
3446 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 11, NOVEMBER 2009

A Low-Jitter Guaranteed-Rate Scheduling
Algorithm for Packet-Switched IP Routers

T. H. Szymanski, Member, IEEE

Abstract—A Guaranteed-Rate scheduling algorithm for
packet-switched IP routers with rate, delay and jitter guarantees
is proposed. The algorithm can be used to schedule traffic
with 100% throughput in Input-Queued IP routers with unity
speedup. The traffic is scheduled according to transmission
frames of duration F time-slots. An 𝑁𝑥𝑁 doubly stochastic
traffic rate matrix specifies a traffic rate between each pair of
IO ports. The matrix is quantized and recursively decomposed
into a sequence of F permutations. Each permutation is used to
configure the crossbar switch for one time-slot without requiring
additional scheduling. The recursive fair stochastic matrix de-
composition is based upon the routing of a permutation through
a binary rearrangeable network. In the resulting transmission
schedule, the expected Inter-Departure Time (IDT) of a cell
equals the Ideal IDT (IIDT), and the maximum IDT and service
lag of a cell are bounded by an integer number of IIDTs. The
delay and delay jitter experienced along an end-to-end path in
a packet-switched IP/MPLS network are therefore small and
bounded by an integer number of IIDTs, and the buffer sizes
within the IP routers are small and bounded. The proposed
algorithm can be used to schedule Guaranteed-Rate traffic in
packet-switched IP/MPLS networks, to provide near-optimal
queueing delays and essentially-zero delay jitter along end-to-
end paths when playback buffers are employed.

Index Terms—Switching, scheduling, guaranteed rate, low jit-
ter, multicasting, recursive fair stochastic matrix decomposition,
quality of service, QoS.

I. INTRODUCTION

NEW multimedia services being offered over the Inter-
net include telerobotic surgery [1], telerobotic mining,

Voice over IP and television over IP (IPTV) [2]. Telerobotic
control is very sensitive to delay variation, and will require
tight Quality of Service (QoS) guarantees in IP routers and
switches. Cruz established bounds on the delay in a packet-
switched network when incoming traffic satisfies burstiness
constraints [4,5]. Parekh and Gallager developed hard delay
bounds when each IP router employs an Output Queued (OQ)
packet-switch [3] using a Weighted Fair Queueing (WFQ)
scheduling algorithm [6,7]. However, an OQ packet-switch
requires an internal “speedup,” which makes the approach
infeasible for large switches. In contrast, an Input Queued
(IQ) crossbar switch with unity speedup places the buffers
at the input side, in a set of Virtual Output Queues [3,8,9].
The VOQs can eliminate the Head-of-Line (HOL) blocking
inherent in IQ switches. A scheduling algorithm is used to

Paper approved by T.-S. P. Yum, the Editor for Packet Access and Switching
of the IEEE Communications Society. Manuscript received December 30,
2007; revised November 15, 2008.

The author is with the Dept. of Electrical and Computer Engineering,
McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S
4K1 (e-mail: teds@mcmaster.ca).

Digital Object Identifier 10.1109/TCOMM.2009.11.070666

determine sets of fixed-size cells to transfer from the VOQs to
the outputs in each time-slot. Packet switches with Combined
Input and Output Queueing (CIOQ) [10] and with internal
crosspoint queues [11] have also been proposed.

There are two fundamentally different approaches to the
packet-switch scheduling problem [12]: ’Dynamic Schedul-
ing,’ and ’Guaranteed-Rate’ reservation-based scheduling.
The scheduling problem is often formulated as a bipartite
graph-matching problem. The IO ports of the switch are
represented by sets of vertices, and the cells to transfer are
represented by edges. In the Dynamic Scheduling approach,
a new bipartite graph matching is recomputed for each time-
slot, which is used to configure the crossbar switch. These
approaches can adapt to dynamically varying traffic patterns.
In [8] it was shown that 100 % throughput can be achieved
for IQ packet-switches with unity speedup, if a Maximum
Weight Matching (MWM) algorithm is used. However, such
schemes are computationally intensive, ie the MWM algorithm
incurs a complexity of 𝑂(𝑁3) per time-slot. Furthermore,
using standard 64 byte cells it is difficult to compute optimal
matchings as the line-rate increases beyond 40 Gb/sec.

Guaranteed-Rate scheduling algorithms have been proposed
for packet-based satellite systems, voice-oriented switches
using TDM, frame relay switches, wireless networks, optical
TDM switches, and more recently for packet-switched Internet
Protocol (IP) routers. The first generation of such algorithms
have been called ’Time-Slot-Assignment’ (TSA) algorithms.
More recently, these algorithms have been called ’Guaranteed-
Rate’ algorithms [13]. Many of the recent GR algorithms
are based upon stochastic matrix decomposition algorithms,
wherein a doubly substochastic or stochastic traffic rate matrix
is decomposed in to a convex set of permutation matrices and
associated weights. The matrices are then scheduled to appear
in proportion to their weights. However, existing TSA and GR
algorithms are relatively complex and time consuming, and
they do not provide adequate bounds on the maximum delay
or the delay jitter, especially when the speedup is constrained
to unity. An open question remains as to whether hard delay
and jitter guarantees are possible under the constraint of unity
speedup. We answer this question affirmatively.

In this paper, a Guaranteed-Rate resource reservation al-
gorithm based upon a Recursive Fair Stochastic Matrix De-
composition (RFSMD) is proposed. Preliminary results were
presented in [45]. This paper extends the latter by providing
(a) proofs for the bounds, (b) extensions of the bounds to
individual competing traffic flows which share a link or a
VOQ, (c) extensive simulations to demonstrate the theories,
(d) a discussion of buffer requirements, and (e) extensions

0090-6778/09$25.00 c⃝ 2009 IEEE

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

SZYMANSKI: A LOW-JITTER GUARANTEED-RATE SCHEDULING ALGORITHM FOR PACKET-SWITCHED IP ROUTERS 3447

Fig. 1. IQ switch architecture.

of the results to internally buffered crosspoint switches. In
the RFSMD algorithm, a doubly substochastic or stochastic
NxN traffic rate matrix (ie an ’admissible’ matrix) is first
transformed into a quantized matrix with integer values. The
quantized matrix is then decomposed into a sequence of
𝐹 permutation matrices in a recursive and relatively fair
manner. The resulting sequence of permutations does not need
to be scheduled, and is used to configure the IQ packet-
switched crossbar switch directly for a sequence of F time-
slots, yielding a low-jitter transmission schedule.

Fig. 1 illustrates an IQ packet-switch architecture. Arriving
IP packets are segmented into fixed sized cells which are
buffered in the relevant VOQs. A scheduling algorithm is
used to transfer cells across the switch and place them in the
reassembly buffers on the output side. Once an IP packet is
reconstructed, it is transmitted. Consider the doubly stochastic
traffic rate matrix for a 4x4 IQ switch as shown in Eq. (1),
which was first introduced in [13,14]:

𝑅 =

⎡
⎢⎢⎣

0.38 0 0.22 0.40
0.11 0.24 0.60 0.05
0 0.53 0.04 0.33

0.51 0.23 0.04 0.22

⎤
⎥⎥⎦ (1)

A quantized traffic rate matrix 𝑀 which approximates
matrix 𝑅, given a frame of size 𝐹 = 1024 time-slots, is given
in Eq (2):

𝑀 =

⎡
⎢⎢⎣

389 0 225 410
113 246 614 51
0 542 144 338

522 236 41 225

⎤
⎥⎥⎦ (2)

𝑀/𝐹 =

⎡
⎢⎢⎣

0.3799 0 0.2197 0.4004
0.1104 0.2402 0.5996 0.0498

0 0.5293 0.1406 0.3301
0.5098 0.2305 0.0400 0.2197

⎤
⎥⎥⎦

Let a scheduling problem 𝑃 (𝑀,𝐹) represent the scheduling
of traffic matrix 𝑀 in a frame of duration 𝐹 time-slots. The
scheduling problem 𝑃 (𝑀,𝐹) can be viewed as a root of
a binary tree, which in turn creates two smaller scheduling
problems 𝑃 (𝐴,𝐹/2) and 𝑃 (𝐵,𝐹/2). Using the proposed al-
gorithm, the decomposition of matrix𝑀 into 2 matrices 𝐴 and
𝐵 is shown in Eq. (3). Observe that matrix 𝑀 is partitioned
relatively evenly over matrices 𝐴 and 𝐵. Furthermore, when
matrixes 𝐴 and 𝐵 are divided by 𝐹/2, the resulting matri-
ces are doubly substochastic or stochastic, ie they represent
smaller instances of the general scheduling problem. It will

be established that repeated application of the recursive fair
decomposition will result in low-jitter transmission schedules
with bounded delay and jitter.

