LECTURE 22: MICROSTRIP ANTENNAS — PART 111

(Circular patch antennas: the cavity model. Radiation field of the circular
patch. Circularly polarized radiation from patches. Arrays and feed
networks.)

1. Circular patch: the cavity model

The circular patch cannot be analyzed using the TL method, but can be
accurately described by the cavity method. It is again assumed that only TM;
modes are supported in the cavity. They are fully described by the VP
A= A,Z. The A, VP function satisfies the Helmholtz equation,

V2A, +k2A, =0 (22.1)
which now is solved in cylindrical coordinates:
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Using the method of separation of variables,

A, =R(p)F(9)Z(2), (22.4)
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The 4" term is independent of p and ¢, and is being separated:
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Then,
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Now, the 3" term is independent of p, and the other terms are independent
of ¢. Thus, (22.9) is separated into two equations:

= —(k2 —k,2) = const. (22.8)
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k,2 =k2—k,2. (22.12)
Then (22.11) can be written as [note that (22.11) depends only on p]:
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Thus, equation (22.1) has been separated into three ordinary differential
equations — (22.7), (22.10) and (22.13).

A. The Z-equation
Equation (22.7) is complemented by the Neumann BC at the top patch
and the grounded plane (electric walls):
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0z 0z
Its solution, therefore, is in the form
2(2)=Yc, cos( p%z) (22.15)
p

with the eigenvalues are k, = pz/h. Here, p is an integer.

B. The F-equation
The solution of (22.10) is also a harmonic function. We are interested in
real-valued harmonic functions, i.e.,

F(#) = > _bS cos(k]g) + b sin(k). (22.16)

Since there are no specific BC’s to be imposed at certain angular positions,
the only requirement for the eigenvalues kj comes from the condition that
the F(¢) must be periodic in ¢,

F(¢)=F(4+27). (22.17)

Equation (22.17) is true only if k7 are integers. That is why the usual
construction of a general solution for F(¢) for a complete cylindrical region
(¢=0 to 27) isin the form

F(#) =D _bs cos(ng) + bg sin(ng), (22.18)
n
where n is an integer. This is the well-known Fourier-series expansion.

C. The R-equation

Equation (22.13) is a Bessel equation in which k, is an integer (k; = n).
Solutions are of the form of the following special functions:

Jn(k,p) — Bessel function of the first kind,

Nn(k,p) — Bessel function of the second kind (Neumann function),

H{ (k,p) — Hankel function of the first kind,

H{? (k,p) — Hankel function of the second kind.

Note: H{Y =J, + jN,; HP =3, - jN,.
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The eigenvalues are determined according to the boundary conditions. In
the cavity model, it is required that (magnetic wall)
A _ 0= R_ 0
op op

, (22.19)

p=a

and that the field is finite for p =a. The Bessel functions of the first kind
Jn(k,p) are the suitable choice. The eigenvalues k, are determined from
(22.19):
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where ynm is the m™ null of the derivative of the Bessel function of the n'"
order Jy. Thus, the solution of the Helmholtz equation for A; can be given in
a modal form as, see (22.4),

A =M o (;(nm j[bccos (ng)+bgsin(ng) |- cos( = j (22.21)

The characteristic equation (22.12) is finally obtained as

k? = 0?ue =k, + k2. (22.22)
From (22.22), the resonant frequencies of the patch can be obtained:
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Equation (22.24) does not take into account the fringing effect of the circular
patch. To account for the effective increase of the patch size due to fringing,
the actual radius a is replaced by an effective one,
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The first four modes in ascending order are TMz10, TMz10, TMyo10,
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TMzz10 Where the respective nulls y), are
11 =1.8412 761 =3.8318
2 =3.0542 731 =4.2012

The resonant frequency of the dominant TM;110 mode can be determined
from (22.25) as

1.8412-c
frai) =——F— (22.26)
278eer
where c is the speed of light in vacuum.
The VP of the dominant TM;110 mode is
A0 = MllOJl(Zl’l Ej -(b§ cos ¢ + b5 sing). (22.27)
a

Assuming excitation at ¢ =0 (A, has vanishing angular first derivative), we
set bs =0. The field components are computed from A, according to the
field-potential relations
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For the dominant TM;110 mode,
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From the field components, we can compute the cavity modal impedance for
any feed point specified by p and ¢. In view of the closed-wall nature of the
BCs, the impedance will be reactive. To obtain the real part of the antenna
impedance, the radiated power has to be computed.

2. Radiated fields and equivalent surface currents of the circular patch

As with the rectangular patch, the field radiated by the circular slot is
determined using the equivalence principle. The circumferential wall of the
cavity is replaced by an equivalent circular sheet of magnetic current density

Mgs = 2E, \pza, Vv/im, (22.30)

radiating in free space. The factor of 2 accounts for the ground plane. Since
the height of the slot h is very small and the slot field is independent of z, we
can substitute the surface magnetic current density over the slot with a
filamentary magnetic current I, = Mg;h:

|y = 2hEgdy (1) cos g, V. (22.31)
N,

Here, Vo =hEyJi(y11) is the voltage between ground and the top plate of the
patch at the feed (¢ =0).

Using the theory for the radiation field of a circular slot, the following
expressions are obtained for the far field of the circular patch:



Er =0, Eg =—C(r)-cosg-Jg, E; =C(r)-cosdsing- Jg,, (22.32)
where
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Jo2 = Jo(koae sin 9) + Jz(koae sin 0),

Jég = Jo(koae sin 9) - Jz(koae sin 9) .

E-plane amplitude pattern:
Ey(0°<0<90°,0=0°,180°) = Jg, E;=0

H-plane amplitude pattern:
E,(0°<0<90°,9=90°,270°) = cosf- Jgp, Ey=0
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3. Circular polarization with patch antennas

Circular polarization can be obtained if two orthogonal modes are excited
with a 90° time-phase difference between them. This can be accomplished by
adjusting the physical dimensions of the patch and using either one or two
feed points.

A. Square patch with circularly polarized field
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(c) Nearly square patch with microstrip-line feed for CP accounting for
losses; Q; =1/ tan Og

by by

Y Z

W W
(d) Coax-feeds for CP

<
<

\4

Nikolova 2016 9



Right-hand Left-hand

(e) CP for square patches with thin slots: c=L/2.72=W /2.72, d =c/10

B. Circular patch with circularly polarized field

Coaxial connector

Center of
disk grounded to
Coaxial connector ground plane

{¢) Circular patch fed with coax

(d) Circular patch feed arrangements for TM?,, and higher order modes

(Source: J. Huang, “Circularly Polarized Conical Patterns from Circular Microstrip Antennas,” [EEE Trans. Antennas
Propagat., Vol. AP-32, No. 9, Sept. 1984. © 1984 IEEE.)
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FEED-PROBE ANGULAR SPACING OF DIFFERENT MODES FOR CIRCULAR
POLARIZATION

TMi11o TMoaiwo TMa310 TMaio TMs10 TMe10

45° 30° 22.5°  18° 54° 15° 45°
a 90° or or or or or
135° 90° 67.5° 90° 75°

4. Array and feed networks

(a) Series feed (b) Corporate feed
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