
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 7, JULY 1987

On the Permutation Capability of Multistage
Interconnection Networks

TED H. SZYMANSKI AND V. CARL HAMACHER, SENIOR MEMBER, IEEE

Abstract-We present analytic models for the blocking proba-
bility of both unique path and multiple path multistage intercon-
nection networks under the assumption of either permutation or
random memory request patterns. The blocking probability of an
interconnection network under the assumption of permutation
requests is a quantitative measure of the network's permutation
capability. We compare the performance of networks with
approximately equivalent hardware complexity. It is shown that
variations of banyan networks can be designed with extremely
low blocking probabilities under the assumption of permutation
requests.

Index Terms-Banyan networks, crossbar networks, multi-
stage interconnection networks, performance analysis.

I. INTRODUCTION

A S interest in large scale parallel processing systems
grows, a number of interconnection network arch-

itectures have been proposed. Multistage interconnection
networks (MIN's) provide a cost effective alternative to
crossbar switches as a means of providing simultaneous
(parallel) connections between processors and memory mod-
ules. Two fundamental criteria in the selection and design of
an interconnection network are parallel connection capability
and fault tolerance. In this paper, we study the parallel
connection capability of a number of circuit-switched multi-
stage interconnection networks. This capability is considered
to characterize the network performance.
Many problems exist in the design of large multiprocessor

systems, in particular the design of algorithms to exploit
parallelism. Among the effective architectures have been the
tightly coupled SIMD and MIMD systems that rely on data
skewing algorithms [5], [19], [20], [24], [27]. Data skewing
algorithms attempt to distribute the data of a matrix in such a
way that when the processors address individual elements of a
particular vector (row, column, major diagonal, etc.) in
parallel, the resulting memory module request pattern is a
permutation of some or all of the module address numbers.
That is, in a set of memory requests issued in parallel by the
processors, each memory module is addressed by at most one
processor. We will refer to this type of request pattern as a
permutation request. The more general situation, in which a
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number of processors might request the same memory module
in a parallel access request pattern, is defined as a random
request. When a number of processors simultaneously request
access to the same memory module, we assume that only one
of these requests can be satisfied, and we say that the other
requests are blocked at the memory.

Crossbar switches can simultaneously provide all connec-
tions required by any permutation request, and are thus said to
be nonblocking. However, the less expensive MIN's studied
in this paper have the property that some individual connec-
tions involved in a permutation request may be blocked in the
interconnection network. This can happen when a number of
inputs to a switch at some stage in the network all request the
same output link in moving towards the next stage. Networks
that have this property are said to be blocking networks. The
extent to which blocking occurs in a particular MIN over the
set of all permutation requests is clearly an important property.
The permutation capability of a MIN generally refers to

the fraction of all possible permutation requests that can be
realized with no blocking. A related performance measure is
the blocking probability of a MIN under the assumption that
only permutation requests are submitted to it. This blocking
probability is defined as the probability that an individual
connection request from a processor to a memory module will
be blocked, when the set of all possible permutation requests is
considered.

Nonblocking switching networks have been the subject of
much theoretical research [11], [6]. Of the known networks
that are nonblocking for all permutation requests, large
crossbars are far too expensive, and the various MIN's require
precomputed routing for each individual permutation [6].
Many suboptimal MIN's with simple distributed routing
algorithms have been analyzed for their permutation capabili-
ties [24], [19], [18], [3]. An analysis for classes of nonblock-
ing permutation requests that can be realized in the omega
network has been presented in [19]. Upper and lower bounds
for the number of nonblocking permutation requests that can
be realized in the augmented data manipulator (ADM) have
been presented in [3], and an analysis of the number of
nonblocking permutation requests that can be realized in the
generalized shuffle network (GSN) has been presented in [8].
A quantitative measure that has been used for comparing the

permutation capability of various interconnection networks is
the number of passes a network requires to realize a particular
permutation request. Lower time bounds for the simulation of
one network by another have been presented in [27]. For
GSN's, an analysis of the number of passes required to realize
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a specific permutation request, and an upper bound for the
number of passes required to realize arbitrary permutation
requests is presented in [4]. A related performance measure is
the blocking probability of a network over all permutation
requests, as defined above. Franklin has presented simulation
results for the blocking probability of banyan networks (built
with 2 x 2 switches) under the assumption of permutation
requests [13].
We present analytic models for the blocking probability for

various MIN's under permutation requests. The blocking
probability over all permutation requests provides a quantita-
tive measure of a network's permutation capability. Section II
reviews the definition of banyan networks and some variations
of them. Section III analyzes the performance of crossbars and
banyan networks of degree k, under random or permutation
requests. Section IV analyzes the performance of d-dilated, r-
replicated square banyans of degree k, under both request
patterns. Section V extends the performance comparison
presented by Kruskal and Snir [16] to d-dilated, r-replicated
banyans of degree k, also under both request patterns. It is
shown that variations of banyan networks can be designed to
have extremely low blocking probabilities under permutation
requests. Section VI summarizes the paper and contains some
concluding remarks.

II. DEFINITIONS AND A BASIC RESULT

The following definitions have appeared in various forms
previously [161. Asstume that the interconnection network
connects processors to memories.
A network is a directed graph where nodes are of the

following three types: 1) processors which have indegree 0; 2)
memory modules (or memories) which have outdegree 0; 3)
switches which have indegree > 0 and outdegree > 0.