𝑀 =

⎡
⎢⎢⎣

389 0 225 410
113 246 614 51
0 542 144 338

522 236 41 225

⎤
⎥⎥⎦ = (3)

⎡
⎢⎢⎣

195 0 112 205
56 123 307 26
0 271 72 129

261 118 21 112

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

194 0 113 205
57 123 307 26
0 271 72 129
261 118 20 113

⎤
⎥⎥⎦

In general, the traffic arriving at a packet-switched IP router
consists of a mixture of Guaranteed-Rate (GR) traffic with
rate and delay specifications, and Best-Effort (BE) traffic.
Typically, GR traffic is a small fraction of the total load. Once
the GR traffic has been scheduled within a frame, the frame
may be under-utilized. This unused switching capacity can be
used to transfer BE traffic using any existing hardware-based
dynamic cell scheduling algorithm. Alternatively, bandwidth
for BE traffic can be provisioned between IO pairs in the rate
matrix, as required by the service provider. This approach of
provisioning BE traffic will eliminate the need for hardware-
based dynamic schedulers and will also limit denial of service
attacks caused by targeted congestion at a single router.

This paper is organized as follows. Section II includes a
summary of prior work. Section III formulates the GR schedul-
ing problem. Section IV proposes a fast and relatively fair
method to route permutations in 3-stage Clos rearrangeable
network. Section V presents results for scheduling GR traffic
in 16x16 IQ switches with low delay jitter. Section VI estab-
lishes theoretical bounds on the delay and jitter. Section VII
contains concluding remarks.

II. PRIOR WORK

TSA and GR schemes exploit two classic underlying theo-
ries from the field of graph theory and combinatorial mathe-
matics: (1) An integer matrix with a maximum row or column
sum of 𝑀 can be expressed as the sum of 𝑀 permutation
matrices [16]; and (2) A doubly substochastic or stochastic
matrix can be decomposed into a convex set of permutations
matrices and weights. TSA and GR schemes can generally be
grouped into 3 classes of combinatorial problems, those based
upon graph matching or colouring algorithms, those based
upon routing permutations in a rearrangeable network, and
those based upon decomposing a traffic rate matrix into a set
of constituent permutation matrices and associated weights. A
table summarizing several TSA and GR algorithms is shown
in Table I. Some of these entries will be briefly summarized.
All the results in Table I assume that incoming traffic is first
shaped by a token bucket traffic shaper to limit the burstiness
to some known upper value.

A. The Slepian-Duguid Theorem

A circuit-switch is said to be ’rearrangeably nonblocking’
if a new connection between idle IO ports can always be
established, although some existing connections may have to
be rearranged [17][18][19]. Slepian and Duguid established
that the generalized 3-stage Clos network in Fig. 2 is rear-
rangeably nonblocking. The switches in the first and third

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

3448 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 11, NOVEMBER 2009

TABLE I
SUMMARY OF LOW-JITTER GUARANTEED-RATE SCHEDULING ALGORITHMS

Authors Time Num. Speedup Service Lag IDT Jitter
Complexity Matchings Bound Bound

Slepian-Duguid 1960 [16] 𝑂(𝑁4.5) 𝑂(𝑁2) 1.0 𝑂(𝑁) 𝑂(𝑁2)
Inukai, 1978 [20] 𝑂(𝑁4.5) 𝑂(𝑁2) 1.0 𝑂(𝑁2) 𝑂(𝑁2)
Weller, Hajek, 1999 [21] 𝑂(𝑁4.5) 𝑂(𝑁2) - 𝑂(𝛼𝑁 − 1) 𝑂(𝑁2)
Chen, Chang,
Huang (BVN)1999 [24][25] 𝑂(𝑁4.5) 𝑂(𝑁2) 1.0 𝑂(𝑁2) 𝑂(𝑁2)
Towles, Dally 2003 [23] 𝑂(𝑁4.5) 𝑂(𝑁2) 2 𝑂(𝑁2) 𝑂(𝑁2)
Kedliam, Lakshamn,
Stilliadis, 2003 [14] NP 𝑂(𝑁2) 𝑙𝑜𝑔𝑁 𝑂(𝑁2) 𝑂(𝑁2)
Koksal, Gallager,
Rohrs 2004 [12] 𝑂(𝑁𝑘) 𝑂(𝑁2) 1 ≤ 𝑠 ≤ 2 𝑂(𝛼𝑁/(𝑆/(𝑆 − 1))) 𝑂(𝑁2)

Mohanty, Bhuyan 2005 [26] 𝑂(𝑁𝑘) 𝑂(𝑁2) > 1 - -
This paper 𝑂(𝑁𝐹𝑙𝑜𝑔𝑁𝐹) 𝑂(𝐹) 1 𝑂(𝑙𝑜𝑔𝑁𝐹) IIDT 4 IIDT

0

7

8

15

16

23
24

31

...
...

...
...

0

7

8

15

16

23

24

31

...
...

...
...

Fig. 2. Rearrangeable 3-stage Clos network (8,4,8).

stages can be represented as vertices in a bipartite graph,
and the permutation to be realized reflects the edges. Using
Hall’s theorem on Systems of Distinct Representatives [16],
they established that a sequence of matchings can be found to
saturate the bipartite graph. Each matching is routed through
one of the middle stage switches, after which the IO ports
and relevant middle stage switch are removed from further
consideration. The induced bipartite subgraph is then a smaller
instance of the same problem. By induction, they established
that the 3-stage Clos network is rearrangeably nonblocking.
There is no notion of QoS or delay minimization in their
problem formulation. Over the years, many algorithms have
been developed to route permutations in the 3-stage Clos
rearrangeable network.

The Clos network has been thoroughly studied over the
last 50 years and has been used for space-domain (S) circuit-
switching, Time-Space-Time (TST) switching, and multirate
circuit-switching over the last 5 decades [19,20]. According
to Mellon and Turner [20]: “We can also expect that the
Clos networks will retain their central place in the design

of high performance switching systems of all kinds, and that
the intellectual framework created to model their performance
will continue to develop and evolve to meet the needs of new
technologies and applications.” In this paper, we extend the
classic Clos theory to the new problem of low-jitter scheduling
in packet-switched IP routers.

B. The Birkhoff Von Neuman (BVN) Matrix Decomposition

A method for calculating transmission schedules for packet-
switched IP routers based on Birkhoff Von-Neumann (BVN)
stochastic matrix decomposition was introduced in [24,25].
Let 𝑅 be a traffic rate matrix for an 𝑁 ×𝑁 crossbar switch,
where 𝑅(𝑖, 𝑗) represents the traffic requirement between IO
pair (𝑖, 𝑗). Under the following 2 conditions,

∑𝑁
𝑖=1 𝑅(𝑖, 𝑗) ≤

1, ∀𝑗, and
∑𝑁

𝑗=1 𝑅(𝑖, 𝑗) ≤ 1, ∀𝑖, then there exists a set of pos-
itive numbers 𝜃𝑘 and permutation matrices 𝑃𝑘, 𝑘 = 1, ...,𝐾
for some 𝐾 ≤ 𝑁2 − 2𝑁 + 2 that satisfies the following
two equations: 𝑅 ≤ ∑𝐾

𝑘=1 𝜃𝑘𝑃𝑘 and
∑𝐾

𝑘=1 𝜃𝑘 = 1. The
first 2 conditions imply that no IO port is overloaded, ie the
traffic matrix is admissible. For an NxN crossbar switch, the
BVN algorithm finds 𝑂(𝑁2) maximum size matchings each
requiring𝑂(𝑁2.5) time, for a resulting complexity of 𝑂(𝑁4.5)
time. Once the decomposition is computed, the matrices must
be scheduled such that the permutation matrix 𝑃𝑘 appears
proportional to its weight 𝜃𝑘, for 𝑘 = 1...𝐾 . There is no
notion of fairness in the BVN decomposition and 𝑂(𝑁2)
matrices may be generated, leading to potentially lengthy
delays. According to [12], the worst-case delay can be very
high with BVN decomposition: “Therefore, a higher (possibly
much higher) rate than the long term average traffic rate of
a bursty, delay sensitive traffic stream must be allocated in
order to satisfy its delay requirement.”

Furthermore, according to [14]: “Therefore, independent
of the type of algorithm used to schedule the permutation
matrices, there is no control on when individual entries in the
rate matrix will be scheduled. It is possible to derive bounds
on the jitter, but it is not possible to ensure that the jitter is
low... The jitter problem becomes severe when the number of
ports is large. The BV decomposition, therefore, results in poor
jitter performance especially when there is a large number of
ports in the switch.”

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

SZYMANSKI: A LOW-JITTER GUARANTEED-RATE SCHEDULING ALGORITHM FOR PACKET-SWITCHED IP ROUTERS 3449

C. Related Prior Work

In [13,14] the delay jitter minimization problem is formu-
lated as an NP-Hard integer-programming problem. A greedy
low-jitter decomposition (GLJD) algorithm with complexity
𝑂(𝑁3) time is then proposed. After the decomposition, the
permutation matrices and associated weights are scheduled
to minimize the jitter between all IO pairs. The resulting
schedule requires a worst-case speedup of 𝑂(𝑙𝑜𝑔𝑁) and
achieves throughputs of up to 80%.

