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Design Principles for Practical Self-Routing
Nonblocking Switching Networks
with O(N ◊ log N) Bit-Complexity

Ted H. Szymanski, Member, IEEE Computer Society

Abstract —Principles for designing practical self-routing nonblocking N × N circuit-switched connection networks with optimal
q(N ◊ log N) hardware at the bit-level of complexity are described. The overall principles behind the architecture can be described as
“Expand-Route-Contract.” A self-routing nonblocking network with w-bit wide datapaths can be achieved by expanding the
datapaths to w + z independent bit-serial connections, routing these connections through self-routing networks with blocking, and by
contracting the data at the output and recovering the w-bit wide datapaths. For an appropriate redundancy z, the blocking probability
can be made arbitrarily small and the fault tolerance arbitrarily high. By using efficient space domain concentrators, the architecture
yields self-routing nonblocking switching networks with an optimal O(N ◊ log N) bits of memory or O(N ◊ log N ◊ log log log N) logic
gates. By using a linear-cost time domain concentrator, the architecture yields self-routing nonblocking switching networks with an
optimal q(N ◊ log N) bits of memory or logic gates. These designs meet Shannon’s lower bound on memory requirements,
established in the 1950s. The number of stages of crossbars can match the theoretical minimum, which has not been achieved by
previous self-routing networks. The architecture is feasible with existing electrical or optical technologies. The designs of electrical
and optical switch cores with Terabits of bisection bandwidth for Networks-of-Workstations (NOWs) are described.

Index Terms —Multistage, networks, self-routing, nonblocking, circuit-switching, scalable, randomization, electrical, optical.

——————————   ✦   ——————————

1 INTRODUCTION

N N × N nonblocking “Connection Network” is a cir-
cuit-switched network capable of achieving any of the

N! permutations of its N input ports onto its N output ports
[35]. Such networks are often used for ATM switching or
multiprocessor communication. The “hardware cost” is
defined as the number of logic gates or bits of memory re-
quired in its construction. The “depth” is defined as the
number of logic gates along the longest path between an
input port and an output port. A “self-routing” network is
one in which a circuit-switched connection can be estab-
lished by the hardware as it propagates forward through
the network, with reliance only on the local information
available at each node; there is no need for any “off-line”
path precomputation. The “setup time” is defined as the
propagation delay of all logic gates traversed in the estab-
lishment of a connection between some input port and
some output port.

This paper presents a design for practical and “scalable”
connection networks, i.e., nonblocking switching networks
which easily and efficiently scale to large sizes. This prob-
lem is historically significant and it is important in the de-
sign of Gigabit and Terabit optical networks [36]. Using
recently developed free-space optical technologies [2], [12],
[18], [21], complex electronic switching nodes can be im-
plemented on an Opto-Electronic Integrated Circuit (OEIC)

with optical I/O. Based upon industry projections [2], [18],
[28], within a decade, OEICs containing millions of elec-
tronic logic gates and thousands of optical I/Os will be fea-
sible. Each OEIC can implement one stage of an optical
multistage network. The optical output of one stage can be
fed into the next stage through free-space, where the per-
mutation between stages can be implemented optically. The
appeal of these networks is their very high bisection band-
widths (in the Terabit per second range) and the simplicity
of their construction, since all interstage wires are imple-
mented optically. It is important to minimize the number of
stages in an optical network to minimize cost and maximize
reliability. It is also important to avoid complicated back-
tracking control algorithms within the network, which are
infeasible to achieve optically. Perhaps surprisingly, the
new optical technologies are highlighting the need for good
solutions to historic networking problems, such as the de-
sign of scalable switching networks with fast self-routing
control algorithms. (A complete set of graphs which allows a
reader to design nonblocking networks is presented in Section 2.)

OEICs with hundreds of binary circuit-switching nodes
have been developed in many different smart pixel tech-
nologies, i.e., [8], [9], [12], [21], [34], [39]. Researchers at the
former AT&T have demonstrated a circuit-switched optical
multistage network with 60K optical channels which used
off-line routing [8], [9], [12]. In spite of the considerable
industrial interest in optical multistage networks, to date,
there does not exist an efficient scalable nonblocking cir-
cuit-switching network architecture with fast self-routing
algorithms and with a hardware complexity which is as-
ymptotically optimal.
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A recent report sponsored by the U.S. National Science
Foundation (NSF) entitled “Research Priorities in Networking
and Communications” [36] defined 15 key research priorities
for the next decade. These priorities include “Dynamic Net-
work Control,” i.e., the need for fast routing algorithms to
control the Gigabit and Terabit networks of the future, and
“Switching Systems,” i.e., the need for optimally scalable
connection networks. According to the NSF report,
“Realization of these goals require new advances in switching
system theory and design. To date, there are no practical architec-
tures for nonblocking multipoint virtual circuit switches that can
meet the theoretical limits on optimal scaling with respect to all
the characteristics of practical concern (switching network com-
plexity, routing memory requirements) and most systems now
being used have poor scaling properties” [36].

The “Expand-Route-Contract” (ERC) network architec-
ture proposed in this paper represents one step toward
these goals. The ERC network can meet Shannon’s asymp-
totic lower bound on the hardware complexity of self-
routing nonblocking networks (see next paragraph), can
scale optimally to Gigabit and Terabit bandwidths associ-
ated with optical technologies and allows for simple and
very fast network control algorithms which are provably
immune to congestion.

In the 1950s, Claude Shannon established a lower bound
on the hardware complexity of self-routing nonblocking
circuit-switching networks which are provably immune to
congestion (equivalently, they never exhibit blocking given
any permutation traffic pattern) [29]. According to Shan-
non’s complexity argument, an optimal self-routing circuit-
switched connection network would require q(N · log N)
hardware,1 which includes all bits of memory [29], all logic
gates, and all crosspoints, and would have a depth of O(log N)
binary nodes. To date, no known self-routing nonblocking
circuit-switching networks with explicit constructions meet
Shannon’s lower bounds. The famous AKS sorting network
[1] meets Shannon’s lower bounds in the limit of infinitely
large sizes N, but it relies on linear cost concentrators which
lack explicit constructions, i.e., it cannot be built in practice.
The MultiBenes network proposed by Avora, Leighton, and
Maggs [3] also meets Shannon’s lower bounds, but it also
relies on expander graphs which lack explicit constructions,
relies on complex backtracking control algorithms, and it
requires an AKS sorting network to acknowledge calls.
These two networks are primarily of theoretical signifi-
cance, and established that Shannon’s lower bounds on the
cost and depth of self-routing connection networks can be
met in theory, but not in practice.

