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LECTURE 21: MICROSTRIP ANTENNAS – PART II  

(Transmission-line model. Design procedure for a rectangular patch. Cavity 

model for a rectangular patch.) 

 

1. Transmission Line Model – The Rectangular Patch 

The TL model is the simplest of all, representing the rectangular patch as a 

parallel-plate transmission line connecting two radiating slots (apertures), each 

of width W and height h. In the figure below, z is the direction of propagation 

of the transmission line. 
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The TL model is not very accurate and lacks versatility as far as patch 

shapes are concerned. However, it gives a relatively good physical insight into 

the physics of the patch antenna and the field distribution for all TM00n modes. 

The slots represent very high-impedance terminations on both sides of the 

transmission line (almost an open circuit). Thus, the patch has highly resonant 

characteristics depending crucially on its length L along z. The resonant length 

of the patch, however, is not exactly equal to the physical length due to the 

fringing effect. The fringing effect makes the effective electrical length of the 

patch longer than its physical length, effL L . Thus, the resonance condition 



Nikolova 2019 2 

( ) / 2n
effL n =  , 1,2,n = , depends on effL , not L. A sketch of the E-field 

distribution for the first (dominant) resonant mode, 1n = , is shown in the 

figure below. 
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A. Computing the effective patch length 
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For the computation of 
effr , see previous Lecture. The effective length is 

 2effL L L= +  . (21.2) 
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B. Resonant frequency of the dominant TM001 mode 
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The resonant frequency of a patch is sensitive to L, therefore, the exact 

calculation of Leff  is necessary to predict the antenna resonance: 
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The field of the TM001 mode does not depend on the x and y coordinates but it 

strongly depends on the z coordinate, along which a standing wave is formed. 

The figure below shows the vertical E-field distribution along z when the patch 

is in resonance. 
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C. The patch width W 
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 (21.5) 

Expression (21.5) makes the width W equal to about half a wavelength. It 

leads to good radiation efficiencies and acceptable dimensions. 

D. Equivalent circuit of the patch 

The dominant TM001 mode has a uniform field distribution along the y-axis 

at the slots formed at the front and end edges of the patch. The equivalent 

conductance G is obtained from the theory of uniform apertures while B is 

related to the fringe capacitance: 
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, (21.6) 
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The limitation 0( / ) 0.1h    is necessary since a uniform field distribution 

along the x-axis (vertical axis) is assumed. The patch has two radiating slots 

(see the figure below). 
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The equivalent circuit of a slot is constructed as a parallel R-C circuit, using 

the values computed by (21.6) and (21.7): 
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B G

 
1/G R=  represents the radiation loss, while B j C=  is the equivalent 

susceptance, which represents the capacitance of the slot. 

More accurate values for the conductance G can be obtained through the 

cavity model: 

 2/ (120 )G I = , (21.8) 

where 
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and X = k0W, 0 0 0k   = . iS  denotes the sine integral, ( )iS x =  

0
(sin ) /

x
y ydy . 

The equivalent circuit representing the whole patch in the TM001 mode 

includes the two radiating slots as parallel R-C circuits and the patch 

connecting them as a transmission line, the characteristics of which are 

computed in the same way as those of a microstrip line. 

 

B G BG

/ 2eff gL 

0 0,  
effc g rZ     =

 

Here, cZ  is the characteristic impedance of the patch-equivalent microstrip 

line and g  is its phase constant. When the losses are not neglected, we must 

include also the attenuation constant   (see Lecture 20). For each slot, G 

represents the radiation loss and B C=  represents the capacitance associated 

with the fringe effect. 
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E. Resonant input resistance 

When the patch is resonant, the susceptances of both slots cancel out at the 

feed point regardless of the position of the feed along the patch. Thus, the input 

admittance is always purely real. This real value, however, strongly depends 

on the feed position along z. This is easily shown on the Smith chart for the 

admittance transformation through a transmission line. 
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At the feed point, the impedance of each slot is transformed by the respective 

transmission line representing a portion of the patch: 

 1 2inY Y Y= +  (21.10) 

The admittance transformation is given by 
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 (21.11) 

if the line is loss-free. Below, the Smith charts illustrate the slot-impedance 

transformations and their addition, which produces a real normalized 

admittance, in three cases: (1) the patch is fed at one edge ( 1 0L = , 2L L= ), (2) 

the patch is fed at the center ( 1 2 / 2L L L= = ), and (3) the patch is fed at a 

distance (feed inset) 0 0.165z = . 
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feed-point at the edge of cavity
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feed-point at the middle of cavity
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slot #1
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The edge feed and the inset feed are illustrated below. 
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The two slots are separated by an electrical distance of 180 . However, 

because of the fringe effect the physical length L is slightly less than /2. The 

reduction of the length is not much. Typically, it is 0.48   L   0.49. 