Each (directed) edge represents a unidirectional link going
from a node to its successor.
A banyan network is defined by Goke and Lipovski [15] to

be a network with a unique path from each processor to each
memory. This definition implies that the set of paths leading to
a node in the network forms a tree and that the set of paths
leading from a node also forms a tree. An n-stage multistage
network is a network in which the switches can be arranged in
stages, with all processors attached to the inputs of stage 1
switches, all outputs from stage i are connected to inputs to
stage i + 1, and all memories are connected to outputs from
stage n. Under this definition, we also say that processors are
at stage 0, and memories are at stage n + 1. Furthermore, we
will define the links from processors to stage one switches to
be input ports, and the links from stage n switches to
memories to be output ports. A uniform network is a
multistage network in which all switches in the same stage
have the same number of input links and the same number of
output links. A square network ofdegree k is a network built
with k x k switches (hereafter referred to as a k" x k"
banyan). Fig. 1 shows a 23 X -23 banyan network.
The actual routing of a request from a processor (left-side

input ports) to a memory module (right-side output ports) in
Fig. 1 is easily derived from the binary address of the
destination memory module in the usual way. In the Fig. 1

Processors Memories

0 0

2 (010)

6

stage 1 stage 2 stage 3

Fig. 1. A 23 x 23 banyan network.

example, 3-bit module addresses are used for routing as
follows. The most significant bit selects the upper (0) or lower
(1) output of the stage 1 switch to which the request is applied.
The next bit selects the stage 2 switch output, and the least
significant bit selects the stage 3 switch output port attached to
the desired memory module. The example of a request from
processor input port 6 to memory module output port 2 (binary
= 010) is indicated by thick links in the figure. Generaliza-
tions of this type of routing control strategy are assumed
throughout the paper.
When two or more requests arrive at one switch and request

the same output link, we say that link contention has
occurred. The contention is resolved by selecting one request
to be forwarded, with the others being blocked. When this
occurs in a stage n switch, we say that memory conflict has
occurred. In general, the blo,cking probability of an n-stage
network under random patterns consists of a component that
reflects the link contentions within the network (called internal
links) and a component that reflects the memory conflicts.
However, the blocking probability of an n-stage network
under permutation request patterns consists of the component
that reflects the internal link contentions only, since there are
no possible memory conflicts. As observed by Franklin [13],
"by addressing ... (the permutation request pattern case) ...

the analysis emphasizes the blocking characteristics inherent
in the network, excluding blocking effects due to ... (memory)
... conflicts."
While banyan networks are very attractive in terms of their

simplicity, considerations such as performance and fault
tolerance often dictate the use of more complicated networks.
The following two strategies may be used to augment a
network G without increasing the complexity of its structure
by very much [15], [16]: 1) The d-dilation of G is defined to
be the network obtained from G by replacing each edge by d
distinct edges [see Fig. 2(a)]. A request entering a switch may
exit using any of the d edges going to the desired successor
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(a)

(b)

Fig. 2. (a) A 2-dilated 22 x 22 banyan network. (b) A 2-replicated 22 x 22
banyan network.

switch at the next stage. 2) The r-replication ofG is defined to
be the network consisting of r identical copies of G [see Fig.
2(b)]. We do not consider other strategies that can be used to
improve the fault tolerance of a network, for example adding
extra stages at the inputs to the network [1].

Observe that in each of the two strategies used to improve
the fault tolerance of the banyan network, the complexity of
the routing algorithms have remained basically unchanged. In
addition, the routing algorithms do not depend on the request
patterns (i.e., random or permutation) that are submitted to the

network, since each request carries its own destination tag
which determines the routing decisions made at each switch.
The following lemma regarding the statistical distribution of

requests in a network operating under random request patterns
has been presented in [16].
Lemma [16]: Let the requests be generated at the proces-

sors of a uniform banyan network by independent, identically
distributed random processes that uniformly distribute the
requests over all memories. Assume that the routing logic at
each switch is "fair," i.e., contentions are randomly resolved.
Then 1) The patterns of request arrivals at the inputs of the
same switch are independent, 2) requests arriving at an input
of a switch are uniformly distributed over the outputs of that
switch and 3) for each stage in the network, the pattern of
request arrivals at the inputs of that stage have the same

distribution.
However, under permutation request patterns, the preced-

ing lemma is no longer valid. Our analytic models calculate
the probability that an output port of an interconnection
network carries a memory request in this case, by addressing
the conditional distribution of requests over the outputs of a

switch.
Let p(l, m) be the probability that an output link of a node

in stage m of an interconnection network carries one request.