We point out that a “store-and-forward” packet-
switched network, where packets are buffered in each
stage, could not possibly meet Shannon’s lower bound on
cost. Each packet requires at least O(log N) bits to identify
its destination, and, if packets are buffered in every stage,
then the hardware complexity of the network is at least
q(N · log2 N) bits of memory, which is suboptimal by a factor
of O(log N). In addition, packet-switched networks are unde-
sirable since they are slow [27]. A pipelined circuit-switched
network with fast connection establishment can deliver a

1. All logarithms are to the base 2 unless otherwise indicated.

permutation of packets from its input side to its output side
in roughly the same amount of time a packet-switched
network requires to move packets forward one stage. For
these reasons, pipelined circuit switching and the similar
worm-hole routing technique have largely eliminated
packet switching in recent multicomputer networks [27].
(Packet-switched networks using randomized routing are
described in [23], [37], [38].)

In practice, many self-routing permutation networks are
based on bit-serial circuit-switched versions of Batcher's
sorting network [6], with q(N · log2 N) binary nodes, q(log2 N)
depth, and q(log2 N) setup time. These complexities are
expressed at the “bit-level,” and include all crosspoints, all
bits of internal memory, and all logic gates, where every
logic gate is assumed to have bounded fan-in and bounded
fan-out. There have been some innovative switch designs
over the years. Douglass has proposed a rearrangeable
network with O(N · log2.5 N) hardware and O(log2.5 N)
setup time [11]. Chien and Oruc propose permutation net-
works with O(N log N · log log N) bit cost and with O(log3 N)
bit delay [7]. Using a numerical analysis, De Biase et al.
proposed permutation networks with O(N · log2+e N) bit
cost (where e > 0) and O(log N) bit delay [10]. The com-
plexity of various networks is illustrated in Table 1. How-
ever, the discrepancies between the best-known theoretical results
and practical results are evident in Table 1.

In this paper, we propose an architecture for self-routing
nonblocking, circuit-switched connection networks, which
we call the “Expand-Route-Contract” (ERC) architecture. An
overview of the architecture is shown in Fig. 1. The non-
blocking ERC architecture is based on the concept of ex-
panding the incoming data, routing the bits through inde-
pendent bit-serial networks which exhibit blocking, and
compacting the data at the output. The architecture is also
based on probabilistic schemes and randomization, rather
than on deterministic schemes. The expansion can be ac-
complished in at least two ways:

1) A w-bit wide data word can be encoded with a Forward
Error Correcting Code to yield a w + z bit wide word or

2) The w-bit wide data word is submitted to an expander
creating a w + z bit wide word.

After the expansion, the w + z bits of data are routed
through w + z independent bit-serial self-routing circuit-
switched networks, which we call “bit-planes.” Each self-
routing bit-plane attempts to establish bit-serial circuit-
switched connections, and each bit-plane is allowed to have
an arbitrary blocking probability. (The bit-serial connections
can also be bit-parallel). The expansion z is a design parame-
ter which is chosen so that the probability that a w-bit wide
connection is established is sufficiently large. Given any
level of blocking in the bit-planes, it is always possible to
pick the expansion z so that the “mean-time-between-
blocking” of a w-bit wide connection is an arbitrarily large
amount of time, for example 1050 years. It is important to
recognize the strength of this probabilistic approach: There
are only about 1015 years left in the life of our universe, and,
hence, these networks can be designed so that the mean-
time-between-blocking can exceed the remaining life of our
universe.
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Fig. 1. Example of the proposed switch architecture, based on expan-
sion, routing, and contraction.

In order to keep the overall cost at q(N · log N), the self-
routing bit-planes must have q(N · log N) bit complexity,
and the blocking probability of any bit-plane must not ap-
proach one, so that the required expansion (based on z) is
bounded by a constant factor. It has recently been estab-
lished that self-routing dilated banyans can be designed to
have q(N · log N) bit complexity and a blocking probability
(denoted pb) which approaches zero as N approaches infin-
ity [33]. In this paper, it is shown that the dilated banyans
with low blocking probabilities can be used in the proposed
“Expand-Route-Contract” architecture to yield hardware-
efficient nonblocking switches with q(N · log N) bit com-
plexity (where the nonblocking property is based on prob-
abilistic arguments). These nonblocking switches can meet
Shannon’s lower bound first established in the 1950s on the
hardware complexity of self-routing nonblocking switches.
(We note that the ERC architecture can yield a nonblocking
network using any self-routing bit-planes, as long as the
blocking probability in the bit-planes is less than one. We
also point out that the bit-serial connections can be replaced
by bit-parallel connections.)

In practice, each bit of high-speed memory has an
equivalent cost of nearly 10 logic gates. Hence, minimiza-
tion of memory requirements is often more important than
minimization of logic gates [29]. The proposed ERC net-

work can be designed with asymptotically optimal memory
requirements. In summary, the proposed ERC connection
network architecture has straightforward explicit construc-
tions, uses very simple and fast routing algorithms which
are easily implemented in hardware, and has very fast set-
up times when compared to other known networks. This
paper is organized as follows. Section 2 presents a brief re-
view of multipath delta networks, and derives some upper
bounds on the blocking in multipath delta networks. Sec-
tion 3 describes the principles behind the ERC architecture.
Section 4 discusses SDM and TDM constructions of multi-
path delta networks and derives asymptotic complexities.
Section 5 describes the application of the theory to the de-
sign of electrical and optical networks, and Section 6 con-
tains concluding remarks.

2 BLOCKING IN MULTIPATH CIRCUIT-SWITCHED
DELTA NETWORKS

Delta networks are banyan networks with the self-routing
property [26]. A d-dilated delta network [4], [19], [31], [32],
[33] can be obtained from a regular banyan by increasing
the capacity of each edge to handle up to d connections si-
multaneously, and by replacing all the crossbar switches
with dilated crossbar switches. Each logical input port to a
dilated crossbar can receive up to d connections simultane-
ously, and each logical output port of a dilated crossbar can
transmit up to d connections simultaneously. A two-dilated
delta network is shown in Fig. 2a. The theorems in this pa-
per will apply to dilated delta networks, and the more gen-
eral multipath delta networks (see next paragraph) have
comparable performance.