Another stochastic matrix decomposition algorithm was
introduced in [12]. In this algorithm, a traffic rate matrix is
quantized and then decomposed into a convex set of permuta-
tion matrices and weights, which must then be scheduled. With
speedup 𝑆 = 1+𝑠𝑁 between 1 and 2, the maximum ’Service
Lag’ over all IO pairs is bounded by 𝑂((𝑁/4)(𝑆/(𝑆 − 1)))
time-slots. The speedup directly affects the QoS provided by
the switch. According to [12]: “with a fairly large class of
schedulers a maximum service lag of 𝑂(𝑁2) is unavoidable
for input queued switches. To our knowledge, no scheduler
which overcomes this 𝑂(𝑁2) has been developed so far. For
many rate matrices, it is not always possible to find certain
points in time for which the service lag is small over all
I-O pairs simultaneously.” The authors present experimental
results in their paper. For a speedup approaching 2 the service
lag does not exceed roughly 𝑁/2 time-slots, whereas is can
go as high as 𝑂(𝑁2) time-slots when no speedup is allowed.
For a 256x256 switch with a speedup of 2, the service lag
bound is 128 time-slots, whereas with unity speedup it can be
as high as 65,000 time-slots.

Another greedy stochastic matrix decomposition algorithm
was proposed in [27]. This decomposition algorithm also
yields a convex set of permutation matrices and associated
weights which must be independently scheduled, as in prior
methods. The algorithm is relatively quick but it cannot guar-
antee 100 % throughput or short-term fairness. The authors
establish a jitter bound, but their bound grows as the switch
size 𝑁 increases. The authors identify an open problem: “to
determine the minimum speedup required to provide hard
guarantees, and whether such guarantees are possible at all.”

III. GR SCHEDULING PROBLEM

The Guaranteed-Rate traffic requirements for a packet-
switched NxN crossbar switch can specified in a doubly
substochastic or stochastic traffic rate matrix Λ , as shown
in Eq. 4. Each element 𝜆𝑖,𝑗 denotes the GR between IO pair
(𝑖, 𝑗).

Λ =

⎡
⎢⎢⎣

𝜆0,0 𝜆0,1 ... 𝜆0,𝑁−1

𝜆1,0 𝜆1,1 ... 𝜆1,𝑁−1

...
𝜆𝑁−1,0 𝜆𝑁−1,1 ... 𝜆𝑁−1,𝑁−1

⎤
⎥⎥⎦ (4)

where
∑𝑁−1

𝑖=0 𝜆𝑖,𝑗 ≤ 1 and
∑𝑁−1

𝑗=0 𝜆𝑖,𝑗 ≤ 1.
Define a new quantized traffic rate matrix 𝑅 where the

traffic rates are expressed as an integer number of requested
time-slots within a frame. The minimum quota of reservable
bandwidth is one time-slot within a frame, representing (1/𝐹)
of the line rate.

𝑅 =

⎡
⎢⎢⎣

𝑅0,0 𝑅0,1 ... 𝑅0,𝑁−1

𝑅1,0 𝑅1,1 ... 𝑅1,𝑁−1

...
𝑅𝑁−1,0 𝑅𝑁−1,1 ... 𝑅𝑁−1,𝑁−1

⎤
⎥⎥⎦ (5)

where
∑𝑁−1

𝑖=0 𝑅𝑖,𝑗 ≤ 1 and
∑𝑁−1

𝑗=0 𝑅𝑖,𝑗 ≤ 1.
The following notations related to scheduler performance

will be adopted. Several of the following definitions have been
adapted from [12].

Definition: A ‘Frame transmission schedule’ of length 𝐹 is
a sequence of permutation matrices (or permutation vectors)
which define the crossbar switch configurations for 𝐹 time
slots within a scheduling frame. Given a line-rate 𝐿, the frame
length 𝐹 is determined by the desired minimum allotment of
bandwidth = 𝐿/𝐹 . For example, to set the minimum quota of
reservable bandwidth to 3 % of the line-rate, set 𝐹 = 32. To
set the minimum quota of reservable bandwidth to 0.1 % of
the line-rate, set 𝐹 = 1𝐾 .

Definition: The ‘Ideal Inter-Departure Time’ (IIDT) of cells
belonging to a flow between IO pair (𝑖, 𝑗) with quantized rate
𝑅(𝑖, 𝑗), given a frame schedule of length 𝐹 and line-rate 𝐿
in bytes/sec and fixed sized cells of 𝐶 bytes per cell, is given
by: 𝐼𝐼𝐷𝑇 = 𝐹/𝑅(𝑖, 𝑗) time slots, each of duration (𝐿/𝐶)
sec.

Definition: The ‘Received Service’ of a flow with rate
𝑅(𝑖, 𝑗) at time slot 𝑡 within a frame schedule of length 𝐹 ,
denoted 𝑆𝑖𝑗(𝑡), is equal to the number of permutation matrices
in the frame transmission schedule in time slots 1...𝑡, 𝑡 ≤ 𝐹 ,
in which input port 𝑖 was matched to output port 𝑗.

Definition: The ‘Service Lag’ of a traffic flow between
input port 𝑖 and output port 𝑗, at time 𝑡 given a frame
transmission schedule of length 𝐹 , denoted 𝐿𝑖𝑗(𝑡), equals
the difference between the requested service prorated by the
time 𝑡 within the current frame, and the received service, ie
𝐿𝑖𝑗(𝑡) = (𝑚𝑜𝑑(𝑡, 𝐹)/𝐹) ⋅𝑅(𝑖, 𝑗)− 𝑆𝑖𝑗(𝑡). The ’Normalized
Service Lag’ is defined as the service lag divided by the 𝐼𝐼𝐷𝑇 .

Definition: The row and column norms of a quantized
matrix are defined as follows;

∥𝑅(:, 𝑗)∥ =
𝑁−1∑
𝑖=0

𝑅(𝑖, 𝑗) ≤ 𝐹

∥𝑅(𝑖, :)∥ =

𝑁−1∑
𝑗=0

𝑅(𝑖, 𝑗) ≤ 𝐹 (6)

The following notations related to multistage switching
networks will be adopted.

Definition: Let vector elements 𝐼(𝑖) and 𝑂(𝑖) represent
input port 𝑖 and output port 𝑖 in an NxN crossbar switch,
for 0 ≤ 𝑖 < 𝑁 . In an IQ switch, each input port 𝑖 also
contains 𝑁 Virtual Output Queues, 𝑉 𝑂𝑄(𝑖, 𝑗), one for each
output port 𝑗 for 0 ≤ 𝑗 < 𝑁 , as shown in Fig. 1.

Definition: Given a multistage switching network, let
𝑆(𝑖, 𝑠) represent switch 𝑖 in stage 𝑠, for 0 ≤ 𝑖 < 𝑁/2 and
1 ≤ 𝑠 ≤ 2𝑙𝑜𝑔2𝑁 − 1. Let 𝑖𝑝(𝑖, 𝑠) represent input pin 𝑖 in
stage 𝑠, and let 𝑜𝑝(𝑖, 𝑠) represent output pin 𝑖 in stage 𝑠, for
0 ≤ 𝑖 < 𝑁𝐹 and 1 ≤ 𝑠 ≤ 2𝑙𝑜𝑔2𝑁 − 1.

Definition: Let vector 𝜋𝑤(𝑖) represents the wiring pattern
(permutation) between the vector of output pins in stage 𝑠
denoted 𝑜𝑝(:, 𝑠), and the vector of input pins in stage 𝑠 + 1
denoted 𝑖𝑝(:, 𝑠+ 1), for 1 ≤ 𝑠 ≤ 2𝑙𝑜𝑔2𝑁 − 1.

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

3450 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 11, NOVEMBER 2009

s(0,2) s(0,3)s(0,1)

s(N-1,1) s(N-1,2) s(N-1,3)

1(0)

1(N 1)

2(0)

2(N 1)

u(0,:)

u(N 1,:)q(N 1,:)

q(0,:)

Fig. 3. Time-space-time switching problem formulation.

A. Scheduling Problem Formulation, Time-Space-Time (TST)
Switch

Let all the match requests originating at input port 𝑖 given
a traffic rate matrix 𝑅 in a scheduling problem 𝑃 (𝑅,𝐹) be
ranked in a canonical order, first by the input port index 𝑖 and
then by a unique match number (or rank) within the range
1...𝑅(𝑖, 𝑗). A match request associated with input port 𝑖 can
thus be uniquely identified by introducing a first canonical set
𝑄 with elements 𝑞(𝑖, 𝑗), where 0 ≤ 𝑖 < 𝑁 , and 0 ≤ 𝑗 <
∥𝑅(𝑖, :)∥. Let all match requests associated with output port 𝑗
also be ranked in a second canonical order, first by the output
port index 𝑗 and then by their unique rank within the range
1...𝑅(𝑖, 𝑗). A match request associated with output port 𝑗 can
thus be uniquely identified by a second canonical set 𝑈 with
elements 𝑢(𝑗, 𝑘), where 0 ≤ 𝑗 < 𝑁 , 0 ≤ 𝑘 < ∥𝑅(:, 𝑗)∥ .

Let the notation (𝐹,𝑁, 𝐹) denote a 3-stage rearrangeable
circuit-switched network with 𝑁𝐹 IO pins, with 𝑁 switches
of size 𝐹×𝐹 in the 1st and 3rd stages, and 𝐹 switches of size
𝑁 ×𝑁 in the middle stage. (This notation is slightly different
from the classic notation of a symmetric Clos network, but it
allows for the specification of recursive constructions which
will be useful later.) Fig. 2 shows a general 3-stage Clos
network denoted (8, 4, 8). According to the Slepian-Duguid
theorem, the 3-stage Clos network is rearrangeably nonblock-
ing i.e., it is possible to find a routing to satisfy a given
permutation under the following conditions: (1) no IO port is
overloaded, (2) the number of middle stage switches is equal
or greater than the size of the switches in the 1st and 3rd
stages, ie 𝐹 ≥ 𝑁 .