Ideally, the resonant input impedance of the patch for the dominant TM001 

mode is entirely resistive and equal to half the transformed resistance of each 

slot: 
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In reality, there is some mutual influence between the two slots, described by 

a mutual conductance and it should be included for more accurate calculations: 
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2( )
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G G
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, (21.13) 

where the “+” sign relates to the odd modes, while the “–” sign relates to the 

even modes. Normally, 12 1G G. 

For most patch antennas fed at the edge, Rin is greater than the characteristic 

impedance Zc of the microstrip feed line (typically Zc = 50 to 75 ). That is 

why, the inset-feed technique is widely used to achieve impedance match. 

The figure below illustrates the normalized input impedance of a 1-D (along 

the y axis) loss-free open-ended transmission-line, the behavior of which is 

very close to that of the dominant mode of the patch. 
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Fig 14.14, pp 735, C. Balanis 

Using modal expansion, the input resistance for the inset-feed at 0z z=  is 

given approximately by 
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Here, 1G  and 1B  are calculated using (21.6) and (21.7). For most feeding 

microstrips, 1 / 1cG Y  and 1 / 1cB Y . Then, 
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Notice that the inset feeding technique for impedance match of the microstrip 

antennas is conceptually analogous to the off-center or asymmetrical feeding 

techniques for dipoles. In both cases, a position is sought along a resonant 

structure, where the current magnitude has the desired value. 
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2. Designing a Rectangular Patch Using the Transmission Line Model 

Input data: r, h, fr 

1) Calculate W using (21.5). 

2) Calculate reff  using (21.5) and equation (6) from Lecture 20. 

3) Calculate the extension L due to the fringing effect using (21.1). 

4) Calculate the actual (physical) length of the patch using 

 
0

2
2

L L


= −   or 
0 0

1
2

2 r reff

L L
f   

= −  . (21.16) 

5) Calculate radiating slot admittance using (21.6) and (21.7). 

6) Calculate resonant input resistance at patch edge using (21.12) or 

(21.13) with 1G G =  from (21.6). 

7) If Rin calculated in step 6 is too large, calculate the inset distance 0z  

using (21.14) or (21.15). 

 

3. Cavity Model for the Rectangular Patch 

The TL model is very limited in its description of the real processes taking 

place when a patch is excited. It takes into account only the 00TMx
n  modes 

where the energy propagates only in the longitudinal z direction. The field 

distribution along the x and y axes is assumed uniform. It is true that the 

dominant 001TMx  is prevalent but the performance of the patch is also affected 

by higher-order modes. 

The cavity model is a more general model of the patch which imposes open-

end conditions at the side edges of the patch. It represents the patch as a 

dielectric-loaded cavity with: 

- electrical walls (above and below), and 

- magnetic walls (around the perimeter of the patch. 

The magnetic wall is a wall at which 

 
ˆ 0 (the -field is purely normal)

ˆ 0 (the -field is purely tangential)

 =

 =

n H H

n E E
 

It is analogous to the open end termination in the theory of transmission lines. 

If we treat the microstrip antenna only as a cavity, we can not represent 
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radiation because an ideal loss-free cavity does not radiate and its input 

impedance is purely reactive. To account for the radiation, a loss mechanism 

is introduced. This is done by introducing an effective loss tangent, eff. 

