringing effect using (21.1).
4) Calculate the actual (physical) length of the patch using

L=%—2AL or L= L —2AL. (21.16)

21, A/ Ereft \| H0E0

5) Calculate radiating slot admittance using (21.6) and (21.7).

6) Calculate resonant input resistance at patch edge using (21.12) or
(21.13) with G{ =G from (21.6).

7) If Rin calculated in step 6 is too large, calculate the inset distance z
using (21.14) or (21.15).

3. Cavity Model for the Rectangular Patch

The TL model is very limited in its description of the real processes taking
place when a patch is excited. It takes into account only the TM},, modes
where the energy propagates only in the longitudinal z direction. The field
distribution along the x and y axes is assumed uniform. It is true that the
dominant TM},, is prevalent but the performance of the patch is also affected
by higher-order modes.

The cavity model is a more general model of the patch which imposes open-
end conditions at the side edges of the patch. It represents the patch as a
dielectric-loaded cavity with:

- electrical walls (above and below), and
- magnetic walls (around the perimeter of the patch.
The magnetic wall is a wall at which
AxH=0 (the H-field is purely normal)
n-E=0 (the E-field is purely tangential)

It is analogous to the open end termination in the theory of transmission lines.
If we treat the microstrip antenna only as a cavity, we can not represent

12



radiation because an ideal loss-free cavity does not radiate and its input
impedance is purely reactive. To account for the radiation, a loss mechanism
Is introduced. This is done by introducing an effective loss tangent, S

The thickness of the substrate is very small. The waves generated and
propagating beneath the patch undergo considerable reflection at the edges of
the patch. Only a very small fraction of them is being radiated. Thus, the
antenna is quite inefficient. The cavity model assumes that the E field is purely
tangential to the slots formed between the ground plane and the patch edges
(magnetic walls). Moreover, it considers only TM* modes, i.e., modes with no
Hx component. These assumptions are, basically, very much true.

P b
Sttt Attty
magnetic wall

<« '
W

The TM* modes are fully described by a single scalar function Ax — the x-
component of the magnetic vector potential:

A=AKX. (21.17)
In a homogeneous source-free medium, Ay satisfies the wave equation:
VZ2A +k?2A =0. (21.18)

For regular shapes (like the rectangular cavity), it is advantageous to use the
separation of variables:

2 2 2
8AX+5 Ax+aAX+k2AX:0 (21.19)
ox2  oy? 012

A = X (Y (Y)Z(2) (21.20)

13



2 2 2
vz 22 %z 97wy 4 kexyz
OX?2 OX?2 OX?2

102X 1% 10%Z

T e i Y/ (21.21)
X ox? Y oy? Z o0z°
2 2 2
X kex =0, S tkev =0, 202z -0 (2122)
dx?2 dy? dz?
The eigenvalue equation is
kg +kg +kZ =k2. (21.23)

The solutions of (21.22) are harmonic functions:
X (x) =) Ascos(keX) + As sin(kynX) ,
n

Y(y) = Bgcos(kyny)+ Bssin(kyny), (21.24)
n

Z(z) =) _C§cos(kznz)+Cgsin(kanz).
n

When the functions in (21.24) are substituted in (21.20), they give the general
solution of (21.18). The particular solution of (21.18) depends on the boundary
conditions.

In our case, there are electric wallsat x=0 and x = h. There, the tangential
E-field components must vanish, i.e., E, = E, =0| . Having in mind that

2 2 2
E, == (a Ax+k2ij, £, = (‘9 ij’ E, =t (‘9 AZj,(zl.zs)

" jous\ ox? jooues\ oxoy  joue\ oxoz
we set A, at the top and bottom walls as
A =0. (21.26)
OX x=0,h

At all side walls, we set a vanishing normal derivative for Ay:
OA 0 OA
oz z=0,L | 8y

=0. (21.27)
y=0W

14



This ensures vanishing H, and Hy at z=0 and z=L, as well as vanishing
H, and H, at y=0 and y=W (magnetic walls), as follows from the relation
between the H-field and A,