Hence, each processor generates a request during each cycle
with probability p(l, 0). The blocking probability of a
network under either random or permutation request patterns
will be denoted as pb. Under random patterns, pb will consist
of an internal link contention component and a memory
conflict component. Under permutation request patterns, pb
will consist of an internal link contention component only,
since there are no memory conflicts in this case. Note that pb
is the probability that an issued request is not satisfied in a
particular memory cycle.
Much previous work has focused on system performance in

an environment where the following type of data dependencies
exist: when a processor issues a memory request that is not
satisfied in one cycle, it will resubmit the same -request during
the next cycle (the data dependency assumption) [9]. Pre-
vious studies [25], [23], [9], [7] have indicated that the steady-
state blocking probability under random request patterns does
not change much when we drop the data dependency assump-
tion and assume that requests are random and independent
during each cycle (i.e., unsatisfied requests are ignored). This
assumption that unsatisfied requests are ignored, commonly
called the regenerative assumption, leads to a simple closed
form expression for the blocking probability of a crossbar
switch under random request patterns.
However, the regenerative assumption is not valid under

permutation request patterns; systems using data skewing
algorithms currently operate with this data dependency, hence
unsatisfied requests must be resubmitted during the next cycle.
In an MIMD system, the resubmitted requests may conflict
with the newly issued requests and hence the steady-state
request patterns will not be permutations. However, it would
appear that the performance of these systems will be maxi-
mized when the blocking probability of the network under
permutation requests is minimized.

In an SIMD system, all processors must wait until each
processor receives the data it has requested; a number of
memory cycles may be required to satisfy all the requests. It
would also appear that the performance of these systems will
be maximized when the blocking probability of the network
under permutation requests is minimized. Note that the data
skewing algorithms and the organization of the system will
determine the type of permutation patterns generated in an
SIMD system. Lawrie has presented an organization in which
the permutation patterns generated by the processors are
nonblocking in the omega network [19].
We do not address data dependencies in this paper, and

simply assume that unsatisfied requests are ignored. Our
analytic models give a quantitative measure of the parallel
connection capability of a network under the assumption of
permutation request patterns, and can be used as an approxi-
mate figure of merit for a network's suitability in applications
where the permutation request pattern is dominant.

III. ANALYSIS OF CROSSBAR AND BANYAN NETWORKS

Patel has presented analytic models for circuit-switched
crossbars and banyan networks [23]. We present an alternate
derivation here using our notation. The assumptions for the
analysis are as follows: 1) during the beginning of each cycle
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every processor issues a request with probability p(l, 0); 2)
requests are randomly and uniformly distributed among the
memories; and 3) unsatisfied requests in any cycle are
ignored, and a new set of requests is issued during the next
cycle subject to 1) and 2). As mentioned earlier, the last
assumption is made to simplify the analysis: however, analysis
and simulations [23] indicate that the performance is only
slightly different when the data dependency assumption is
retained.
Assume a crossbar switch of size k x k, i.e., a 1-stage

network consisting of a single switch and k processors and k
memories. The requests arriving at the switch during a
particular cycle are statistically independent. In a given cycle,
the probability that a particular input port receives a request to
a particular output port (memory) is then p(l, 0)/k. The
probability that a particular input port does not receive a
request for a particular output port is then 1 - p(l, 0)/k.
Since input events are independent, the probability that a
particular output port is not requested by any processor is then

p(1, 0))k

Hence, the probability that an output port is selected by at least
one processor is

p(l, 1) = 1- (1 _p(l, °)) k(1

Finally, the fraction of actual processor requests that are
blocked, which is synonymous with the blocking probability,
is given by

pb p(1, O)-p(l, 1)
p(l, 0)

= 1-p(l, l)/p(l, 0).

Using the same arguments as Patel [23], the blocking
probability in kn x kn banyans under random request patterns
can also be developed. The individual switching nodes are k
x k crossbars. Observing that the outputs of crossbar
switches in stage m become inputs to crossbar switches in
stage m + 1, the recurrence relation

(2)

addressing patterns" [251. In order to account for particular
memory request distributions, we need different analytic
models. We now present an alternative analysis for crossbars
and banyans under the same assumptions as the previous
section, i.e., the requests are randomly distributed. The
resulting analytic models, while slightly more complicated
than the above, are in a form that can then be adapted for
permutation requests. The adaptation will be done in the next
section.
Assume that the events at the inputs of a k x k crossbar

switch are independent. For p(l, 0) as before, the probability
that i requests arrive on k input ports is given by

(3.1)/ p(1, 0)i(I -p(l, 0))k-i

We now calculate an expression for p(l, 1), the probability
that an output port is selected by at least one processor.
Suppose that i requests arrive at the crossbar; we want an
expression for the probability that ] of these requests select a
particular output port. Given that i requests arrive, the number
of ways of selecting j of these is simply i choose j. Since the
requests are random and independent, these j requests select
one of k output ports with probability (1/k)j. The remaining i
- j requests select other output ports with probability (1 -
(1/k))i-]. Hence, the probability that one or more requests
select the same output port, given that i requests arrive at the
inputs to the crossbar, is given by

((I ) 1 =I
Ii-

(3.2)

Hence, the blocking probability of a k x k crossbar is given
by

pb =1 -p(1, l)/p(l, 0)

where

pU(i,1)t same a n as er-p(li, t))ke

* z (t)1(1- 1 ) j (3.3)

Using the same arguments as earlier, the recurrence relation

p(l, m+1)= k*p(l, M)i(l-_p(j, M))k-i

p(l m+1)_- ( _(l, m)) k

can be used to generate the blocking probability

pb = I -p(l, n)/p(l, 0).

Since delta networks [23], omega networks [19], indirect
binary cube networks [24] are all banyan networks, this
analysis applies to these networks as well.