The thickness of the substrate is very small. The waves generated and 

propagating beneath the patch undergo considerable reflection at the edges of 

the patch. Only a very small fraction of them is being radiated. Thus, the 

antenna is quite inefficient. The cavity model assumes that the E field is purely 

tangential to the slots formed between the ground plane and the patch edges 

(magnetic walls). Moreover, it considers only TMx  modes, i.e., modes with no 

Hx component. These assumptions are, basically, very much true. 
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The TMx modes are fully described by a single scalar function Ax – the x-

component of the magnetic vector potential: 

 ˆxA=A x . (21.17) 

In a homogeneous source-free medium, Ax satisfies the wave equation: 

 2 2 0x xA k A + = . (21.18) 

For regular shapes (like the rectangular cavity), it is advantageous to use the 

separation of variables: 
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 (21.19) 

 ( ) ( ) ( )xA X x Y y Z z=  (21.20) 
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The eigenvalue equation is 

 2 2 2 2
x y zk k k k+ + = . (21.23) 

The solutions of (21.22) are harmonic functions: 
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n

X x A k x A k x= + , 

 ( ) cos( ) sin( )c s
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n
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 ( ) cos( ) sin( )c s
n zn n zn

n

Z z C k z C k z= + . 

When the functions in (21.24) are substituted in (21.20), they give the general 

solution of (21.18). The particular solution of (21.18) depends on the boundary 

conditions. 

In our case, there are electric walls at 0x =  and x h= . There, the tangential 

E-field components must vanish, i.e., 
0,

0y z x h
E E

=
= = . Having in mind that 
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we set xA  at the top and bottom walls as 
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
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At all side walls, we set a vanishing normal derivative for xA : 
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. (21.27) 
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This ensures vanishing xH  and yH  at 0z =  and z L= , as well as vanishing 

xH  and zH  at 0y =  and y W=  (magnetic walls), as follows from the relation 

between the H-field and xA , 

 
1 1
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. (21.28) 

It is now obvious that the solution must appear in terms of the functions 
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 (21.29) 

The spectrum of the eigenmodes in the cavity is discrete. The frequencies of 

those modes (the resonant frequencies) can be calculated from (21.23) as 

 ( )
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h W L
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2 2 2

( ) 1

2

mnp
r

m n p
f

h W L

  

 

     
= + +     

     
. (21.31) 

The mode with the lowest resonant frequency is the dominant mode. Since 

usually L > W, the lowest-frequency mode is the 001TMx  mode, for which 

 (001) 1

2 2
r

r

c
f

L L



  
= = . (21.32) 

The dominant 001TMx  mode is exactly the mode considered by the 

transmission-line model (see previous sections). The field distribution of some 

low-order modes is given in the following figure. 
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Fig. 14.13, pp. 741, Balanis 

 

The general solution for the ( )mnp
xA  [see (21.20) and (21.24)] is 
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or 

 
( ) cos cos cosmnp
x mnpA A m x n y p z

h L W
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The respective field solution for the (m,n,p) mode is 
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−
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 sin( ) sin( ) cos( )
x y

y mnp x y z

k k
E j A k x k y k z


= −    , (21.36) 
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 sin( ) cos( ) sin( )
x z

z mnp x y z

k k
E j A k x k y k z


= −    , (21.37) 

 0xH = , (21.38) 

 cos( ) cos( ) sin( )
z

y mnp x y z

k
H A k x k y k z


= −    , (21.39) 

 cos( ) sin( ) cos( )
y

z mnp x y z

k
H A k x k y k z


=    . (21.40) 

For the dominant 001TMx  mode, 

 2 2 2
001( / ) / ( ) cos( / ),  0,x y zE j k h A z L E E  = − − = =    (21.41) 

 001( / ) sin( / ),  0.y x zH L A z L H H  = − = =  (21.42) 

 

4. Cavity Model for the Radiated Field of a Rectangular Patch 

The microstrip patch is represented by the cavity model reasonably well 

assuming that the material of the substrate is truncated and does not extend 

beyond the edges of the patch. The four side walls (the magnetic walls) 

represent four narrow apertures (slots) through which radiation takes place. 

The equivalence principle is used to calculate the radiation fields. The field 

inside the cavity is assumed equal to zero, and its influence on the field in the 

infinite region outside is represented by the equivalent surface currents on the 

surface of the cavity. 
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Because of the very small height h of the substrate, the field is concentrated 

beneath the patch. There is some actual electrical current at the top metallic 

plate, however, its contribution to radiation is negligible. That is because: (1) 

it is backed by a conductor, and (2) it is very weak compared to the equivalent 

currents at the slots. The actual electrical current density of the top patch is 

maximum at the edges of the patch. 