B. The Linear Matrix-to-Permutation Mapping

Fig. 3 illustrates how the quantized traffic rate matrix is
mapped onto a permutation. Each input port 𝐼(𝑖) of the
switch will reserve up to 𝐹 time-slots within a frame and is
represented by one 𝐹𝑥𝐹 switch in stage 1 of the 3-stage Clos
network. Let the ∥𝑅(𝑖, :)∥ < 𝐹 match requests associated with
𝐼(𝑖) be mapped onto the input pins of first stage switch 𝑆(𝑖, 1),
in an order determined by a small permutation of length 𝐹 .
Similarly, each output port 𝑂(𝑗) of the crossbar switch will
reserve up to 𝐹 time-slots within a frame, and is represented
by one 𝐹𝑥𝐹 switch in the 3rd stage. Let the ∥𝑅(:, 𝑗)∥ < 𝐹
match requests destined for 𝑂(𝑗) appear at the output pins
of the third stage switch 𝑆(𝑗, 3) in an order determined by a
small permutation of length 𝐹 .

Each match request in matrix 𝑅 appears once in sets 𝑄
and 𝑈 . Define 𝑁 small permutations of length 𝐹 denoted
𝜋1(0), ..., 𝜋1(𝑁 − 1), which can be concatenated to form one

large permutation Π(1) of length 𝑁𝐹 . Similarly, define 𝑁
small permutations of length 𝐹 denoted 𝜋2(0), ..., 𝜋2(𝑁−1),
which can be concatenated to form one large permutation Π(2)
of length 𝑁𝐹 . The set 𝑄 is mapped onto the set of input pins
𝑖(0...𝑁𝐹−1, 1) by permutation Π(1), and the set 𝑈 is mapped
onto a set of output pins 𝑜(0...𝑁𝐹 − 1) by permutation Π(2),
as shown in Fig. 3. These mappings imply the generation of a
new permutation Π of length 𝑁𝐹 from the traffic rate matrix,
since each match request in the matrix appears once in sets
𝑄 and 𝑈 . Using the ’Random Mapping’ (RM) algorithm, the
small permutations 𝜋1(:) and 𝜋2(:) are selected at random.
Using the ’Linear Mapping’ (LM) , the small permutations are
linear. The permutation generated by the mapping algorithm
is then routed through the 3-stage rearrangeable network to
determine a stochastic matrix decomposition. The 𝑅𝑀 and
𝐿𝑀 algorithms are summarized as 𝑅𝑀(𝑄,𝑈) → ((𝑖(:, 1), 𝑜(:
, 3)) and 𝐿𝑀(𝑄,𝑈) → ((𝑖(:, 1), 𝑜(:, 3)) respectively.

Many algorithms have been proposed for routing permuta-
tions in the 3-stage rearrangeable Clos network over the last
few decades, ie see [28-38]. The combinatorial problem is
non-trivial, as evidenced by the number of papers addressing
the topic. Many algorithms require backtracking due to the
need to rearrange previously established connections, which
adds complexity to the algorithms. Some nonbacktracking al-
gorithms have been proposed, but they are generally complex.

IV. PROPOSED RECURSIVE FAIR STOCHASTIC MATRIX

DECOMPOSITION

In this paper, we first propose a relatively efficient, recursive
and fair nonbacktracking algorithm for routing permutations
in a 3-stage rearrangeable Clos network, by transforming
the problem to routing a permutation in a specific binary
rearrangeable network with 2𝑙𝑜𝑔𝑁−1 stages of binary nodes.
A binary network is defined as one composed only of 2x2
or binary switches. A weaker result on routing permutations
in Clos networks was presented by Andresen [30]. However,
Andresen does not establish a topological equivalence between
the 3-stage Clos network and a binary rearrangeable network
which uses a Perfect-Shuffle permutation, and does not char-
acterize the permutations realizable by this particular binary
network. To achieve our main results for packet-switched IP
routers, we must formally characterize the routing of certain
classes of permutations (called ’conforming permutations’)
through a Perfect-Shuffle based Benes network, and we must
establish the equivalence of this network to the 3-stage Clos
network.

In Fig. 4, the 3-stage Clos switching network of Fig. 3 has
been replaced by a similar topology, wherein each 𝐹 × 𝐹
switch in the first stage of Fig. 3 has been replaced by an
𝐹 ×𝐹 Baseline binary switching network (enclosed by dotted
lines). An 8x8 Baseline binary network is shown in Fig. 4 and
is represented using the notation 𝐵(2, 3), where the 1st index
is the switch size, and the 2nd index is the number of stages.
Each 𝐹 ×𝐹 switch in the third stage of Fig. 3 is replaced by
an Inverse Baseline network denoted 𝐵−1(2, 3). The resulting
topology in Fig. 4 is a 7-stage switching network, denoted as
a (𝐵(2, 3), 4, 𝐵−1(2, 3)) network.

The 7-stage network in Fig. 4 has far fewer discrete states
compared to the 3-stage Clos network of Fig. 3. Each degree-𝑘

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

SZYMANSKI: A LOW-JITTER GUARANTEED-RATE SCHEDULING ALGORITHM FOR PACKET-SWITCHED IP ROUTERS 3451

Fig. 4. A 7-stage rearrangeable network.

crossbar switch in Fig. 3 has 𝑘 factorial discrete states respec-
tively. The number of discrete states realized by the network in
Fig. 3 is thus (8!)8(4!)8 ≈ 1048. In contrast, each 2x2 switch
in the network in Fig. 5 has 2! states, and the number of
discrete states in the network is 212𝑥8(4!)8 ≈ 1015. Due to the
significant reduction in states, it is not immediately clear that
the network in Fig. 4 is rearrangeably nonblocking. However,
the network in Fig. 4 can be topologically transformed to the
network in Fig. 5, and the network in Fig. 5 is observed to
be a partially expanded Benes network, which is known to
be rearrangeable. The 𝑁 × 𝑁 binary Benes network can be
represented using the notation (2, 𝑁/2, 2), where the middle
stage switches of size 𝑁/2𝑥𝑁/2 are constructed in the same
manner using recursion. The Benes network in Fig. 5 uses a
Perfect-Shuffle wiring permutation between the 1st and 2nd
stages.

There are many binary rearrangeable networks conforming
to the recursive Benes construction (2, 𝑁/2, 2). Specifically,
there are a large number of permutations which may be
used to connect the output pins of the first stage to the
input pins of the second stage, and this freedom applies
recursively. The majority of these Benes-family topologies
are not topologically equivalent nor functionally equivalent.
For example, in a 32 × 32 Benes network there are (16!)2

different choices of permutations to link the 1st and 2nd stages.
The following results on the topological equivalence of all
‘strict-buddy banyan networks’ were presented in [47] and
are summarized. Analogous results for buddy networks are
presented in [18].

Definition: A radix-𝑏 ‘strict-buddy banyan’ network is a

Fig. 5. A 7-stage rearrangeable network (partially expanded Benes network).

multistage network constructed with radix-𝑏 switches with a
unique path between every input port and every output port
with at least 2 stages of switches, such that all the switches in
each stage can be partitioned into disjoint sets of 𝑏 switches,
such that the 𝑏 switches in every set share the same 𝑏 successor
switches in the following stage. Define a ’factor’ as a 𝑏𝑛× 𝑏𝑛
multistage banyan network or a single 𝑏𝑛×𝑏𝑛 crossbar switch.

Proposition 1: All higher radix (𝑏𝑛 × 𝑏𝑛) strict-buddy
banyan networks, for 𝑏 ≥ 2, are topologically equivalent.

Proposition 2: Any strict-buddy 𝑏𝑛 × 𝑏𝑛 banyan network
can be topologically rearranged into an equivalent network
with two stages of factors, with factors of size 𝑏𝑠 × 𝑏𝑠 in
the first stage, and factors of size 𝑏𝑛−𝑠 × 𝑏𝑛−𝑠 in the second
stage, 1 ≤ 𝑠 < 𝑛, with a radix-𝑏𝑠 ’Perfect Shuffle’ wiring
permutation between the 2 stages (defined ahead).

Proposition 3: Every switch in stage 𝑗 of a 𝑏𝑠× 𝑏𝑠 banyan
network, for 0 ≤ 𝑗 < 𝑙𝑜𝑔2𝑁 , is the root of a ’fan out tree’
which spans a subset of output pins in each stage 𝑘, 𝑗 ≤ 𝑘;
The fan-out tree can reach exactly 𝑏𝑘−𝑗 output pins in stage 𝑘,
and it can reach all 𝑏𝑛−𝑗 output pins in stage 𝑛 = 𝑙𝑜𝑔𝑁 − 1.
Furthermore, every node in stage 𝑗 of a 𝑏𝑠×𝑏𝑠 banyan network,
0 ≤ 𝑗 < 𝑙𝑜𝑔2𝑁 , is the root of a ’fan-in tree’ ; the fan-in tree
can reach exactly 𝑏𝑗−𝑖 input pins in stage 𝑖, 𝑖 ≤ 𝑗, and it can
reach all 𝑏𝑗+1 input pins in stage 0.