A. Alternative Analysis for Crossbars and Banyans

The previous analytic models are often used to calculate
quantitative measures of a network's performance, and are
considerably simpler than the models that preceded them [7],
[9], [25]. However, "4real programs are not random in their

iI(J
I

k (1 4))

leads to the blocking probability

pb = I -p(1, n)/p(1, 0)

for kV x kn hanyans.
The above analytic model has an explicit term that-accounts
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for the probability that one or more requests select a particular
output port (3.2). This explicit term can be modified to
account for permutation request patterns.

B. Analysis of Crossbars and Banyans under
Permutation Requests

In this section, we present an approximate analysis of the
blocking probability of kn x kn banyan networks under the
assumption of permutation request patterns. Recall that this
blocking probability will reflect the blocking inherent in the
network due to internal link contention only, since there are no
memory conflicts by assumption.
The assumptions for the analysis are as-follows: 1) during

the beginning of each cycle every processor issues a request
with probability p(l, 0); 2) in the set of memory modules
requested by the processors, each module is requested at most
once (a permutation request pattern); and 3) unsatisfied
requests in any cycle are ignored, and a new set of requests is
issued during the next cycle subject to 1) and 2). We begin by
applying the general technique to the degenerate case of a
crossbar (n = 1), where we know the blocking probability is
0.

1) Crossbars: Assuming that the events at the inputs of a
crossbar switch are independent, then the probability that i
requests arrive on the k input ports is given by (3.1).
We calculate an expression for p(l, 1), the probability that

an output port is selected by at least one processor. Suppose
that i requests arrive at the crossbar; we want an expression for
the probability thatj of these requests select a particular output
port. When the requests are random and independent, this
probability was given by (3.2). When the requests are
permutations, (3.2) must be modified slightly, as follows.
Given that i requests arrive, the number of ways of selecting j
of these is simply i choose j. Since the request pattern is a
permutation request, only one request can select a particular
port and hencej = 1 is the only nonzero case to consider. This
one request selects a particular output port with probability 1/
k. Given that i requests arrive, and j = I requests select a
particular output port, the remaining i - j requests select
other output ports with probability one. Hence, the probability
that one or more requests select the same output port, given
that i requests arrive at the inputs to the crossbar, is given by i
choose I * (1/k). Hence, (3.3) can easily be modified to yield
the probability that an output port of a k x k crossbar receives
a request, under the permutation request assumption. The
resulting model is given by

)O1 i) p(Ig 0)i(I _p(19 0))k-i( ) ( 0I'k\~~~~~~
pb= I -p(l, l)/p(l, 0) = 0.

This result is rather obvious, but it illustrates the technique
of biasing probabilities that will be used in the analysis of
banyan networks.

2) Banyan Networks: We now present an approximate
analysis of k" x kn banyan networks under permutation
requests. Equation (4) will be modified to account for the

probability that two or more requests select the same internal
output link of a k x k crossbar switch in stage m. First, it is
illustrative to consider an analogy with a shuffled deck of
cards.

Consider the probabilities of selecting aces from a shuffled
deck of cards without replacing the selected cards. The first
card selected will be an ace with a probability of 4/52. The
second card selected will be an ace with probability 3/51,
given that the first card selected was an ace. The second card
selected will be an ace with probability 4/51, given that the
first card selected was not an ace. Let nace be the number of
aces already selected. Let nnot ace be the number of cards
already selected that are not aces. Then the probability that the
next card selected will be an ace is given by

4-nace
52-n ace - nnot_ace

Now consider the probabilities of requests selecting outputs
at a particular k x k crossbar switch in stage m of the banyan
network. Each output link leads to k"n- memory modules.
The first request selects a particular output link with probabil-
ity kn-m/k"-m+ . Given that the first request selects a
particular output link-, then the second request selects that
same output link with probability (k"-m - l)/(kn-m+l - 1).
As a notational convenience, define function p_s(m, s, r)

as the probability that a request at a switch in stage m (m < n)
will select a particular output link given that s requests have
already selected that link, and that r requests have already
selected other links.

p_s(m, s, r)

kn-m-S

= k" -s-r

0,

for s<k"-m, s+r<kn-m+l

otherwise.

In a similar manner, define function p_ns(m, s, r) as the
probability that a request at a switch in stage m (m-< n) will
not select a particular output link given that s requests have
already selected that link, and that r requests have already
selected other links.

p-ns(m, s, r)

((k- 1)kn-m_ r

I kn-m+l-s-r

) for r<(k- l)kn-m, s+r<kn-m+l
0, otherwise.

Assuming that the events occurring at the inputs of each
switch in stage m of the banyan network are independent
(which will result in a slightly pessimistic blocking probabil-
ity), then the probability that i requests arrive on k input links
of a switch in stage m is given by

(i)p(l, M)i(I -p(l, M))k-i.
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The probability that j requests select a particular output is
given by

j-1

I ps(m, s, 0).
s-O

The probability that i - j requests do not select that
particular output link, given that j requests have already
selected it, is given by

1.

.8

.6

pb

.4
i-j-l

r=o
p-ns(m, j, r).

.2

Hence, (4) can easily be modified to yield the blocking
probability of k" x k" banyan networks under permutation
requests. The resulting recurrence relation is given by

p(l, m+1):= (k p(l m)(-(,m)-
log2N

(a)

.75

i i j-l I= r-j-l

*J, j f p_.s(m,Is, °) [Ip-ns(m, j, r) (5)
j=, s=O r=o .70

pb=1-p(1, n)/p(1, 0).