A “p-path delta” network can been defined as a multi-
path delta network with the following property: In every
stage where a routing decision must be made, there exist p
alternate paths which lead to a given destination [32].
Therefore, in every stage, a p-path delta network has at
least p suitable alternate paths which a connection could
take while moving toward its destination. A two-path delta
network is shown in Fig. 2b.

TABLE 1
ASYMPTOTIC COMPLEXITIES OF VARIOUS NONBLOCKING CIRCUIT-SWITCHED NETWORKS
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Fig. 2. (a) Dilated delta network built with two-dilated 2 × 2 crossbar
switches. (b) Multipath delta network built with two-dilated 2 × 2 cross-
bar switches.

In this section, simple proofs are proposed which estab-
lish that

1) q(N · log log N)connections will survive when routed
through a p-path N × N delta network with a path
multiplicity of p = q(log log N), and

2) that the blocking probability pb of an individual con-
nection approaches zero as N approaches infinity,
given a loading of q(log log N) connections per I/O
port. (Some looser bounds were presented in [33].)

Readers who are not interested in the mathematical proofs
may proceed directly to Section 2.5, where the numeric re-
sults are discussed, without a loss of continuity.

Consider a circuit-switched d-dilated bn × bn delta net-
work, with N ∫ bn logical input ports and N logical output
ports. (Note: A logical port has a capacity to support d con-
nections.) Let there be h connection requests applied at each
logical network input port (h £  d). Connection requests are
randomly distributed over the logical output ports. Con-
nection requests flow from the input side to the output side.
Whenever d + 1 or more requests attempt to exit a logical
output port in stage i, d requests are selected at random and
propagated forward and the remainder are blocked.

Let the random variable Nin denote the number of re-
quests entering the network, let Nout denote the number of
requests leaving the network, and let Nblocked denote the
number of connection requests blocked within the network
(each variable assumes a value given a specific state of the
network). Define the acceptance probability as pa ∫
E[Nout]/e[Nin] and the blocking probability as pb ∫
E[Nblocked]/E[Nin], where the expectation is taken over all
states of the network. It follows that pb = 1 - pa. (These
probabilities are conditional on the fact that a request exists
initially). Theorem 1 yields a concise upper bound on the
blocking in a dilated crossbar switch and is stated without
proof. The proof uses Valiant’s version of Chernoff’s bound
[38] after application of Hoeffding’s result [13], to yield a
closed form expression on the tail of a binomial distribution.

THEOREM 1. Given a random uniform traffic model, the condi-
tional blocking probability pb in a d-dilated N¢ × N¢ cross-
bar, with h connection requests sourced at each logical in-
put port is upper bounded by

pb
eh
d e

d
h£

F
HG

I
KJ ◊ - .

2.1 Blocking Probability in a Multipath Delta Network
THEOREM 2. Given a random uniform traffic model, the condi-

tional blocking probability in a self-routing d-dilated bn ×
bn delta network with h connection requests sourced at each
logical input port is upper bounded by

pb n
eh
d e

d
h£ ◊

F
HG

I
KJ ◊ - .

PROOF. Suppose that all logical output ports in all stages are
assigned unique labels Li,j for 0 £ i £ n, 0 £ j £ N - 1,
where N ∫ bn. A “path” through a network is defined
as a sequence of dilated edges (i.e., edges with a ca-
pacity of d connections). A connection request (for a
circuit-switched connection) follows a particular path
to its destination as it is routed through the network;
if it encounters a saturated edge, it blocks, otherwise,
it survives. Define Bi,j as the number of connection re-
quests that block at Li,j in a given state. By definition,
the end-to-end conditional blocking probability is
given by

pb
E N

E N
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blocked
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Consider a specific topology, the omega-inverse net-
work, in this section (the result applies to all topologi-
cally equivalent delta networks). Due to the random
uniform traffic model, the paths must be evenly dis-
tributed over the output ports in the last stage of the
network. Assuming that there was no blocking in
stages 1 to n - 1, then the entire network can be
viewed as a d-dilated N × N crossbar (where N = bn),
where the blocking occurs only at the output ports. By
applying the upper bound from Theorem 1, it follows
that the expected number of requests which block at
the output ports of the last stage is given by

E B
eh
d e Nhl n

l

N d
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The first n - 1 stages of the network can be viewed as
two smaller N/2 × N/2 dilated banyans. By repeated
application of the above argument on the rest of the
network, the expected number of blocked requests in
the d-dilated bn × bn delta network is upper bounded
as follows;

E B n
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Therefore, the conditional blocking probability of the
entire network is upper bounded as follows;

pb n
eh
d e

d
h£ ◊

F
HG

I
KJ ◊ - .

�

Theorem 2 bounds the blocking probability in a multipath
delta network given a random uniform traffic model.

2.2 Worst-Case Traffic Immunity and Randomized
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Routing
In the worst case, d-dilated N × N delta network can estab-
lish only O N d( )◊  connections simultaneously. For exam-
ple, in an eight-dilated 64K × 64K banyan, the worst-case
traffic pattern only allows about three percent of all con-
nections to pass through. To ensure immunity to worst-case
traffic, it is sufficient to “randomize” the traffic first,
through the addition of another delta network [23], [38].
The concatenation of two dilated delta networks (one for
randomization and one for routing, with the innermost
stages merged) yields a class of general topologies which
could be called “Tandem Dilated Banyan” networks, which
include the “Dilated Benes” topology as one example. A more
general network obtained from the concatenation of two
multipath delta networks yields a class of topologies which
could be called “Tandem Multipath Delta” networks, which
includes the “MultiBenes” topology [3] as one example.

Every connection request picks a random destination at
the output of the randomization network and then attempts
to establish a connection to that destination. Any given traffic
pattern, including a worst-case pattern, is transformed into a
random traffic pattern in the randomization network [20],
[23], [38]. Requests then attempt to establish connections to
their original destinations through the routing network. This
approach eliminates congestion due to worst-case traffic
patterns, as will be shown. (Note: In practice, the randomizer
can be operated in various manners; see Section 2.4.)

To date, no researchers have managed to rigorously de-
rive a bound on the blocking probability of self-routing cir-
cuit-switching networks using randomized routing. Leigh-
ton addresses the problem of deriving a rigorous proof in
his textbook. The connection requests which have survived
through a randomizer are not randomly distributed over its
output links: Their positions are correlated and it is not
known how to bound the blocking given correlated traffic
models. The difficulty of handling correlated traffic models
and the unsolved nature of the problem is described in [20].

