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LECTURE 22: MICROSTRIP ANTENNAS – PART III 
(Circular patch antennas: the cavity model. Radiation field of the circular 
patch. Circularly polarized radiation from patches. Arrays and feed 
networks.) 
 
1. Circular patch: the cavity model 
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The circular patch cannot be analyzed using the TL method, but can be 
accurately described by the cavity method. It is again assumed that only TMz 
modes are supported in the cavity. They are fully described by the VP 

ˆzA=A z . The Az VP function satisfies the Helmholtz equation, 
 2 2 0z zA k A∇ + =  (22.1) 

which now is solved in cylindrical coordinates: 
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Using the method of separation of variables, 
 ( ) ( ) ( )zA R F Z zρ φ= , (22.4) 
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The 4th term is independent of ρ and φ, and is being separated: 
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Then, 
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Now, the 3rd term is independent of ρ , and the other terms are independent 
of φ. Thus, (22.9) is separated into two equations: 
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and 
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We define 
 2 2 2

zk k kρ = − . (22.12) 

Then (22.11) can be written as [note that (22.11) depends only on ρ]: 

 2 2( ) 0R k k Rρ φρ ρ ρ
ρ ρ
 ∂ ∂
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. (22.13) 

Thus, equation (22.1) has been separated into three ordinary differential 
equations — (22.7), (22.10) and (22.13). 
 
A. The Z-equation 

Equation (22.7) is complemented by the Neumann BC at the top patch 
and the grounded plane (electric walls): 
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Its solution, therefore, is in the form 
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with the eigenvalues are /zk p hπ= . Here, p is an integer. 
 
B. The F-equation 

The solution of (22.10) is also a harmonic function. We are interested in 
real-valued harmonic functions, i.e., 
 ( ) cos( ) sin( )n nc s

n n
n

F b k b kφ φφ φ φ= +∑ . (22.16) 

Since there are no specific BC’s to be imposed at certain angular positions, 
the only requirement for the eigenvalues nkφ  comes from the condition that 
the ( )F φ  must be periodic in φ, 
 ( ) ( 2 )F Fφ φ π= + . (22.17) 

Equation (22.17) is true only if nkφ  are integers. That is why the usual 
construction of a general solution for ( )F φ  for a complete cylindrical region 
( 0φ =  to 2π ) is in the form 
 ( ) cos( ) sin( )c s

n n
n

F b n b nφ φ φ= +∑ ,  (22.18) 

where n is an integer. This is the well-known Fourier-series expansion. 
 
C. The R-equation 

Equation (22.13) is a Bessel equation in which kφ  is an integer (kφ  = n). 
Solutions are of the form of the following special functions: 

( )nJ kρ ρ  — Bessel function of the first kind, 
( )nN kρ ρ  — Bessel function of the second kind (Neumann function), 

(1) ( )nH kρ ρ  — Hankel function of the first kind, 
(2) ( )nH kρ ρ  — Hankel function of the second kind. 

Note: (1) (2);n n n n n nH J jN H J jN= + = − . 
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Fig. D-1, Harrington, p. 461 

 

 
Fig. D-2, Harrington, p. 462 
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The eigenvalues are determined according to the boundary conditions. In 
the cavity model, it is required that (magnetic wall) 
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, (22.19) 

and that the field is finite for aρ = . The Bessel functions of the first kind 
( )nJ kρ ρ  are the suitable choice. The eigenvalues kρ  are determined from 

(22.19): 
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where nmχ′  is the mth null of the derivative of the Bessel function of the nth 
order nJ ′ . Thus, the solution of the Helmholtz equation for Az can be given in 
a modal form as, see (22.4), 

 ( ) ( )( ) cos sin cosmnp c s
z mnp m nm n nA M J b n b n p z
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The characteristic equation (22.12) is finally obtained as 
 2 2 2 2

zk k kρω µε= = + . (22.22) 