This approximation, labeled approximation (5), is plotted
against simulation results for 2" x 2" and 4fn x 4" banyans in
Fig. 3. Our simulation results have a 95 percent confidence
interval of one half of one percent of the simulated value, and
they agree very closely with Franklin's simulations for the 2n
x 2" case [13].
Our approximation for the blocking probability is slightly

pessimistic; for 2" x 2" banyans the approximation is
consistently larger than the simulation results, and consistently
exceeds the 95 percent confidence intervals; the maximum
error is 2.4 percent and the average error is 1.6 percent (of the
simulation values). However, for 4n x 4" banyans the
approximation is much closer, although still slightly pessimis-
tic; the maximum and average errors are 0.4 percent and 0.31
percent, respectively.
The discrepancies are likely due to the assumption of

statistical independence of the events occurring at the input
links of a switch in each stage. To test this hypothesis, we
present a refmed analytic model that accounts for the first-
order effects of statistical dependence in the next section.

3) A Refined Analysis of Banyan Networks Under
Permutation Requests: A refined approximation that ac-
counts for thefirst-order effects of statistical dependence is as
follows. The previous analysis calculates p(l, m), the
probability that the output link of a switch in stage m carries a
request, and assumes that this result is valid for all switches in
stage m. The probability that i requests arrive at the inputs of a
switch in stage m + 1 was calculated using the binomial
distribution, which assumes that the events occurring on each
input are independent.
A refined analysis must calculate the probability that i

requests arrive at the inputs of a switch in stage m + 1 based

pb
.65

.60

.55

8 9 10
Iog2N

(b)
Fig. 3. (a) pb of 2n x 2n and 4n X 4 n banyan networks (with N sources)

under permutation requests. (b) Expanded view of (a).

on the events occurring in the previous stage m. To simplify
the presentation, we consider only 2" x 2n banyans; the
results are easily generalizable to kn x kn banyans.

Let p(i, m), i = 0, 1, 2, be the probabilities that i requests
arrive at the two inputs to a switch in stage m. Assume that
each 2 x 2 switch at the input of the network receives two
requests with probability one, i.e., p(2, 1) = 1, andp(0, 1) -
p(l, 1) = 0. Given p(i, m), we can calculate p(i, m + 1)
accounting for the first-order effects of statistical dependence.
Recalling that the last stage of the network will not block,
given p(i, n), where n is the last stage of the network, we can
calculate the blocking probability. The probability that an
output port will be selected by one processor is given by

2

p(i, n) - i
2=I
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inputs is
2 2

p(O, m+1)= d E p(i, m) *p(j, m)
i=0 j=0

ij
fip ns(m,o, h -i) p-nss(m,0, i+h-1). (6)
h=1 h=1

The cases where switch s* has 1 and 2 requests arriving at
its inputs can be derived in a similar manner. The recurrence
relations for these cases are

2 2 i

p(l, m+ 1)=2 * pX(i, m) p(j, m)
1=1 j=0 s=1

(i) fII Ps(m, x- 1, O)

m m+1

Fig. 4. Stage m + 1 of a kn x kn banyan network.

and hence the blocking probability is simply

1 2

pb=I-- zp(i, n) i.

We now must calculate p(i, m + 1) given p(i, m). Consider
a switch s* in stage m + 1 of a 2" x 2n banyan network, as
shown in Fig. 4. Switch s* can be reached from 2 switches in
stage m (by traversing an output link). Call these two switches
s1 and s2.

Each switch s1 or s2 can have 0, 1, or 2 requests arriving at
its inputs, and these events occur with probability p(O, m),
p(l, m), andp(2, m), respectively. Hence, there are 3 x 3 =
9 possible states to consider. The probability that i requests
arrive at s1 and j requests arrive at s2 is simply p(i, m) p(j,
m).

Consider the case where s* has no requests arriving at its
inputs. (The cases where one or two requests arrive can be
handled in a similar manner.) All requests in switches s, and s2
must not select a link leading to s*.

If s1 has i requests arriving at its inputs, these i requests do
not select the link leading to s* with probability

rjPpns(m, 0, h - 1).
h=1

If s2 has j requests at its inputs, thesej requests do not select
s* with probability

Jip ns(m, 0, i+h-1).

Note that the probability that requests in switch 52 do not select
switch s* depends on the events occurring in switch s, (in
particular, the fact that i requests from switch s, have also not
selected s*), thus accounting for the first-order effects of
statistical dependence.

Hence, the probability that s* has no requests arriving at its

I-sfjpns(m,s,y-l)
y=1

fIp-ns(m,s,z- 1+i-s)
z= 1

p(2, mi+1)
2 2

= , p(i, m) * p(j, m)
i=l j=l

j
z (Q t)P*p s(r ,x- 1,O)
s=l x=l

I-s

rI p-ns(m, s, y- l)
Y=1

z

JJ P-s(m, z -1 +s, i-s)
x= 1

PP ns(mi s+z, y+-I s)))
y=l

The analysis can also be generalized to k x k switches. (Since
the number of cases to consider grows rapidly with the switch
size, a generalized recursive procedure can be used.)
The results of the refined approximation, labeled approxi-

mation (6), are plotted against simulations of 2" x 2" and 4n
x 4n banyans in Fig. 3. For the 2n x 2" banyan, the
maximum and average errors are 0.6 percent and 0.36
percent, respectively, compared to 2.4 and 1.6 percent for
approximation (5). For the 4n x 4n banyan, the maximum and
average errors are 0.25 and 0.11 percent, respectively,
compared to 0.4 and 0.31 percent for approximation (5).