In this section, we present an alternative approach to
bound the blocking in dilated delta networks using ran-
domized routing. A key point of the proof is to note the
distinction between “paths” and “surviving connection re-
quests.” At any stage, a “surviving connection request” is
essentially the front-end of a pipelined circuit-switched
connection, or, equivalently, the front-end of a worm-hole
routed connection. The surviving connection requests exit-
ing the randomizer are not randomly distributed over its
output ports, as observed by Leighton. However, the paths
of all connection requests must be randomly distributed
over the output ports, since the path destinations are se-
lected at random. Hence, if we assume all connection re-
quests are surviving connection requests at any given stage,
we can exploit the fact of random path destinations and
thereby upper bound the blocking at the given stage. We
may then exploit the symmetry between the randomizing
network and the routing network to bound the blocking in
the routing network. Since the loading at each end is de-
terministic and identical (h paths per logical port) and the
loading distribution at the middle is identical, then the

pattern of paths is symmetric about the middle. We may
then establish that the upper bound from Theorem 2 is valid
in each network; this is formalized in the next theorem.

THEOREM 3. Given the concatenation of two d-dilated N × N
banyan networks, with h < d connection requests at each
input port, which are randomly and uniformly distributed
over the outputs of the first dilated banyan, such that each
output port of the second dilated banyan is the destination
of precisely h connection requests, the expected number of
blocked requests in the second dilated banyan is upper
bounded as follows:
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PROOF. Follows by symmetry from the proof of Theorem 2,
noting that the expectation is upper bounded by con-
sidering paths which have random destinations,
rather than surviving connection requests which have
correlated destinations, and observing that the set of
paths over which the expectation is taken in the
routing network is symmetric with the set of paths in
the randomization network, and observing that the
direction of flow of connections is irrelevant. �

Theorem 3 establishes an upper bound on the blocking
in the routing network given any worst-case traffic pattern,
and is necessary to establish the existence of self routing
nonblocking ERC networks which are immune to “worst-
case” traffic patterns in Section 3.

2.3 Asymptotic Performance
We now consider the blocking in a dilated delta network as
the network size scales toward infinity.

THEOREM 4. Given the concatenation of two dilated banyans, one
acting as a randomization network and one acting as a
routing network, then pb Æ 0 as N Æ • through the ap-
propriate choice of h and d.

PROOF. Let the dilation be d = K · Èlog log N˘ for constant
K ≥ 1 and the number of traffic sources at each input
port h be such that (eh/d) £ 1/2, then

lim lim lim
log log

log log

n n

K N
K N e

n K cpb n e
n

nÆ• Æ•

◊
- ◊

Æ• +£ ◊
F
HG

I
KJ ◊ £

F
HG

I
KJ =

1
2 02

(since c > 0 and n = log N). �

Theorem 4 establishes that pb Æ 0 as N Æ • for the con-
catenation of two self-routing dilated Delta networks. These
networks can be made to have an arbitrarily low pb and
immunity to worst-case traffic patterns by the appropriate
choice of h and d. (We note that even faster convergence to
zero can be obtaining by selecting a wider dilation d = K ·
Èlog N˘, in which case, pb £ limNÆ•n/NK+c

 = 0, although, in
practice, this larger dilation is not necessary. Wider dila-
tions are useful in an asymptotic analysis where all N con-
nections in a permutation do not block simultaneously.)
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2.4 Variations
In practice, a number of techniques can be used to either
reduce the cost or lower the blocking probability. Blocking
in the randomization network can be eliminated by having
the crossbar switches always propagate connection requests
forward in pseudorandom directions. Each switch in the
randomizer can select a nonblocking state at random; the
incoming connections are permuted and always propa-
gated forward. The cost of the randomizer can also be re-
duced by using a one-dilated crossbar rather than d-dilated
crossbars. This approach eliminates blocking in the ran-
domizer and reduces the cost of the randomizer.

Alternatively, in practice, the blocking probability can be
reduced by employing deflection routing in the randomi-
zation network, i.e., see [9]. The randomization network
attempts to route requests to their intended destinations. If
a request encounters a congested link in stage i, it is de-
flected and propagated out over the wrong link. After exit-
ing the randomization network, some requests will arrive at
their destinations, while others will arrive at incorrect des-

tinations, and all requests are launched into the routing
network. In the routing network, the requests which were
deflected in the randomization network will have another
chance to be routed to their destination. The deflection
routing algorithm results in a lower end-to-end blocking
probability than predicted by Theorems 2 and 4, but is
more complex to implement electronically.

2.5 Numeric Results
In this section, the blocking probability of a dilated banyan
based routing network is plotted against various parame-
ters. Exact analytic models for the blocking probability of
dilated banyans under random uniform traffic have been
published in [19], [32]. The reader is referred to those pa-
pers for details.

The blocking probability of a dilated banyan can be re-
duced by operating at lower loads, i.e., by separating an
“active” input port which supports connections by one
or more “idle” input ports. This approach was also used
by Avora, Leighton, and Maggs to lower the load in the

Fig. 3. Blocking probability (bit-pb) versus stages for various dilated banyans: (a) fixed dilation = 2, half-loaded, (b) fixed dilation = 4, half-loaded,
(c) fixed dilation = 8, half-loaded, (d) dilation = load = O(log log N). Blocking probability approaches zero when dilation grows slowly. Bold dot
represents design example discussed in Section 5.
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MultiBenes network [3]. To lower the load in our system,
we assume that each input port which has the capacity to
source up to d connection requests actually sources fewer
requests, i.e., for a half-load, each dilated input port sources
h = d/2 connection requests.

The blocking probabilities of various dilated banyans,
with various dilations and, at half load (h = d/2), are plot-
ted against the number of stages in Figs. 3a, 3b, and 3c.
(Blocking in the last stage is eliminated in our traffic model,
since at most h £ d connections arrive at any one logical
output port). Given a fixed dilation, the pb will approach
one as N Æ •, as indicated by Theorem 2, although it does
so very slowly. (In all figures, the bold dots represent an
eight-dilated banyan which will be used in the optical de-
sign in Section 5.)