In the cavity model, the side walls employ magnetic-wall boundary 

condition, which sets the tangential H components at the slots equal to zero. 

Therefore, 

 ˆ 0s =  =J n H . (21.43) 

Only the equivalent magnetic current density 

 ˆs = − M n E  (21.44) 

has substantial contribution to the radiated field. 

 

sM
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z
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electric wall
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ˆ2

s

s

=

= − 

J

M n E

sM

 
 

The influence of the infinite ground plane is accounted for by the image theory, 

according to which the currents sM  in the presence of the infinite plane radiate 

as if magnetic currents of double strength radiate in free space: 

 ˆ2s = − M n E . (21.45) 

Note that an xE  field at the slots corresponds to sM  density vector, which is 

tangential to the ground plane. Thus, its image is of the same direction. The 

equivalent magnetic current densities for the dominant 001TMx  mode are 

sketched below. 
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At slots #1 and #2, the equivalent sM  currents are co-directed and with 

equal amplitudes. They are constant along x and y. 

 

Radiation from a slot with constant current density 
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The radiation from an (x-y) slot of constant sM  currents is found using the 

electric vector potential F. Since sM  has only a y  component, so does F: 
ˆyF=F y . 

 0

/2 /2

/2 /2

( , , )
4

PQ

h W
y jk r

y

PQh W

M
F r e dx dy

r


 


−

− −

 =   . (21.46) 
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Here, 02yM E= − , 0E  being the phasor of the E-field at the radiating slot, and 
ˆ sin cos sin sinPQr r r x y     = −  = − −r r . 
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h W

e
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r
    
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   =−    (21.47) 

 0
0 sin sin

2
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E Wh X Y
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r X Y




− = −     (21.48) 

where 

0
sin cos

2

k h
X  = , 

0
sin sin

2

k W
Y  = . 

According to the relation between the far-zone E-field and the vector potential, 

 0,  ,  rE E j F E j F     = = − , (21.49) 

where 0 0/  = , cos sinyF F  = , and cosyF F = . 

 0
0

0

sin sin
cos sin

2
jk r

WhE X Y
E j e

r X Y
   


− = , (21.50) 

 0
0

0

sin sin
cos

2
jk r

WhE X Y
E j e

r X Y
  


− = − . (21.51) 

Since 0 0k = , 

 0
0

0

sin sin
cos sin

2
jk r

V X Y
E jk W e

r X Y
  


−  

=  
 

, (21.52) 

 0
0

0

sin sin
cos

2
jk r

V X Y
E jk W e

r X Y
 


−  

= −  
 

. (21.53) 

Here 0 0V hE=  is the voltage between the patch edge and the ground plane. 

Slots #1 and #2 form an array of two elements with excitation of equal 

magnitude and phase, separated by the physical distance L. Their AF is 

 
0

12 2cos cos
2

effk L
AF 

 
=  

 
. (21.54) 
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Here 2effL L L= +   is the effective patch length. Thus, the total radiation field 

is 

 0
00 0 sin sin

cos sin cos cos
2

efft jk r
k Lk WV X Y

E j e
r X Y

   


−
   

=     
    

, (21.55) 

 0
00 0 sin sin

cos cos cos
2

efft jk r
k Lk WV X Y

E j e
r X Y

  


−
   

= −     
    

. (21.56) 

Introducing 0( / 2)coseffZ k L = , the pattern of the patch is obtained as 

 ( ) 2 2 2 2
sin sin

, 1 sin sin cos
X Y

f E E Z
X Y

    = + = −   . (21.57) 

 

E-plane pattern (xz plane,  = 0, 0      180) 
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. (21.58) 
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H-plane pattern (xy plane,  = 90, 0      90 and 270      360) 

 ( )

0 0

0 0

sin cos sin sin
2 2

cos

cos sin
2 2

H

k h k W

f
k h k W

 

 

 

   
   
   

=    (21.59) 
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Fig. 14.17, p. 746, Balanis 
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Fig. 14.18, p. 747, Balanis 

 

 

Non-radiating slots: It can be shown that the slots at / 2y W= −  and 

/ 2y W=  do no radiate in the principle E- and H-planes. In general, these two 

slots do radiate away from the principle planes, but their field intensity is 

everywhere small compared to that radiated by slots #1 and #2. 