Hence, it appears that the cause of the discrepancies
between approximation (5) and the simulation results is the
assumption that the events occurring on the inputs of a switch
are statistically independent. However, approximation (5) is
simpler and computationally more efficient than the refined
analysis and offers nearly identical results.
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IV. PERFORMANCE ANALYSIS FOR d-DILATED, r-REPLICATED kn
x kn BANYAN NETWORKS

Kruskal and Snir [16] have analyzed d-dilated 2" x 2"
banyan networks and r-replicated kn x kn banyan networks
under random requests. We present a summary of their results
in the next two sections. We then generalize these models for
arbitrary d-dilated, r-replicated kn x kn banyan networks,
under random requests, and then extend them to yield
approximations for these networks under permutation re-
quests.

A. Performance Analysis for d-Dilated 2n x 2n Banyan
Networks

Kruskal and Snir [16] have analyzed d-dilated 2" x 2"
banyan networks under the following assumptions: 1) during
the beginning of each cycle every processor issues a request
with probability one; 2) requests are randomly and uniformly
distributed over the memories; 3) unsatisfied requests during
any cycle are ignored, and a new set of requests is issued
during the next cycle subject to 1) and 2); and 4) if m > d
requests arrive at a switch and compete for d (output) edges,
then d of them are selected randomly and forwarded, and the
remainder are ignored (i.e., blocked).

Let p(i, m) be the probability that i requests occupy d
identical edges leaving a switch in stage m. The probability
that i requests arrive at a switch in stage m + 1 is ,r±s=i p(r,
m) p(s, m). The probability that j of these requests are
directed to a particular output link is (i choose j)2-i. The
initial and recurrence relations are

p(j,0)=0, forj1

p(1, 0)= 1.

Forj < d

P(j, m + 1) = ( p(r, m) * p(s, m))(j) 2, (7)

and for j = d

2d

P(i, m+ 1)i=d
i=d

(r, p(r, m) * p(s, m)) d (t) 2-i.
r+s=i t=d

B. Performance Analysis for r-Replicated k" x k"
Banyan Networks

Kruskal and Snir [16] have also analyzed r-replicated kn x
kn banyan networks under the same assumptions as the
previous section. An r-replicated kn xi kn banyan consists of r
copies of kn x kn banyan networks, and (2) applies to each
copy. Assume that every processor issues a request during
each cycle with probability p'(1, 0), and randomly sends it to
one of the r copies. The events occurring at the inputs to each
copy are statistically dependent; if a request is sent to one
particular copy, then it will not be sent to any other copy.
However, assuming that the r copies are independent, which is
slightly optimistic, then the probability that a request is issued
at the input to one particular plane is p'(1, O)/r, and the

probability that the final stage of the plane has a request is
given by (2). The blocking probability of the entire network is
then