From (22.22), the resonant frequencies of the patch can be obtained: 
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Equation (22.24) does not take into account the fringing effect of the circular 
patch. To account for the effective increase of the patch size due to fringing, 
the actual radius a is replaced by an effective one, 
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The first four modes in ascending order are TMz110, TMz210, TMz010, 
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TMz310 where the respective nulls nmχ′  are 

11 1.8412χ′ =  01 3.8318χ′ =  

21 3.0542χ′ =  31 4.2012χ′ =  

The resonant frequency of the dominant TMz110 mode can be determined 
from (22.25) as 

 (110)
1.8412
2

r
e r

cf
aπ ε

⋅
=  (22.26) 

where c is the speed of light in vacuum. 
The VP of the dominant TMz110 mode is 

 (110)
110 1 11 ( cos sin )c s
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Assuming excitation at 0φ =  ( zA  has vanishing angular first derivative), we 
set 0s

nb = . The field components are computed from zA  according to the 
field-potential relations 
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For the dominant TMz110 mode, 
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From the field components, we can compute the cavity modal impedance for 
any feed point specified by ρ and φ . In view of the closed-wall nature of the 
BCs, the impedance will be reactive. To obtain the real part of the antenna 
impedance, the radiated power has to be computed. 
 
2. Radiated fields and equivalent surface currents of the circular patch 
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As with the rectangular patch, the field radiated by the circular slot is 
determined using the equivalence principle. The circumferential wall of the 
cavity is replaced by an equivalent circular sheet of magnetic current density 
 2s z aM Eφ ρ=

= , V/m, (22.30) 

radiating in free space. The factor of 2 accounts for the ground plane. Since 
the height of the slot h is very small and the slot field is independent of z, we 
can substitute the surface magnetic current density over the slot with a 
filamentary magnetic current m sI M hφ= : 
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Here, 0 0 1 11( )V hE J χ′=  is the voltage between ground and the top plate of the 
patch at the feed ( 0φ = ). 

Using the theory for the radiation field of a circular slot, the following 
expressions are obtained for the far field of the circular patch: 
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 02 020,  ( ) cos ,  ( ) cos sin ,rE E C r J E C r Jθ φφ θ φ′= = − ⋅ ⋅ = ⋅ ⋅  (22.32) 

where 
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02 0 0 2 0( sin ) ( sin )e eJ J k a J k aθ θ= + , 

02 0 0 2 0( sin ) ( sin )e eJ J k a J k aθ θ′ = − . 

 
E-plane amplitude pattern: 

02(0 90 , 0 ,180 )E Jθ θ ϕ ′≤ ≤ = =    ,  0Eφ =  

 
H-plane amplitude pattern: 

02(0 90 , 90 ,270 ) cosE Jϕ θ ϕ θ≤ ≤ = = ⋅    ,  0Eθ =  

 

 
Fig. 14.23, p. 758, Balanis 
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3. Circular polarization with patch antennas 
Circular polarization can be obtained if two orthogonal modes are excited 

with a 90° time-phase difference between them. This can be accomplished by 
adjusting the physical dimensions of the patch and using either one or two 
feed points. 
 
A. Square patch with circularly polarized field 
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(c) Nearly square patch with microstrip-line feed for CP accounting for 
losses; 1 / tant effQ δ=  
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(d) Coax-feeds for CP 
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(e) CP for square patches with thin slots: / 2.72 / 2.72c L W= = , /10d c=  
 
B. Circular patch with circularly polarized field 
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FEED-PROBE ANGULAR SPACING OF DIFFERENT MODES FOR CIRCULAR 
POLARIZATION 

 TM110 TM210 TM310 TM410 TM510 TM610 

 
α 

 
90° 

45°  
or  

135° 

30°  
or  

90° 

22.5°  
or  

67.5° 

18°, 54°  
or 

 90° 

15°, 45°  
or  

75° 
 
4. Array and feed networks 
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