In the Baseline topology of Fig. 6, a permutation of wires
connects the output pins of the first stage of binary switches
to the input pins of the second stage of binary switches, called
the binary ’Perfect-Shuffle’ permutation. Any linear sequence
with an even number of elements can be viewed as forming
2 halves of a deck of cards, ie the sequence 0 . . . 7 can be
viewed as the concatenation of two half sequences 0 . . . 3 and
4 . . . 7. A binary Perfect-Shuffle of the original sequence yields
the sequence (0 4 1 5 2 6 3 7), ie the elements of each half
sequence are perfectly interleaved as if a perfect binary shuffle
has occurred.

A binary number in the range 0 . . .𝑁−1 can be represented
with 𝑛 binary bits, 𝑏𝑛−1𝑏𝑛−2...𝑏1𝑏0 , where 𝑛 = 𝑙𝑜𝑔2𝑁 . The

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

3452 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 11, NOVEMBER 2009

Fig. 6. An 8x8 baseline network.

binary Perfect-Shuffle is given by the mapping in Eq. (7), and
the binary ’Inverse Perfect-Shuffle’ permutation is given by
the mapping in Eq. (8). Using the Inverse Perfect-Shuffle, the
sequence (0 1 2 3 4 5 6 7) maps onto the sequence (0 2 4 6
1 3 5 7). The radix-4 Perfect-Shuffle is given by the mapping
in Eq. (7), wherein the digits 𝑏𝑖 are base 4 digits.
𝑃 (𝑏𝑛−1𝑏𝑛−2....𝑏1𝑏0) = 𝑏0𝑏𝑛−1𝑏𝑛−2...𝑏1 (7)
𝑃 (𝑏𝑛−1𝑏𝑛−2....𝑏1𝑏0) = 𝑏𝑛−2𝑏𝑛−3...𝑏1𝑏0𝑏𝑛−1 (8)
Due to the topological equivalence between the generalized

3-stage Clos network as shown in Fig. 3 and the partially
expanded Benes network as shown in Fig. 5, the routing of
a given permutation through any 3-stage Clos network can
be found by routing an equivalent permutation through the
partially expanded Benes rearrangeable network as shown in
Fig. 5. The solution for one network can yield the solution for
the other network through a simple transformation. Further-
more, a more general statement can be made: The routing of
a given permutation through any 3-stage Clos network can be
found by routing an equivalent permutation through a partially
expanded Binary Rearrangeable Network (BRN) as shown in
Fig. 5; the wiring pattern between stages need not be a Perfect-
Shuffle permutation. Therefore, an efficient non-backtracking
algorithm for routing a given permutation 𝑃 in a 3-stage Clos
network can be found as in the following Theorem, whose
proof follows from the propositions 1-3.

Theorem 1: A setting of the switch states in a 3-stage Clos
rearrangeable network (𝑀,𝑁/𝑀,𝑀), for 𝑁 and 𝑀 powers
of 2, can be determined from the settings of the switch states
in a binary rearrangeable network (2, 𝑁/2, 2), consisting of
the concatenation of a strict-buddy banyan network and its
inverse network, with the two innermost stages merged into
one stage.

An efficient algorithm to determine the switch settings is as
follows: (1) Transform the given permutation 𝑃 to be realized
in the 3-stage Clos network to a new permutation 𝑃 ’ to be
realized in the partially expanded BRN; (2) route 𝑃 ’ through
the BRN; (3) transform the partially expanded BRN into a
topologically equivalent network constructed with 3 stages
of factors, where the sizes of the factors in stages 1 and 3

equals the size of the switches in stages 1 and 3 of the 3-
stage Clos network; (4) recover the states of all switches in
the Clos network from the factors of the BRN. This process
is illustrated next.

If we choose the partially expanded Benes topology in
Fig. 5 as the BRN, then we may determine the switch states
directly without applying any transformation (equivalently, the
transformation is the identity permutation). In Fig. 5, consider
the fan-in trees into the middle stage of factors, and fan-
out trees from the middle stage of factors. Let the stages
be labeled 1...𝑙𝑜𝑔𝑁 . By Proposition 3, every input pin of a
middle stage switch/factor is the root of a fan-in tree which
spans 𝐹 input pins in stage 1. The nodes belonging to two
fan-in trees are shown in bold in Fig. 5. Due to the unique
path property stated in the definition of a strict-buddy banyan
network, these input pins in stage 1 cannot appear in the fan-
in tree of any other input pin incident to the same middle
stage switch/factor. Using the same argument, every output
pin incident to a middle stage switch/factor spans a unique
set of 𝐹 output pins in stage 𝑙𝑜𝑔2𝑁 . Therefore, the routing
of a permutation through the topology in Fig. 5 is equivalent
to routing the permutation through the 3-stage Clos network:
the states of the middle stage switches/factors are identical.

A. Equivalence to Recursive Fair Stochastic Matrix Decom-
position

A more powerful observation can also be made. Referring
back to the TST switching problem formulation in Fig. 3, we
now add the constraint that all the match requests from an
input port 𝐼(𝑗) for one output port are placed in a contiguous
set of input pins {𝑖(𝑘, 1)∣𝑗𝐹 ≤ 𝑘 ≤ (𝑗+1)𝐹−1} in stage 1 of
the BRN. This constraint places restrictions on the permutation
to be routed. Observe that for every pair of match requests
occupying adjacent input pins 𝑖(𝑗, 1) and 𝑖(𝑗 + 1, 1) for even
𝑗 in stage 1, exactly one match request must be routed through
the top middle stage 𝑁/2𝑥𝑁/2 switch in the Benes network
(2, 𝑁/2, 2), while one match request must be routed through
the bottom middle stage switch. Hence, by establishing all
the match requests associated with 𝑅(𝑖, 𝑗) to appear at stage
1 in contiguous input pins of the Benes network by using
the LM algorithm, it follows that the match requests will be
split ’relatively fairly’ amongst the first and second halves of
a frame schedule. This issue is discussed in more depth in
Section V.

B. The LBL Algorithm

By theorem 1 we may route a permutation through a BRN
to determine a set of admissible switch states for a 3-stage
Clos network. The traditional looping algorithm for routing
permutations in a Benes network can be used to route the
permutation [30]. The looping algorithm has many degrees
of freedom and can result in a large number of admissible
routings for one given permutation. We now add constraints to
the looping algorithm so that each permutation has one unique
routing. Define the Linear-Biased-Looping (LBL) algorithm
with the following restrictions: When a new loop is started,
the LBL algorithm selects the first unmatched input pin with a
valid match request to start the new loop. (The first input pin

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

SZYMANSKI: A LOW-JITTER GUARANTEED-RATE SCHEDULING ALGORITHM FOR PACKET-SWITCHED IP ROUTERS 3453

has the lowest index.) Furthermore, the next match request to
be routed in a loop consistently selects the upper path through
the rearrangeable network, if that path is free. Otherwise,
it selects the lower path. Define the Random-Looping (RL)
algorithm as follows: When a new loop is started, the RL
algorithm selects an unmatched input pin with a valid match
request at random, to start each new loop. Furthermore, the
next match request to be routed randomly selects between the
upper and lower paths through the rearrangeable network if
both paths are free, otherwise it uses the only available path.
The RL algorithm will yield many admissible routings for a
permutation.

C. Results for the RFSMD Algorithm

One thousand randomly-generated doubly-stochastic traffic
rate matrices were generated. Each matrix was mapped into
a permutation using the 𝐿𝑀 algorithm, which was routed
through a BRN using the 𝐿𝐵𝐿 algorithm. The low-jitter frame
transmission schedule for a packet-switched crossbar switch
was then recovered from the states of the middle stage factors
of the BRN, as specified in Theorem 1. Table II illustrates the
results of the decomposition of the 1,000 randomly-generated
fully-saturated 16x16 traffic matrices with 𝐹 = 1024. Each
matrix represents 256 simultaneous low-jitter GR traffic flows
to be scheduled. All 1,000 matrices represent 256,000 flows
to be scheduled between IO pairs, representing 16,384,000
cells to schedule. Each transmission schedule was processed
to record the min/max observed IDTs between 2 consecutive
cells in a GR flow, and the min/max Service Lag. By conven-
tion, a negative Service-Lag represents a ’Service-Lead’.

Define a class ′𝑗′ of flows as containing all flows with
exactly 𝑗 match requests per frame. The results for 10 classes
of flows are reported in Table II. Each class of flow has an as-
sociated IIDT. The mean observed IDTs from the transmission
schedules are listed in column 3 of the table. In all classes, the
mean observed IDT equals the IIDT, i.e., the frame transmis-
sion schedule results in: (1) every flow receiving its guaranteed
rate, and (2) every flow maintaining an average IDT equal
to the ideal IDT. For example, the class of flows with 60
matches per frame has an IIDT equal to 𝐹/60 = 17.067
time-slots. The mean observed IDT in column 3 equals the
IIDT. This class experiences a minimum (maximum) IDT of
1 (79) time-slots respectively, corresponding to 0.059 (4.63)
IIDTs respectively. The standard deviation of the IDT is 9.02
time-slots corresponding to about 1/2 an IIDT, indicating
that the majority of cells depart within 1/2 an IIDT of their
ideal departure times. The minimum (or maximum) observed
Service Lead/Lag is -2.23 (3.75) IIDT. These results were
taken over 16 million cell transmissions at 100% load.