p(l, O)=p'(1, O)/r

p(l,m+1)=1 1- p(1, M) k

k

- ~~~p(O, n) =I1 -p(l, n)

p
1 -p(O n)r
p'(1, 0) (8)

The performance of r-replicated banyans can be improved
slightly by changing the assumption that issued requests are
randomly sent to one of the r copies. Note that if k divides r,
an r-replicated banyan can be configured so that the first logk r
stages do not block. The analysis of each copy is equivalent to
assuming each copy has logkN - logk r stages. The r copies
are now independent, so the analysis is exact.

C. Performance Analysis for d-Dilated kn x kn Banyan
Networks
The preceding model (7) for d-dilated 2" x 2" banyan

networks can easily be generalized to account for d-dilated kn
x kn banyans, with the extra assumption: 1) during the
beginning of each cycle, every processor issues a request with
probability p'(1, 0).
The events occurring on each of the k logical input links of a

logical k x k switch must be examined. Define an array of
variables rp, p E 1 ... k, where rp equals the number of
requests that arrive on the pth logical input link of a logical k
x k switch in stage m. For example, if each of k logical input
links carries zero requests, then each rp = 0, and this event
occurs with probability p(O, m)k. The probability that i
requests arrive at a switch in stage m is

( fIP(r,, M))-
ZXxrx=i x

The probability that j of these requests are directed to a
particular output link is

Hence, the initial and recurrence relations for a d-dilated k"
x k" banyan are

p(1, 0)=p'(l, 0)
p(A, O)=l-p(1, 0)

p(j, 0)=O, forj*1 and jO.

Forj < d

=xrx= i x )(i) k( k)
(9)
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and for j = d

kd

p(j, m+l)=
i=j

t=d (i)i-t

D. Performance Analysis for d-Dilated, r-Repiicated kn
x kn Banyan Networks
While (8) accounts for r-replicated kn x kn banyan

networks, it is desirable to integrate r-replications into (9).
Equation (9) can easily be modified to account for d-dilated, r-
replicated kn x kn banyans, under either of the earlier
assumptions regarding r-replications (i.e., whether the first
few stages can block or not). Assuming that the first Llogk rj
stages of an r-replication do not block, then an exact analysis
for d-dilated, r-replicated kn x kn banyans is derived by
changing the initial and termination conditions of (9):

p(l, O)=p'(l, O)/r

p(O, O)= I -p(l, 0)

p(j, O)=O, for j*0 and j I

P -p(O, n- Log, rj r)
p'(l, 0)

1) Performance Analysis for d-Dilated, r-Replicated kn
x kn Banyan Networks Under Permutation Requests: We
now derive approximations for d-dilated, r-replicated kn x
kn banyan networks under permutation requests by modifying
(7) in a manner analogous to that used in Section III-B-2.
Assume that the events occurring at the inputs of a switch

are statistically independent, which will result in a slightly
pessimistic blocking probability. The probability that i re-

quests arrive at a switch in stage m is

IP(rxs'm).

The probability that j of these requests are directed to a

particular output link and i - j requests are not directed to the
same output link is

.\ j- i-j-lI

H ps(m, x, 0) p_ns(m, j,y)
x=O y=O

where functions p_s andp ns were defined in Section III-B-
2.

Under permutation requests, the last stage of a network will
not block any requests. In general, under permutation re-

quests, the last Is stages of a network will not block any
requests, where Is is given by

Is =Llogk dj+ 1.

To minimize the errors introduced by the statistical indepen-
dence assumption, we terminate the iteration when the
remaining stages are known not to block. Hence, the initial

(10)

and recurrence relations are given by

p(l, O) =p'(1, O)/r

P(, )O) -p(1, 0)

p(j, 0) =0, forj 0 and j* 1.

For] * 0 and j < d

p(j, m+1)-kd m))Ql)
i=j Exrx=i X

j-l i-j-lI

1- p-s(m, x,0) 1- p-ns(m, j, y). (1
X=O y=O

Forj = d

kd

P(i, m+1)=
i=j (Ex= I ) t=d (t

t-l i-t-l
fI p-s(m, x, 0) fJ p-ns(m, i, y).
x=O y=O

For ] = 0

d

p(j,9m+l)=l-zp(i,m+l)
i=lI

For n > =Is
ld

p(l, n) =d p(i, n- Is) -i

p(O, n) =I -p(l, n)

p(,n)pb = I -pl n

p(l, 0)
This approximation is plotted against a number of simula-

tions in the next section. Note that this approximation is the
most general analytic model we present, and it encompasses
all previously presented models for the blocking probability of
multistage networks under permutation requests (with the
exception of the refined analysis in Section III-B-3 that
accounted for the statistical dependence).

V. PERFORMANCE AND PERMUTATION CAPABILITY COMPARISONS
We first compare the blocking probability of unique path

banyan networks under both random and permutation re-
quests. In all the following graphs, assume that each processor
always issues a request during each cycle. Any simulation
curves will be shown with confidence interval bars. Curves
without these bars are analytic results. However, many
simulations are indistinguishable from the analytic results on
these graphs.

Fig. 5(a) illustrates the blocking probability of a crossbar
and of unique path banyan networks under random requests.
Fig. 5(b) illustrates the blocking probability of unique path
banyan networks under permutation requests. As we may
intuitively expect, banyans that perform better under random
requests also perform better under permutation requests; the
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Fig. 5. (a) pb of kn x kn banyans (withN sources) under random requests.

(b) pb of k" x k" banyans (with N sources) under permutation requests.

relative positions of the blocking probability curves remain
approximately unchanged when the request patterns change
from random to permutation. It appears that as the network
size increases the blocking probability under permutation
requests approaches that under random requests. It has been
shown that the blocking probability of unique path banyan
networks under random requests asymptotically approaches
one [16]. It appears that the same result applies under
permutation requests.
We now examine the effects that dilations and replications

have on the blocking probability, under permutation requests.
Fig. 6(a) compares pb versus log2 N for varying dilations of
2" x 2" banyans. Fig. 6(b) compares pb versus log2 N for
varying dilations of 4n x 4n banyans. Fig. 6(c) compares pb
versus log2 N for varying replications of 2n x 2" banyans.
Fig. 6(d) compares pb versus log2 N for varying replications
of 4n x 4" banyans. (Some of these switches may be currently
unrealizable due to pin limitations.)

It appears that for switches of degree 2 or 4, a dilation of 4 is

more than adequate to ensure a very low blocking probability
under permutation requests, and any further dilations have
little effect.

Performance comparisons of d-dilated 2" x 2" banyans and
r-replicated kn x k" banyans have been presented by Kruskal
and Snir in [16]. They conclude that for practical numbers of
processors both techniques have comparable performances
and other factors, such as delay, fault tolerance, and layout
would likely be the determining factors. We extend the
performance comparison of [16] to d-dilated, r-replicated kn
x kn banyans. In addition, the permutation capabilities of
these networks are compared.

It is possible to build circuit-switched banyan networks with