According to Theorem 4, for pb to approach 0 as N Æ •,
the dilation and loading must grow slowly with N, i.e., d =
Èlog log N˘ and h = O(d). The blocking probabilities of vari-
ous dilated banyans which meet the conditions of Theorem 4,
with a dilation of È4 · log log N˘ and at four different load-
ings (h/d = 0.125, 0.25, 0.375, and 0.5), are plotted in Fig. 3d.
The number of stages is set to a very large value (300
stages), so that the asymptotic limits of the curves can be
examined. As established in Theorem 4, asymptotically pb
Æ 0 as N Æ •. Hence, dilated banyans with fast self-
routing algorithms can be designed to have arbitrarily
small pbs as the network size scales to infinity. These results
will be necessary in Section 3 to derive nonblocking ERC
networks (based on a probabilistic approach) from net-
works with blocking .

3 THE “E XPAND-ROUTE-CONTRACT”
NONBLOCKING SWITCH ARCHITECTURE

In conventional circuit-switching connection networks, the
connection datapaths are usually many bits wide, typically
eight, 16, or 32 bits. Typically, all the bits in a connection
datapath are switched together as an indivisible entity. If
the circuit-switched connection blocks, then all bits in the
connection block simultaneously. Similarly, if one bit in the
datapath fails, then the entire connection fails.

The proposed ERC architecture relies on a fundamen-
tally different approach. In order to establish a w-bit wide
circuit-switched connection in the ERC network, at the in-
put side, w + z independent bit-serial connection requests
are inserted into the network (where w ≥ 1). Each bit-serial
connection is routed through a circuit-switched network
called a “bit-plane,” typically a one-bit wide dilated banyan
with a finite blocking probability. At the output side, all
surviving bit-serial circuit-switched connections are con-
tracted together, and a w-bit wide datapath is established if
w or more bit-serial connections have survived. In principle,
the bit-planes can be any self-routing bit-serial circuit-
switching networks with blocking, including the conven-
tional bit-serial banyan network. (In principle, we could
also use a Forward-Error Correcting code which can correct
z bit-errors to expand a w-bit data word to w + z bits at the
input side, and the decoder to contract w + z bits to a valid
w-bit code word at the output side. A blocked bit-serial

connection appears as a consistent bit-error which can be
corrected by the error-correcting code.)

Suppose that every N × N bit-plane has a blocking prob-
ability denoted “bit-pb.” The goal is to design an N × N
switch with w-bit wide datapaths with a given blocking
probability per connection (called the “connection-pb”),
which can be arbitrarily small, given any level of blocking
in the bit-planes. Typically, one may select the connection-
pb to be 10-8, although other probabilities, such as 10-20, are
easily designed. (Blocking in networks is occasionally de-
fined as the event that a permutation cannot be routed in
one pass. We assume the more practical measure in this
paper, i.e., the event that a connection cannot be routed.
Under the permutation model, our dilation in Theorem 4
must be wider, i.e., O(log N), and the ERC network still
yields optimal memory bit-complexity. )

Given that we insert w + z bit-serial connection requests
into w + z bit-planes, the probability that a w-bit wide data
path is established at each output port is given by the fol-
lowing. (In practice, we could inject multiple bit-serial con-
nections into the same bit-plane.) Let pb = bit - pb, and pa =
1 - bit - pb; and w ≥ 1. Therefore, the Pr[w-bit wide data
path established]
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=
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In this section, define the “expansion” to be the number
of extra bits required. For example, an expansion of four
and a datapath width of w implies that 4 + w bit-serial con-
nection requests must be operated in parallel to achieve the
specified connection-pb. (If the bit-serial connections are re-
placed by bit-parallel connections, the expansion also ap-
plies to bit-parallel connections.)

The required expansion depends upon the blocking
probability in the bit-plane and the datapath width. Wider
datapaths require less expansion to achieve a given con-
nection-pb. Fig. 4 applies for a datapath width of eight bits.
Fig. 4a plots the expansion required to achieve a given con-
nection-pb when the bit-pb is in the range of 0.001 to 0.01.
Fig. 4b plots the expansion required to achieve a given con-
nection-pb when the bit-pb is in the range of 0.01 to 0.1.
Fig. 4c plots the expansion required to achieve a given con-
nection-pb when the bit-pb is in the range of 0.1 to 0.5. The
ERC architecture yields nonblocking networks regardless of
the blocking probability in the bit-planes. Bit-planes with
more blocking simply require a larger expansion to achieve
a given connection-pb.

Figs. 3 and 4 supply sufficient data so that a reader can
design a self-routing nonblocking network of their choice.
For example, to achieve a connection-pb of 10-8 given a bit-
pb of 0.0066, the expansion is four bits (see the dot on Fig.
4a).

It is also possible that each connection is one bit wide.
For this case, we set w = 1 and the expansion, or number of
extra copies of the request, can be found from the previous
equation. A connection request is successful if at least one
bit-serial request reaches the destination.
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4 HARDWARE-EFFICIENT TDM AND SDM
CONSTRUCTIONS

In this section, the hardware complexity of the ERC net-
work using multipath delta networks is examined.

4.1 Space Division Constructions
A d-dilated k*k crossbar switch consists of k kd-to-d concen-
trators; each concentrator collects the requests with a dis-
tinct routing bit between 0 ... k - 1 and propagates d of them
forward.

Concentrator Construction 1: A simple concentrator design
called a “Daisy-Chain Concentrator” is shown in Fig. 5. The
concentrator controller consists of an array of kd-by-d con-
trol cells, where an individual control cell is shown in
Fig. 5a. Each control cell requires four logic gates and
drives an associated crosspoint cell, shown in Fig. 5b. Each
vertical column is essentially a “daisy-chain,” which con-
trols access to one output port. A busy signal travels down
the daisy-chain and is asserted by the first active request.
No other requests can claim the same output port once its
busy signal is asserted. Other requests which encounter a
busy signal in one daisy-chain column are forwarded to the
next daisy-chain column to see if it is busy. An example
state of a 6-to-4 concentrator is shown in Fig. 5c.

The kd-to-d daisy-chain concentrator requires five gates
per cell and kd × d cells. For fixed k, the concentrator re-
quires O(d2) logic gates and has a setup time of O(d) logic

gates. Each of the kd input ports requires O(log k) bits of
memory to identify the requested logical output port. In a
synchronous mode of operation, the degree k switch re-
quires O(kd · log k) bits of memory. For fixed k, the switch
requires O(d) bits of memory.