The concept of Service-Lag plots in packet-switched net-
works was first presented by Cruz [4,5]. Each flow between
an (𝐼, 𝑂) pair has its own ideal service requirement which
determines the slope of the Service-Lag curve for that flow.
However, it becomes very difficult to plot the Service-Lags for
thousands of flows each with different service requirements
on the same plot. We overcome this difficulty by plotting
Normalized Service Lead/Lags, as explained next.

Fig. 7 plots the Normalized Service Lead/Lag for many
flows on the same graph. The 𝑋-axis denotes the normalized

0
10 20 30 400

10

20

30

40

Service Time (IIDT)

C
el

l #

50 60

60

50

Fig. 7. Service lead-lag, N=16, F=1024.

time expressed in terms of the IIDT for every flow 𝑓 , denoted
𝐼𝐼𝐷𝑇 (𝑓). The 𝑌 -axis denotes the cell number. The observed
service time for cell 𝑗 in flow 𝑓 , 𝑐(𝑗, 𝑓), is denoted 𝑠(𝑗, 𝑓).
The normalized service time for 𝑐(𝑗, 𝑓) is given by 𝑛𝑠(𝑗, 𝑓) =
𝑠(𝑗, 𝑓)/𝐼𝐼𝐷𝑇 (𝑓). The Service Lag of 𝑐(𝑗, 𝑓) is defined as
𝑠(𝑗, 𝑓)− 𝑗 ⋅ 𝐼𝐼𝐷𝑇 units. If this service occurs sooner than the
ideal service time, a Service Lead equal to 𝑠(𝑗, 𝑓)− 𝑗 ⋅ 𝐼𝐼𝐷𝑇
units has occurred (which is negative). In Fig. 7, each single
line denotes the normalized service times observed for all
cells in one particular flow. The individual service lines for
individual flows are indistinguishable, due to the large number
of flows plotted on the same graph. However, the minimum
and maximum Service Lead/Lags are visible from this graph.
According to Fig. 7, the observed Service Lead/Lags are very
small, which is consistent with Table II. The mean standard
deviation of the Service Lead/Lag is 0.536 IIDT, and the
minimum and maximums are -2.85 IIDTs and +4.46 IIDTs
respectively. We have performed extensive simulations for
many switch and frame sizes, with consistent results.

V. BOUNDS ON THE JITTER AND SERVICE LEAD/LAG

In this section, bounds on the jitter and service lead/lag
through one packet-switched IP switch / router are derived.
One proposition and theorem formalize the operation of the
recursive fair stochastic matrix decomposition algorithm for
larger 𝑁 .

Definition: Given an 𝑁𝑥𝑁 traffic rate matrix 𝑅 with
rates 𝑅(𝑖, 𝑗) which has been mapped onto a permutation
of size 𝑁𝐹 using the 𝐿𝑀 algorithm, define a ‘Conforming
Permutation’ as one in which all match requests belonging to
a matrix element 𝑅(𝑖, 𝑗) appear on contiguous input pins and
contiguous output pins. (More specifically, the mappings are
𝑗𝐹 + {𝑅(𝑖, 𝑗)∣0 ≤ 𝑖 < 𝑁, 0 ≤ 𝑗 < 𝑁} → {𝑖(𝑘, 1)∣𝑖 ⋅ 𝐹 ≤
𝑘 < 𝑗𝐹 +𝑅(𝑖, 𝑗) < (𝑖+1) ⋅𝐹} and {𝑅(𝑖, 𝑗)∣0 ≤ 𝑖 < 𝑁, 0 ≤
𝑗 < 𝑁} → {𝑜(𝑘, 3)∣𝑗 ⋅𝐹 ≤ 𝑘 < 𝑗𝐹 +𝑅(𝑖, 𝑗) < (𝑗+1) ⋅𝐹} .

Definition: A ’relatively fair’ partition of 2𝑛 elements is
one where one half receives no less than (𝑛 − 1) elements
and the other half receives no more than (𝑛+1) elements. An
example of a worst-case relatively fair partitioning is shown

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

3454 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 11, NOVEMBER 2009

TABLE II
OBSERVED IDT AND SERVICE LEAD/LAG, N=16, F=1024

Class IIDT Observed Std. Dev. Min. IDT Max. IDT Min. SLL Max. SLL
30 34.133 34.133 0.524 0.029 3.13 -2.15 3.66
33 31.030 31.030 0.522 0.032 3.74 -2.38 2.39
36 28.444 28.444 0.537 0.035 3.80 -2.47 3.75
39 26.256 26.256 0.544 0.038 4.27 -2.32 4.46
42 24.381 24.381 0.537 0.041 3.94 -2.85 3.46
45 22.756 22.756 0.544 0.044 4.09 -2.14 3.84
48 21.333 21.333 0.539 0.047 4.22 -2.2 3.75
51 20.078 20.078 0.547 0.050 4.28 -2.09 3.59
54 18.618 18.618 0.543 0.053 3.69 -2.85 3.78
57 17.956 17.956 0.529 0.056 5.12 -2.85 3.78
60 17.067 17.067 0.528 0.059 4.63 -2.23 3.75

in the first stage of the Baseline network in Fig. 6, where 6
requests in the first stage are partitioned with 4 going to the
upper half and 2 going to the lower half.

Proposition 4: Given a traffic rate matrix element 𝑅(𝑖, 𝑗)
such that 𝑅(𝑖, 𝑗) = 2𝑛, which has been mapped onto a
Conforming Permutation of size 𝑁𝐹 to be routed through
the binary rearrangeable Perfect-Shuffle-based Benes topology
(2, 𝑁/2, 2) shown in Fig. 5 using the 𝐿𝑀 algorithm, then
using the 𝐿𝐵𝐿 algorithm, the (2𝑛) matches will be split
’relatively fairy’ onto the upper and lower middle stage
(𝑁/2)𝑥(𝑁/2) switches, and these match requests will be
mapped onto contiguous input and output pins of the middle
stage switches, i.e., the permutations to be realized by each
switch in the middle stage are also Conforming Permutations.

Theorem 4: Given the rearrangeably nonblocking network
topology (2, 𝑁/2, 2) in Fig. 5, and given an 𝑁𝑥𝑁 traffic rate
matrix 𝑟 with rates 𝑅(𝑖, 𝑗) which have been mapped onto a
conforming permutation of size 𝑁𝐹 , then after routing any 2𝑛
match requests in a Conforming Permutation which form one
or more closed loops using the 𝐿𝐵𝐿 algorithm, then the re-
maining induced subgraph, i.e., network consisting of switches
with unused pins only and wires between unused pins, is a
rearrangeably nonblocking (𝑁 − 2𝑛, (𝑁 − 2𝑛)/2, 𝑁 − 2𝑛)
network.

Theorem 4 implies that the service a traffic flow will
receive will be essentially equal in each half of the frame
schedule, and that the resulting smaller permutations to be
routed in the middle stage of (𝑁/2)𝑥(𝑁/2) switches will be
Conforming. Theorem 4 states that after routing one or more
loops from a Conforming Permutation in the rearrangeable
binary network, the remaining network is also a rearrangeable
network. Together, propositions 4 and theorem 4 imply that
after routing all the matches in a Conforming Permutation
in the rearrangeable (2, 𝑁/2, 2) network, the permutations in
each middle stage switch form a smaller instance of the same
problem, i.e., two smaller Conforming Permutations of size
(𝑁/2) to be realized and two smaller rearrangeable networks
of size (2, 𝑁/4, 2), for which induction can be applied.
Theorem 5 (to be presented) will exploit these propositions to
bound the jitter and service lead/lag in the proposed resource
reservation algorithm.

A. Jitter Bound

Fig. 8 illustrates the methodology to determine bounds for
the worst-case service lead-lag and the worst-case jitter (ie

P(12,32)

P(6,16)

P(2,8)P(4,8)

P(3,4) P(1,4) P(2,4)

idle period

P(0,4)

P(6,16)

P(2,8) P(4,8)

P(2,4) P(1,4) P(3,4)

Fig. 8. Binary tree for the recursive scheduling problems.

IDT). In Fig. 8, each node in the binary tree represents a
scheduling problem 𝑃 (𝑀,𝐹), with an admissible traffic rate
matrix 𝑀 to be realized within a frame of size 𝐹 . Identify a
single flow between IO pair (𝑖, 𝑗) given traffic rate 𝑀(𝑖, 𝑗).
Consider the subproblem of scheduling this individual flow
within a frame, denoted 𝑃𝑓 (𝑀(𝑖, 𝑗), 𝐹).

We first give an informal description of the methodology.
The use of the Perfect-Shuffle permutation results in a ’rela-
tively fair’ but not perfectly fair partitioning of one GR traffic
rate matrix into 2 GR traffic rate matrices. In Fig. 8, the root
node represents a scheduling problem 𝑃𝑓 (12, 32), with 12
match requests to be realized in a frame of size 𝐹 = 32 time-
slots. In the first partitioning, these matches are split fairly
with 6 matches going to each node in level 2 of the tree.
In the 2nd level of the tree, the worst-case partitioning has
4 matches going to each of the outer nodes, and 2 matches
going to each of the inner nodes. The worst-case idle period
occurs at level 4 of the tree, when two adjacent innermost
leaves each receive 0 match requests. The two leaves adjacent
to the idle nodes must be non-empty due to the relatively fair
partitioning, but may have as little as one match request each.
Therefore, the worst-case idle period corresponds to a time
duration equal to < 4 leaf nodes, ie < 8 IIDT.