HXZO, Hyzi(anj, HX:£(8AXJ. (21.28)
H\ oz H\ oy

It is now obvious that the solution must appear in terms of the functions

X(x)= ZAr? cos(KxnX), Kun = n%,

Y (y) =2 Bf cos(kyny), kyn =N (21.29)
n

T

Z(z) =) _C§cos(knz), ko = nt.
n

The spectrum of the eigenmodes in the cavity is discrete. The frequencies of
those modes (the resonant frequencies) can be calculated from (21.23) as

2 2 2
Mz (D7) [ PEY ()
( - j +(Wj +( Lj —(a)r ) Le, (21.30)
fr = +— | +|— | (21.31)
27\l ue h W L

The mode with the lowest resonant frequency is the dominant mode. Since
usually L > W, the lowest-frequency mode is the TMg,, mode, for which

v __1_7__ ¢
27 Jue L 2L\/;
The dominant TMJ,, mode is exactly the mode considered by the

transmission-line model (see previous sections). The field distribution of some
low-order modes is given in the following figure.

(21.32)

15
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Fig. 14.13, pp. 741, Balanis

The general solution for the A{™™ [see (21.20) and (21.24)] is

(mnp) _| Ac 3 c K c i
A —{Ax cos(m ” Xj}{BX cos(nw yﬂ{cx cos( p - zﬂ (21.33)

AMP) — .COS mzxj-cos(nZ )cos( lzj. 21.34
Annp ( - Y Py (21.34)

or

The respective field solution for the (m,n,p) mode is

(k2 —kg)
Ex =—]——= Amnp - cOs(kxX) - cos(ky y) - cos(k,z) (21.35)
OUE
. kyky : .
E,=-] Annp -sin(kyX) -sin(ky y) - cos(k,z), (21.36)
OUE

16



kxk;

E, =—] Annp -Sin(kyx) - cos(ky y) - sin(k,z), (21.37)
ouE
H, =0, (21.38)
H, = ke Annp - €0s(kyX) - cos(ky y) -sin(k, z), (21.39)
y7i
H, = & Annp - €0S(kxX) -sin(ky y) - cos(k,z). (21.40)
7]

For the dominant TM%,, mode,
Ex = —j(k? =72 /h?) [ (wpe) | Ao cos(zz/ L), Ey =E, =0, (21.41)
Hy =—(7/ uL)Agrsin(zz /L), Hy=H, =0. (21.42)

4. Cavity Model for the Radiated Field of a Rectangular Patch

The microstrip patch is represented by the cavity model reasonably well
assuming that the material of the substrate is truncated and does not extend
beyond the edges of the patch. The four side walls (the magnetic walls)
represent four narrow apertures (slots) through which radiation takes place.

The equivalence principle is used to calculate the radiation fields. The field
inside the cavity is assumed equal to zero, and its influence on the field in the
infinite region outside is represented by the equivalent surface currents on the
surface of the cavity.

17



Because of the very small height h of the substrate, the field is concentrated
beneath the patch. There is some actual electrical current at the top metallic
plate, however, its contribution to radiation is negligible. That is because: (1)
it is backed by a conductor, and (2) it is very weak compared to the equivalent
currents at the slots. The actual electrical current density of the top patch is
maximum at the edges of the patch.

In the cavity model, the side walls employ magnetic-wall boundary
condition, which sets the tangential H components at the slots equal to zero.
Therefore,

Js=AxH=0. (21.43)
Only the equivalent magnetic current density
M; =-NxE (21.44)

has substantial contribution to the radiated field.

4

M, =-2nxE

The influence of the infinite ground plane is accounted for by the image theory,
according to which the currents M in the presence of the infinite plane radiate
as if magnetic currents of double strength radiate in free space:

M =-2AxE. (21.45)
Note that an E field at the slots corresponds to M density vector, which is
tangential to the ground plane. Thus, its image is of the same direction. The

equivalent magnetic current densities for the dominant TM,, mode are
sketched below.