THEOREM 5. The use of the daisy-chain concentrator in the ERC
architecture, which satisfies the conditions of Theorem 4,
yields a self-routing nonblocking N × N connection net-
work with O(N · log N) nodes, O(N · log N) bits of mem-
ory, O(N · log N · log log N) logic gates, and a depth of
O(log N · log log N) logic gate delays.

(The proof follows directly by substitution, where N is the
number of distinct connections supported by the network.)

When the complexity is measured in terms of crossbar
nodes, the cost is an optimal O(N · log N) nodes. In terms of
bits of memory, the complexity is an optimal O(N · log N)
bits, which meets Shannon’s lower bound established in the
1950s. Hence, the switch scales optimally according to these
important practical metrics. In terms of logic gates, the
complexity is a slightly suboptimal O(N · log N · log log N)
logic gates, and the depth is a slightly suboptimal O(N · log N
· log log N) logic gate delays. As integrated circuits will
soon support millions of gates, and as logic gate dimen-
sions and delays will continue to shrink, these logic gate
metrics have diminishing importance in practice. Further-
more, the grow rate in the term O(log log N) is so slow as to
be negligible in practice. The simplicity and regular VLSI

Fig. 4. Contour map of expansion versus bit-pb to achieve a given connection-pb for a datapath width of eight bits: (a) bit-pb in the range 0.001-
0.01, (b) bit-pb in the range 0.01-0.1, (c) bit-pb in the range 0.1-0.5. Bold dot corresponds to example used in Section 5.
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layout of this concentrator circuit make it useful in practical
designs (see Section 5). (The depth of this construction can
be improved and will be reported elsewhere.)

Concentrator Construction 2: For sufficiently large dilations d,
the logic gate complexity of the d-dilated k × k crossbar can be
improved. The crossbar can be constructed with O(kd · log kd)
hardware and O(log kd) depth by using self-routing con-
centrators with logarithmic depth, as shown in Fig. 6. Each
concentrator consists of a ranking circuit to assign ranks to
the active inputs, followed by an omega-inverse network,
which acts as a compact concentrator for k = 2. (It has re-
cently been established that a single Omega network can
act as a zero and one concentrator simultaneously [16], and,
hence, only one Omega network is necessary in Fig. 6b.)

The ranking of kd inputs is achieved by using a bit-serial
pipelined binary tree, as shown in Fig. 6a. Each box or circle
is a bit-serial adder (the first stage of boxes is not necessary
and drawn for symmetry). The ranks and partial sums are
computed bit-serially, least significant bit first. This ranker
is a pipelined multistage circuit based upon a binary tree
ranker described in [20]. In the upward phase, each node
propagates the sum up toward the root and propagates the
count from its uppermost child horizontally. The root node
(in the middle) propagates a zero count to its uppermost
child, and propagates the incoming count from its upper
child to the lower child. In the downward phase, each in-
termediate node propagates the count arriving from above
directly to its uppermost child, and adds the count from
above and the count arriving horizontally, and propagates
the sum to its lower child. The leaves add the incoming
count with a one if they have a connection, yielding the
rank (from one to kd) of the request.

THEOREM 6. The use of the log-depth concentrator in the ERC
architecture, which satisfies the conditions of Theorem 4,
yields a self-routing nonblocking N × N connection net-
work with O(N · log N) nodes, O(N · log N · log log log
N) bits of memory, O(N · log N · log log log N) logic
gates, and a depth of O(log N · log log log N) logic gate
delays.

(Proof follows by substitution.)
When the complexity is measured in terms of crossbar

nodes, the cost is an optimal O(N · log N) nodes. In terms of
bits of memory, the hardware complexity is O(N · log N · log
log log N) bits, which is slightly suboptimal by a small factor
of O(log log log N) when compared to Shannon’s lower
bound. In terms of logic gates, the complexity is O(N · log N ·
log log log N) and the depth is O(log N · log log log N),
which is an improvement over the daisy-chain concentrator
design. In situations where gate delays are more important
than bits of memory, the log-depth concentrator may be
preferable over the daisy-chain concentrator.

4.2 TDM Constructions
A time-division d-dilated k × k crossbar can be implemented
with a hardware cost of O(k2 · d) logic gates and bits of
memory and a latency of O(kd) by using a circuit called a
“time-bit concentrator” [33]. A TDM-dilated crossbar
switch with four incoming and four outgoing space-
division links is shown in Fig. 7. Each link carries up to d
time-multiplexed bit-serial connections. On each incoming
link, the bits from the d-multiplexed connections keep ar-
riving in the same order (i.e., for a dilation of eight, bits
belonging to connections arrive in order 1, 2, 3, ..., 8, and
the cycle repeats). At each input port, a circular buffer

Fig. 5. (a) Daisy-chain concentrator control cell with four logic gates, (b) data plane crosspoint with tristate driver gate, (c) 6-to-4 daisy-chain con-
centrator with 6 × 4 array of concentrator cells. Three requests are routed to the first three output columns. (Dashed cells are not needed.)
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stores the routing bits for the connections. The circular
buffer is loaded initially as the connection-request headers
pass by.

Once the circular buffers are loaded with routing bits,
the multiplexed data bits arrive, and each bit is routed to a
push-pop stack at the desired logical output port. In Fig. 7,
we have two dedicated push-pop stacks at each output
port, so that there is no contention for pushing the stack.
One stack is used to store incoming bits, while the other is
emptying outgoing bits. (Each stack must allow four si-
multaneous pushes in constant time, and can be designed
as four separate push-pop stacks for simplicity). Once all d
incoming bits have been routed to the output ports, d of
them are then transmitted forward over each space-division
link by having a read-out circuit pop the stack(s) (in con-
stant time) in a repeatable order for d time units. Any bits
left in the stack(s) after this represent blocked connections,
and they are dropped. During the time one stack is empty-
ing, another stack is storing a new set of incoming bits,
which supplies the outgoing bits when the cycle repeats
itself. It can be verified that this circuit acts as a d-dilated
crossbar, has O(k2 · d) hardware and O(kd) latency in gates.
We point out that the time-bit concentrator is fully pipe-
lineable, i.e., new bits can enter and exit the concentrator on
every link during every clock cycle.

THEOREM 7. The use the time-bit concentrator in the ERC archi-
tecture, which satisfies the conditions of Theorem 4, yields
a self-routing nonblocking N × N connection network with

O(N · log N) nodes, O(N · log N) bits of memory, O(N ·
log N) logic gates, and a depth of O(log N · log log N)
logic gate delays.