Due to the use of the Perfect-Shuffle permutation, we cannot
partition 2 match requests with any fairer resolution, and
therefore there is no point to extend this binary tree to levels
beyond 4. The maximum Service Lag occurs at the end of a

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

SZYMANSKI: A LOW-JITTER GUARANTEED-RATE SCHEDULING ALGORITHM FOR PACKET-SWITCHED IP ROUTERS 3455

worst-case idle period, and equals one half of the worst-case
idle period plus any additional service deficits incurred due to
the imperfect partitioning at any ancestors in the tree.

Theorem 5: Given a rearrangeably nonblocking network
(2, 𝑁/2, 2) and a quantized 𝑁𝑥𝑁 traffic rate matrix with
rates 𝑅(𝑖, 𝑗) which has been mapped onto a Conforming
Permutation of size 𝑁𝐹 using the 𝐿𝑀 algorithm, after
routing all match requests in the Conforming Permutation
using the 𝐿𝐵𝐿 algorithm and extracting the resulting frame
schedule, then for each class of flows with 𝑚 match requests,
1 ≤ 𝑚 ≤ 𝐹 , the expected IDT will equal the IIDT, and the
maximum idle period is bounded, ie 𝑚𝑎𝑥(𝐼𝐷𝑇) ≤ 8 IIDT.
The proof requires an identity and 3 lemmas.

Identity: Floor(𝑎+ 𝑏) = floor (𝑎) + 𝑏, for all integers 𝑏.
Lemma 1: Given 𝑛 match requests to be realized in

a scheduling problem 𝑃𝑓 (𝑛, 𝐹), after one ’relatively fair’
partitioning, the number of match requests allocated to each
subproblem, denoted 𝑛′, is equal to at least 𝑛1 and at most
𝑛2, where 𝑛1 = ⌈𝑛/2⌉ − 1 and 𝑛2 = ⌊𝑛/2⌋+ 1 :

⌈𝑛/2⌉ − 1 ≤ 𝑛′ ≤ ⌊𝑛/2⌋+ 1(10)

Proof: There are 2 cases to consider, 𝑛 even and 𝑛 odd.
Referring to Fig. 6, for each case there are 2 subcases to
consider, wherein the 𝑛 contiguous match requests start on an
even (or odd) pin of the Baseline network. By exhaustively
examining all 4 cases, the lemma is seen to be true. ∙

Lemma 2: Given 𝑅 match requests to be realized in a
scheduling problem 𝑃𝑓 (𝑅,𝐹), where 𝑅 = 2𝑗𝑎 + 𝛿 where
𝛿 = 0, 1, , 2𝑗 − 1, after 𝑗 relatively fair partitions, the number
of match requests 𝑛 allocated to each scheduling subproblem
(or partition) is equal to at least 𝑎 − 1 and at most 𝑎+ 2, ie
(𝑎− 1) ≤ 𝑛 ≤ (𝑎+ 2), where 𝑎 = ⌊𝑅/2𝑗⌋ .

Proof: The proof is by induction: Assume that lemma 2 is
true for 𝑗 partitions. Consider a leaf node after 𝑗 partitions,
with 𝑛 match requests. There are 2 extremal cases to consider
for the (𝑗+1)−𝑡ℎ partition: the ’deficit’ case where 𝑛 = 𝑎−1
and the ’surplus’ case where 𝑛 = 𝑎+2. For each case there are
2 subcases to consider, the case where 𝑎 is even and 𝑎 = 2𝑎′,
and the case where 𝑎 is odd and 𝑎 = 2𝑎′ + 1.

Case (1) Deficit with even 𝑎 (𝑛 = 𝑎− 1 and 𝑎 = 2𝑎′): By
lemma 1, 𝑛′ ≥ ⌈𝑛/2⌉−1 = 𝑎′−1 and 𝑛′ ≤ ⌊𝑛/2⌋+1 = 𝑎′+2.
Observe that 𝑎 = ⌊𝑅/2𝑗⌋ and 𝑎′ = ⌊𝑅/2𝑗+1⌋ and the lemma
is true.

Case (2) Surplus with even 𝑎 (𝑛 = 𝑎+2 and 𝑎 = 2𝑎′): By
lemma 1, 𝑛′ ≥ ⌈𝑛/2⌉− 1 = 𝑎′ and 𝑛′ ≤ ⌊𝑛/2⌋+1 = 𝑎′ +2.
Observe that 𝑎′ = ⌊𝑅/2𝑗+1⌋ and the lemma is true.

Case (3) Deficit with odd 𝑎 (𝑛 = 𝑎−1 and 𝑎 = 2𝑎′+1): By
lemma 1, 𝑛′ ≥ ⌈𝑛/2⌉−1 = 𝑎′−1 and 𝑛′ ≤ ⌊𝑛/2⌋+1 = 𝑎′+1.
Observe that 𝑎′ = ⌊𝑅/2𝑗+1⌋ and the lemma is true.

Case (4) Surplus with odd 𝑎 (𝑛 = 𝑎+2 and 𝑎 = 2𝑎′+1): By
lemma 1, 𝑛′ ≥ ⌈𝑛/2⌉−1 = 𝑎′+1 and 𝑛′ ≤ ⌊𝑛/2⌋+1 = 𝑎′+2.
Observe that 𝑎′ = ⌊𝑅/2𝑗+1⌋ and the lemma is true. In all
cases, the Lemma holds true ∙

Lemma 3: Given 𝑅 matches to be realized in a schedul-
ing problem 𝑃𝑓 (𝑅,𝐹), after 𝑗 = ⌊𝑙𝑜𝑔2𝑅⌋ ’relatively fair’
partitions, the number of match requests 𝑛 allocated to each
scheduling sub-problem is equal to at most 4 and at least 0,
ie 0 ≤ 𝑛 ≤ 4 .

Proof. The proof follows from lemma 2. By lemma 2, (𝑎−
1) ≤ 𝑛 ≤ (𝑎 + 2). Observe that 𝑎 = ⌊𝑅/2𝑗⌋ and since 𝑗 =
⌊𝑙𝑜𝑔2𝑅⌋ then 1 ≤ 𝑎 ≤ 2 . Therefore, 0 ≤ 𝑛 ≤ 4. ∙

Lemma 3 establishes upper and lower bounds on the number
of match requests allocated to a scheduling subproblem,
equivalently a node in a binary tree, after 𝑗 partitions. Observe
that the expected number of requests allocated per leaf node
is 𝑅/2𝑗.

Proof of Theorem 5: To establish Theorem 5 consider
the problem of scheduling any individual flow with 𝑅 match
requests in a frame of size 𝐹 . By lemma 3, after 𝑗 = ⌊𝑙𝑜𝑔2𝑅⌋
partitions the number of match requests allocated to each leaf
of the binary tree is between 0 and 4. Furthermore, observe
that any node one level up the tree must have at least 1 match
request. Therefore, a leaf node with 0 match requests must
have a neighboring sibling node with > 0 match requests.
Therefore, the worst-case idle period must have 2 consecutive
leaf nodes containing 0 match requests each. In the worst-
case, each neighboring node may have only 1 match request,
and this request may occur in such a way to prolong the
idle period. By lemma 3, in the worst-case each leaf node
corresponds to time duration equal to 2 IIDTs. Therefore, the
worst-case idle period is bounded by 8 IIDT time-slots. ∙

Theorem 6: The worst-case service lag is 𝑂(𝑙𝑜𝑔𝑁𝐹) IIDT
time-slots.

Proof: The worst-case service lag occurs when 2 consec-
utive leaf nodes have zero requests creating the worst-case
idle period. By lemma 3, a service lag in the first half of
the idle period must be preceded by a service lead which
will negate much of the service lag. Therefore, the worst-case
service lag occurs in the last half of the worst-case idle period.
The worst-case cumulative service deficit prior to the worst-
case idle period is 𝑂(𝑙𝑜𝑔𝑁𝐹) cells, and this occurs when
the maximum number of ancestor nodes receive 2 less match
requests than in the ideal partition, as established in lemma
3. The worst-case service lag is therefore 𝑂(𝑙𝑜𝑔𝑁𝐹) IIDT
time-slots ∙

B. Extensions

Theorem 7: The idle period bound of 𝐾 IIDT and service
lag bound of 𝑂(𝑙𝑜𝑔𝑁𝐹) IIDT also apply to any individual
flow which shares a VOQ or a transmission link with other
flows.

Proof. Observe that the match requests associated with any
one flow traversing a VOQ will be mapped onto contiguous
input pins in the rearrangeable network by the LM algorithm.
Therefore, in any relatively fair partition in the RFSMD
algorithm, the match requests associated with any one flow
will be split relatively evenly over both halves of the BRN.
Therefore, lemmas 1-3 and theorems 4 and 5 apply, when the
IIDT for the individual flow is used. ∙

Observe that given the LM algorithm, the match requests
associated with any one flow can start on even or odd pins in
the rearrangable network. The IDT bound for individual flows
can be reduced by using a more complex mapping algorithm.
Consider a variation of the LM algorithm called the ’Even-
Odd-Mapping’ (EOM) algorithm, which processes all flows
in one VOQ with an even number of match requests first,
followed by the flows with an odd number of match requests.