18



-I‘;?\\\__ E(OOD__—IV/Q;]

At slots #1 and #2, the equivalent M currents are co-directed and with
equal amplitudes. They are constant along x and y.

Radiation from a slot with constant current density

"z P’
The radiation from an (x-y) slot of constant My currents is found using the
electric vector potential F. Since Mg has only a y component, so does F:
F=Fy.
e hi2 W/2 M _
Fy(r0.9)=-— [ [ —Le Tovedxdy’. (21.46)
4x hi2-w /2 TPQ
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Here, My = -2E,, E, being the phasor of the E-field at the radiating slot, and
g =r—r"-f=r—x'sindcosg—y'singsing.

jkor NP2 W/2
F,=—2¢E, J [ exp(jkox'sin@cos g)dx- | exp(jkoy'sinOsin g)dy’ (21.47)
~h/2 -W/2
~F, =_gEoWh o ikor sinX sinY (21.48)
271 X Y
where

X = kLzhsin 6gcosg,

Y = kOTWsin gsing.

According to the relation between the far-zone E-field and the vector potential,

Er =~ O, E¢ = j(()?]Fg, Eg = —ja)nF¢, (2149)

where 17 =+/uo | &9, Fg = Fycos@sing, and F, = F, cosg.
= E, = jonsg WhE, g~ ko cosesinqﬁsm X ﬂ, (21.50)

r X Y
By = — joney UPED o jlor g s SN X % (21.51)

r
Since wney =Ko,
E; = jkoW 2\/—0e—ik0Ir (cos@sinqﬁsm X ﬁj (21.52)
r Y
Ey = — koW 2 ikor (cos¢sm X ﬂj (21.53)
27y X Y

Here V, = hE, is the voltage between the patch edge and the ground plane.
Slots #1 and #2 form an array of two elements with excitation of equal
magnitude and phase, separated by the physical distance L. Their AF is

Ko Let

ARy, = 2COS( COS ej. (21.54)

20



Here Lo = L+ 2AL is the effective patch length. Thus, the total radiation field

is
. . . sinX si K
Ej = JMe—Jkor (cos@sm;ﬁsmx ﬂ)x cos oLt cosd ||, (21.55)
v X Y 2

_ . i ' k
E}9=—Jk(’Me-Jk0Ir cos¢smxﬂ x| COS olet cosd ||. (21.56)
r X Y 2

Introducing Z = (KoLet / 2)C0s @, the pattern of the patch is obtained as

sin X —S':;Y cosZ. (21.57)

f(0,4)=1[E} +EZ = 1-sin?¢-sin20 -

E-plane pattern (xz plane, ¢=0°, 0° < 8 < 180°)

sin(ohsin 6’)
fe (6)= 2 -cos(kol;ﬁ cos@]. (21.58)

150

1001 E-plane |0
koh=0.1;, g, =2.2
Ler =0.5% / \Jer
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150/ ;

180\

E-p"lane
koh=0.1, & =4.0
Let =0.5% / \J&r

H-plane pattern (xy plane, 8=90°, 0°< ¢ < 90° and 270°< ¢ < 360°)

sin(kohcowj sin (kowsin ¢j
fr (0)=cosg- 2 : 2

300

270

koh

KoW .
——CO0S ———sin
2 ¢ 2 ?

TX

0

1
190 —>Y
koh=0.1; & =2.2
W =051/ /er

(21.59)
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koh=0.1; & =4.0
W =054 /Jer
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270°

——— Measured
= =+ Moment method (Courtesy D. Pozar)
== Cavity model

(a) E-plane (6 = 90°) o
Fig. 14.17, p. 746, Balanis
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(b) H-plane (¢ = 0°)

Fig. 14.18, p. 747, Balanis

Non-radiating slots: It can be shown that the slots at y=-W /2 and
y =W /2 do no radiate in the principle E- and H-planes. In general, these two
slots do radiate away from the principle planes, but their field intensity is
everywhere small compared to that radiated by slots #1 and #2.
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