(Proof follows by substitution.)
When the complexity is measured in terms of crossbar

nodes, the cost is an optimal O(N · log N) nodes. In terms of
bits of memory and logic gates, the complexity is an opti-
mal O(N · log N), which meets Shannon’s lower bound.
Hence, the switch scales optimally according to these im-
portant practical metrics. The depth is O(log N · log log N)
logic gate delays, which is slightly suboptimal by the small
factor of O(log log N). This design is particularly useful in
optical networks, since TDM is a natural mechanism to ex-
ploit the bandwidth advantage that optics offers over elec-
tronics. (It is interesting to observe that the complexity of
the ERC network is an optimal O(N · log N)  hardware for
wider dilations of d = O(log N), provided that h = O(d) and
k is constant.)

Variations: In practice, the depth of all the ERC self-routing
networks can be reduced to an optimal O(log N) logic gate
delays by keeping the dilation fixed and letting the expan-
sion increase slowly with N. One may select a multistage
network with a fixed dilation d and loading h, which has a
complexity of O(N · log N) hardware and a depth of O(log N)
logic gates. From Fig. 3, for fixed dilations, it is observed
that pb will rise very slowly as N increases. To keep the con-
nection_pb below a prescribed value, the expansion can be
read from Fig. 4. The analysis and numerical results indi-

Fig. 6. (a) An O(log N)-depth ranking circuit, (b) a d-dilated 2 × 2 crossbar with O(log d) depth and O(d log d) bit-complexity.

Fig. 7. A 4 × 4 dilated crossbar using time-bit concentrators.
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cate that the expansion is ª q(log log N). Hence, in practice,
ERC networks can also be designed to have O(N · log N ·
log log N) hardware complexity and O(log N) logic gate
delays.

5 A TERABIT SELF-ROUTING NONBLOCKING ATM
SWITCH CORE FOR NETWORKS-OF-
WORKSTATIONS

One application of fast self-routing switching networks is
the “Networks of Workstations” (NOWs) distributed com-
puter architecture. NOWs interconnected with a centralized
ATM switch core based on a multistage delta network are
described in [27]. The performance of microprocessors and
communication networks have been growing exponentially
over the last decade, and these trends are expected to con-
tinue well into the future [22], [27], [28]. By the year 2017,
the single chip micros are expected to have performances of
a few Teraflops per second, and networks are expected to
have capacities of several Terabits per second [22]. In this
section, we consider the design of a scalable ATM switch
core, which can interconnect a large number of networked
workstations.

Each workstation typically has a CMOS Message-
Processor (MP) to handle the communication protocols.
Messages are supplied to the Message-Processors, where
they may be fragmented into fixed sized packets, assigned
sequence numbers for error control, replicated for broad-
casting, queued, and then transmitted over electrical or fi-
ber links to the centralized switch core. The MPs also per-
form the receiving protocols. The switch core could support
distributed shared memory over a NOW.

Consider a pipelined circuit-switched switch core, where
the connections are established and torn down on a per-
packet basis. (The network could be synchronous or asyn-
chronous.) As a connection moves forward, a packet is
transferred in a pipelined manner byte-by-byte. Pipelined
circuit switching is similar to worm-hole routing [27], in
that every intermediate node buffers a few bits or bytes of a
packet, and the packet can be spread out over many inter-
mediate nodes as it moves through the network.

Consider the design of a 1K × 1K switch core with byte-
wide data paths, with a blocking probability per connection
of 10-8. In practice, protocols will ensure that no destination
is overloaded, i.e., that a destination receives at most h
packets at a time (for some number h). Attempts to transmit
to an overloaded destination can be flagged with a “busy”
signal and deferred until a short time later. Assume the
switch is to be designed using CMOS technology available
in the year 1998. Table 2 illustrates some of the Semicon-
ductor Industry Association (SIA) estimates for CMOS

technology over the next decade [28]. The figures in Table 2
will influence the design example, and are traditionally
conservative.

Multistage networks can be designed with many stages
of simple binary switches, or fewer stages of larger
switches. To minimize the IC count, we will consider multi-
stage networks with fewer stages of moderate size switches.
A one-stage switch has minimal cost in terms of ICs. However,
it requires very large crossbar switches. Due to electronic pin
limitations, it is not possible to implement a 1K × 1K switch
with eight bit-wide data paths on a single IC (yielding a
one-stage network). However, using the design principles
proposed in this paper, one can design a three, five, seven
stage, or arbitrary 2n - 1 stage networks with moderate size
crossbars and with arbitrarily low blocking probabilities,
which overcome the electrical pin-limitation problem.

Consider a three stage CLOS network with moderate
size 16 × 16 crossbar switches in each stage, where each
crossbar switch is bit-serial and eight-dilated. Each bit-
serial Clos network represents an independent bit-plane in
our ERC switch, and requires 16 crossbars per stage for
three stages. Assume that the effective input loading is one
half, i.e., each eight-dilated input port supports four proces-
sors, rather than eight. The blocking probability of dilated
networks can be read directly from Fig. 3c. According to
Fig. 3c, the “bit-pb” of this bit-plane is 0.0066. In other
words, less than one percent of the bit-serial connections will
block on average, given a permutation traffic model. (For a
uniform random traffic model, the blocking is higher and the
required expansion can be recomputed following the method
in Section 3.)

To achieve a connection-pb of 10-8, the expansion can be
read from Fig. 4a. The required expansion is four bits.
Hence, to establish a byte-wide connection, we launch 12
independent bit-serial connection requests into the ERC
network. At each output port, a byte-wide connection is
established if eight or more bit-serial connections survive.
An 8-to-12 expander is needed at each switch input port, to
create 12 independent bit-serial connections from the original
eight. Also, a 12-to-8 concentrator is needed at each switch
output port, to compact up to 12 bit-serial requests down to
an eight-bit datapath. The additional gates needed to imple-
ment these components are negligible. (A 12-to-8 concentra-
tor requires about 500 gates, which is negligible compared to
the number of gates in the MP. Acknowledgment signals can
be used to identify valid bit-serial connections.)