different performances by increasing the number of ports on
each switch while proportionally decreasing the bandwidth of
each port [16], [14]. The same does not necessarily apply for
packet-switched banyans, which may require at least two
control lines (request/acknowledge) per port [14]. By varying
the number of ports per switch, the bandwidth per port and the
depth of the network may be adjusted. The depth of a network
will determine its cycle time. These parameters, in addition to
the expected blocking probability, will determine the true
network performance. As in [16], our comparisons are based
on blocking probability and permutation capability only, for
networks built with switches of comparable port complexity.

Fig. 7(a)-(c) compares the blocking probability and permu-
tation capability of 2-dilated, 4-dilated, and 8-dilated 2" x 2"
networks with r-replicated networks of comparable hardware
complexity. Also, in each graph only switches with the same
number of input/output ports are used.

Fig. 7(a) compares the blocking probability and permutation
capability for 2-dilated 2" x 2" and 4-replicated 4fn x 4n
banyans [16]. As in [16], our model of r-replication assumes
that a processor randomly selects which of the r copies the
request will be issued to.

Fig. 7(b) compares the 4-dilated 2n x 2n and 12-replicated
8" x 8" banyans from [16]. These switches have the same pin
requirements and hence the same bandwidth.

Fig. 7(c) compares the 8-dilated 2n x 2" and 32-replicated
16" x 16"nbanyans in [16] with a 4-dilated 4n x 4n banyan.
The latter network has approximately one quarter of the
hardware cost of the first two networks.
A number of observations are in order. It appears that

networks that perform comparable to a crossbar under random
requests may or may not perform comparable to a crossbar
under permutation requests. Fig. 7(b) and (c) illustrates a
number of networks that exhibit performance comparable to a
crossbar for practical N (i.e. N < 64K) under random
requests and that vary widely in their performances under
permutation requests. Recall that under random requests, the
blocking probability consists of a component reflecting link
contention within the network (the inherent network block-
age), and a component reflecting memory conflicts at the
outputs of the network. Under random requests, it appears that
if the inherent network blockage is less than the asymptotic
blockage lie of a crossbar (which is strictly due to memory
conflicts) then it is "masked" by the blockage component due
to memory conflicts. When the blockage component due to
memory conflicts is removed with the permutation assump-
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Fig. 6. (a) pb for various dilations of 2" x 2" banyans (withN sources). (b)
pb for various dilations of 4n x 4n banyans (with N sources). (c) pb for
various replications of 2" x 2n banyans (with N sources). (d) pb for
various replications of 4n x 4" banyans (with N sources).

tion, the inherent network blockage becomes apparent and
may vary significantly.

Second, the observation in [16] that dilated and replicated
networks have similar performances, and that other factors
may determine a network's suitability for a particular situa-
tion, is not totally correct. In Fig. 7(c), the 4-dilated 4" x 4n
banyan offers comparable performance under random or

permutation requests compared to the others, at approximately
one quarter of the switch cost and less than one quarter of the
link cost. It would appear that dilated networks are far more

cost effective than replicated networks. (We have ignored the
cost of multiplexors at the inputs and outputs of all networks.)

Finally, d-dilated, r-replicated banyan networks can be
configured to offer extremely low blocking probabilities under
permutation requests, making them suitable for supercomputer
architectures, in particular SIMD/MIMD supercomputers

using data skewing algorithms. In Fig. 7(c), the 4-dilated 4"
x 4" is not only far more cost effective than the other
configurations, it offers blocking probabilities of 0.0048 and
0.016 at N = 1024 and N = 65536, respectively, under
permutation requests. The larger dilations offer even lower
blocking probabilities; the 8 dilation of a 4n x 4" banyan has a

blocking probability very nearly zero. Fig. 8 illustrates an

expanded view of the blocking probability for 4-dilated 2" x

2" and 4-dilated 4n x 4n banyans under permutation requests.
In architectures using data-skewing algorithms, loweringpb

decreases the number of requests that need to be resubmitted in
the next cycle. In MIMD systems, the steady-state request
patterns will not be "perfect permutations" since the resub-
mitted requests may conflict with the newly issued requests.
However, by keeping the blocking probability under permuta-
tion requests low, the number of resubmissions will be
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Fig. 7. (a) pb for a crossbar, 2-dilated 2" x 2" and 4-replicated 4n x 4"
banyans (withN sources). (b) pb for a crossbar, 4-dilated 2n x 2" and 12-
replicated 8n x 8" banyans (withN sources). (c) pb for crossbar, 8-dilated
2" x 2", 32-replicated 16" x 16" and 4-dilated 4n x 4" banyans (with N
sources).

minimized. In SIMD systems, all processors must wait until
each processor receives the data that it requested, and hence a

number of memory cycles may be required. However, it
appears that the required number of memory cycles will be
minimized when the blocking probability under permutation
requests is also minimized.

VI. CONCLUSIONS
We have presented analytic models for the blocking

probability of crossbars and square multistage interconnection
networks under the assumption of random memory requests.
We have presented a technique of adjusting probabilities in
these analytic models to yield approximations for the blocking
probability under permutation requests. We have presented a

technique to account for the first-order effects of statistical
dependence in these approximations. However, we do not

account for the effects of the data dependencies that arise in
real applications.
We believe that the techniques used in this paper can be used

to create analytic models for the blocking probability of
arbitrary multistage interconnection networks, such as the
ADM [3], GSN [8], ABN [17], under the assumption of
permutation requests. Such analytic models quantify the
permutation capability of these networks.
We have shown that multistage interconnection networks

can be designed with very low blocking probabilities. Con-
trary to [16], it appears that dilations are far more cost
effective than replications.
One possible application for interconnection networks with

very low blocking probabilities under permutation requests is
in supercomputers using data skewing algorithms. Analytic
models for the steady-state blocking probability of multistage
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interconnection networks used in computers using data
skewing algorithms are still not available. Our analytic models
do not account for data dependencies; further work in this area

would be an extension of our model to account for dependen-
cies.
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