The self-routing dilated crossbar switches can be de-
signed by using the daisy-chain concentrators of Section 4.1.
It can be verified that each eight-dilated bit-serial 16 × 16
crossbar requires about 1 KBit of memory, which is very
small when compared to the memory requirements of a

TABLE 2
SEMICONDUCTOR INDUSTRY ASSOCIATION PROJECTIONS FOR CMOS TECHNOLOGY [28]

Year Feature
Size (µ)

Gates Area
(Sq. mm)

Electrical
I/O pins

On-Chip
Clock

Off-Chip
Clock

1995 0.35 0.8 M 400 900 200 Mhz 100 Mhz
1998 0.25 2  M 600 1,350 350 Mhz 175 Mhz
2001 0.18 5  M 800 2,000 500 Mhz 250 Mhz
2004 0.12 10 M 1,000 2,600 700 Mhz 350 Mhz
2007 0.10 20 M 1,250 3,600 1 Ghz 500 Mhz
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buffered crossbar. (A buffered crossbar supporting ATM
cells would require at least one cell buffer per link, or at
least 54 KBits of memory.) Due to electrical I/O pin limita-
tions, each IC has enough I/O pins to support only five of
these crossbar switches. It follows that the electrical ERC
network requires 116 ICs, and has an aggregate bandwidth
of 1.4 Terabit/sec. The architecture scales to five, seven, or
more stages. The five-stage switch has a bandwidth of ª
22.9 Terabit/sec, and the seven-stage switch has a band-
width of ª 367 Terabit/sec.

The proposed architecture addresses two key networking
problems, as identified in the NSF report [36]. The problem of
fast control of Gigabit/Terabit networks is partially addressed
by using the ERC architecture, since it uses very fast self rout-
ing algorithms and is provably robust and immune to conges-
tion (as demonstrated by Theorems 1-4). The problem that
existing switch architectures have suboptimal hardware and
memory scaling properties is addressed, as the hardware and
memory complexity of the proposed architecture scales opti-
mally or nearly optimally. Perhaps the only major remaining
problem with “all electrical” architectures is the large number
of wires between stages. This problem can be solved by using
optics as the next design example illustrates.

5.1 Design of an Opto-Electronic Switch Core
The design of an opto-electronic switch core is summarized.
To minimize cost, a one-stage switch would be preferable.
However, a one-stage switch will require a 1K × 1K cross-
bar, which is very large. Table 3 illustrates projections for
the electrical and optical I/O properties of OEICs (hereafter
called ICs). Column 2 is from [18]. Using the daisy-chain
concentrator, a 1K × 1K crossbar with byte-wide datapaths
will require in excess of 10M gates, exceeding the gate ca-
pacity of the ICs. Hence, a three-stage ERC construction,
using moderate size crossbars, can be used.

TABLE 3
PROJECTED CAPACITIES FOR SINGLE CHIP OEICS

(BASED ON DATA IN [2], [18])

Year Max #
Optical

I/O

Optical
Clock

Max. Opti-
cal I/O BW

1995 6,000 200 Mhz 0.6 Tb/s
1998 12,000 350 Mhz 2.1 Tb/s
2001 24,000 500 Mhz   6   Tb/s
2004 40,000 700 Mhz 14  Tb/s
2007 50,000 1 Ghz 25  Tb/s

          Note: BW is product of optical I/O time optical clock divided by two.

It can be verified that each IC has sufficient optical I/O
to support a large number of eight-dilated bit-serial 16 × 16
crossbar switches. However, each IC is limited by logic
gates to implement only about 25 of these crossbar
switches, which we assume. It follows that the ERC switch
core requires 24 OEICs, and has an aggregate bandwidth of
2.8 Terabit/sec (double the bandwidth of the electrical ver-
sion, since the optical datapaths operate at the faster optical
clock rate). A five-stage network has a bandwidth of ª 46
Terabit/sec, and a seven-stage network has a bandwidth of
ª 734 Terabit/sec.

These designs are technologically feasible with existing
OEIC technology. The datapaths to and from the switch

core can be realized with commercially available parallel
fiber ribbons, such as the Motorola OPTOBUS [24]. A field
programmable logic device with optical I/O, which can be
dynamically programmed to implement dilated crossbars,
has been developed [30]. Using these technologies and the
proposed design principles, one may design arbitrarily
large optical switching networks using multiple stages of
moderate size crossbars.

5.2 Comparison with the ALM Network
Avora, Leighton, and Maggs described a self-routing
“MultiBenes” network which is nonblocking and which has
an asymptotically optimal cost of O(N · log N) gates and bits
of memory [3]. Like the ERC network, the MultiBenes net-
work can be viewed as the concatenation of two multipath
delta networks. However, the ALM routing algorithms and
nodes are considerably more complex than the proposed
ERC schemes. The ALM network requires complicated
backtracking routing algorithms and partial packet buffering
in the nodes, which render it unattractive for optical imple-
mentations. In addition, to achieve the optimal hardware
complexity, the ALM network requires linear cost expanders
for which no explicit construction is known. Nevertheless, in
order to draw a comparison, we assume that their expanders
can be built. The design in [3] describes a network with a
path multiplicity of 10, a spacing between active logical input
ports of 300, and the use of binary switching nodes. It follows
that each stage in an ALM network with 1K active input
ports requires at least 300K connection datapaths. Hence, an
optical version of the ALM network has a cost which is sev-
eral orders of magnitude more than the ERC network. In
practice, one may be able to improve the performance ALM
network. However, it is more efficient to apply the ERC de-
sign principles on the MultiBenes or Multipath Delta topol-
ogy, which will yield an optimal or near-optimal network.

6 CONCLUSIONS

Principles for designing practical self-routing nonblocking
switching networks, such as those used in ATM switch cores,
were proposed. These principles lead to a large class of self-
routing nonblocking switching networks, which are based on
the concepts of expansion, routing, and contraction. These
networks address two research priorities identified in a re-
cent NSF sponsored report, the need for fast algorithms to
control the Gigabit and Terabit networks of the future, and
the need for optimally scalable switching networks [36]. The
proposed space domain constructions yield self-routing non-
blocking switching networks with an optimal O(N · log N)
bits of memory or O(N · log N · log log log N) logic gates. The
proposed time domain construction yields self-routing non-
blocking switching networks with an optimal q(N · log N)
bits of memory or q(N · log N) logic gates. These designs
meet Shannon’s lower bound on memory requirements es-
tablished in the 1950s, and they readily scale to large sizes.
The proposed architecture bridges the discrepancies between
the best-known theoretical and practical results, and are at-
tractive for both electrical and optical implementations. Fast
self-routing switching networks with Terabits of bisection
bandwidths can be designed using these principles.
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