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

3456 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 11, NOVEMBER 2009

Theorem 8: The IDT bound for an individual flow which
shares a VOQ or a transmission link with other flows is
bounded by 4 IIDT, when the EOM mapping algorithm is
used.

Proof: After any partitioning step, all the match requests
associated with any one flow must start their mapping onto
an even pin in the rearrangeable network. It follows that the
partitioning through the baseline network and lemma 1 are
changed so that ⌊𝑛/2⌋ ≤ 𝑛1 ≤ ⌊𝑛/2⌋ + 1, lemmas 2 and 3
change accordingly, and the bound in Theorem 5 is reduced
to 4 IIDT. ∙

C. Time-Complexity

The traffic rate matrix for a backbone IP router is incre-
mentally updated by the RSVP, IntServ or DiffServ protocol
as GR connections are established, removed or modified in a
switch. Relatively small increases to the GR for an IO pair
(𝑖, 𝑗) can be made by a search of the existing schedule for
idle slots. The time complexity of such an incremental change
is 𝑂(𝐹). A complete recomputation of the schedule requires
that the traffic rate matrix be mapped to a permutation, which
incurs 𝑚𝑎𝑥(𝑂(𝑁2), 𝑂(𝑁𝐹)) time. This mapping can be
accomplished incrementally as the traffic rates change, so that
this term has negligible effect. The RFSMD algorithm incurs
a serial complexity of 𝑂(𝑁𝐹𝑙𝑜𝑔(𝑁𝐹)) time to compute 𝐹
permutations, or equivalently 𝑂(𝑁𝑙𝑜𝑔𝑁𝐹) time to compute 1
permutation. This time complexity per permutation is consid-
erably better than those for all existing GR schedulers and all
suboptimal maximal matching schedulers. Assuming an 8x8
switch, a link rate of 40Gbps and a frame size of 𝐹 = 1𝐾
time-slots, the scheduling frame rate is 76.3 KHz. However, in
an IP router the provisioned traffic rates will change relatively
slowly, and the rate at which new schedules are recomputed
is expected to be much lower, ie 100 to 1000 times per
second. At this rate, bandwidth can even be provisioned for
individual video frames in an IPTV stream (at 33 frames
per second) or individual talk-spurts in a VOIP stream. The
RFSMD algorithm has the same structure as the well-known
FFT algorithm. Intel projects the performance of its multi-core
processors to be 100,000 MIPS by 2010 (www.intel.com).
With this performance, we estimate that a standard laptop
multi-core CPU chip can compute new schedules at the rate
of 100 KHz, which is considerably faster than the maximum
estimated recomputation rate of 100 to 1000 Hz. A multiple
processor- chip or FPGA implementation will be considerably
faster.

VI. EXPERIMENTAL RESULTS

A network model was developed and simulated to obtain
experimental results, to demonstrate Theorems 4-8. A linear
chain of 16 IP routers employing IQ switches was established,
as shown in Fig. 9. Each IQ switch has size 8x8. All 8 output
links from router 𝑗 lead to router 𝑗 +1. The line rate is fixed
at 40 Gbps, and the frame length 𝐹 is fixed at 1K time-slots,
such that each time-slot reservation results in a guaranteed
bandwidth of 40 Mbps. A traffic model which essentially
saturates every IQ switch in the chain was developed. At router

...

IQ Switch
#1

IQ Switch
#2

...

...

IQ Switch
#16

...

Fig. 9. Linear chain of 16 IQ switches with 193 competing traffic flows.

1, 193 traffic flows arrive at the incoming links with an average
of 24.125 traffic flows arriving on each input link.

Each traffic flow represents a multimedia stream, with a
randomly selected guaranteed traffic-rate in increments of 40
Mbps. The traffic rates on all 193 arriving traffic flows were
selected to essentially saturate the input links of the first 8x8
switch; each link has an average load of 99.6 %. To saturate
the network, all 193 flows are routed through the linear chain
of 16 IQ switches, such that all 193 traffic flows exit the
output side of the last switch 16. A backtracking routing
algorithm was created to route the traffic flows. Once a path
for a flow through the linear chain was found, the path was
fixed and a new flow would be routed. Observe that many
individual flows are statistically multiplexed onto each link.
The number of competing traffic flows traversing each link
varies from a low of 20 to a high of 28 flows. Competing
flows may share several links, they may diverge, and they
may converge on other downstream link(s) again. Each IQ
router reserves on average 99.6% of available bandwidth on
every IO link, an extremely high loading, while operating at
unity speedup. Several network models were developed and
simulated with various switch sizes (4x4, . . ., 1Kx1K), various
frame sizes (𝐹 = 32, . . . , 4𝐾), various lengths (up to 64
switches), various numbers of flows (up to 4K) and various
topologies, all operating at essentially 100% throughput, and
all yielded essentially identical results to be described next.

Fig. 10(a) illustrates the observed service lead/lag for each
individual traffic flow, as described in Theorem 6. The lead/lag
curves for all 193 flows in all 16 switches (ie 3,088 curves)
are plotted on the same graph. These curves correspond to the
service lead/lag plot of Fig. 7 (in Fig. 7 each flow represents
the aggregated traffic flowing through one VOQ). The ideal
service curve is the solid 45-degree diagonal. In Fig. 10(a), the
dashed lines above and below the main diagonal correspond
to service leads/lags of 4 IIDT. According to Fig. 10(a), the
observed Service Lead/Lags are within 4 IIDT, consistent with
the upper bound in Theorem 6.

Fig. 10(b) plots the observed end-to-end delay PDF for all
193 flows when leaving switch 16. The end-to-end delay has
an average value of 16 IIDT, with a minimum of 10 IIDT and
a maximum of 34 IIDT, a relatively wide spread. Fig. 10(c)
plots the deviation from the mean end-to-end delay for each
flow, for all 193 flows. The mean delays were normalized to
0 on the x-axis, and the deviations are expressed in IIDTs.
Observe that every flow exhibits a very small delay deviation
about its mean, within 2 IIDT. This graph indicates that every

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

SZYMANSKI: A LOW-JITTER GUARANTEED-RATE SCHEDULING ALGORITHM FOR PACKET-SWITCHED IP ROUTERS 3457

(a) Service lead and lag curves. (b) End-to-end delay PDF. (c) Deviation of end-to-end delay from mean.

Fig. 10.

flow receives a very low end-to-end network-introduced delay
jitter, which can be easily filtered out using a playback buffer.
Fig. 11(a) plots the observed IDT PDF for all 193 flows when
leaving switch 1. Fig. 11(b) plots the experimentally observed
IDT PDF for all 193 flows when leaving switch 16. All flows
leaving any IQ switch exhibit a bounded IDT jitter which is
+/- 4 IIDT time-slots, consistent with theorem 8. Fig. 11(c)
plots one cumulative IDT PDF for all flows, which indicates
that every cell waits on average 1 perfect IIDT for service,
the ideal waiting time.

Fig. 11(d) illustrates the PDF for the number of cells per
flow which are queued in any VOQ in any switch. The results
for all 193 flows and all 16 IQ switches are presented on
one plot, ie 3,088 PDFs are plotted. The average number
of buffered cells per flow per router is 1.45. The maximum
number of cells buffered per flow was 7 cells, although this is
quite rare. We emphasize that these results are based upon a
linear chain of IQ switches operating at essentially 100% load,
with 193 traffic flows competing for service over 8 incoming
links in each of 16 switches. Even at this high load, every
end-to-end flow receives essentially-perfect QoS, ie it receives
its guaranteed-rate with near-minimal average queueing delays
and near-minimal network-introduced delay jitter.

A. Buffer Sizing in IP Routers

Existing IP routers must use large buffers to keep the
transmission pipelines active. Commercial IP routers currently
follow a well-established design rule called the ’classical
buffer rule’, where each link requires a buffer of capacity
𝐵 = 𝑂(𝐶 ⋅ 𝑇) bits, where 𝐶 is the link capacity and 𝑇 is
the round-trip time of the flows traversing the link [39]. This
buffer size will generally avoid depleting the queue in an IP
router and will keep the transmission pipeline active. Given
a 40 Gbps link transporting TCP flows with a 250 millisec
round-trip time, then 𝐵 is roughly five million IP packets [39],
or equivalently several tens of millions of fixed-sized cells.

A ’small buffer rule’ was proposed in [39], where 𝐵 =
𝑂(𝐶 ⋅ 𝑇/𝑁1/2) , and where 𝑁 is the number of long-lived
TCP flows traversing the router. Using the same parameters,
the small buffer size 𝐵 is roughly fifty thousand IP packets
[39] or several hundred thousand cells. More recently, [42]
proposed a ’tiny buffer rule’ where 𝐵 = 𝑂(𝑙𝑜𝑔𝑊), where
𝑊 is the maximum TCP congestion window size. Using

the same parameters, average buffer sizes of between 20-
50 IP packets or between several hundred and one thousand
cells may suffice if (a) the jitter of incoming traffic at the
source node is sufficiently small and bounded, (b) the IP
routers introduce a sufficiently small jitter, and (c) 10-15% of
the throughput is sacrificed. However, [43][44] have argued
that small buffers may cause significant losses, instability or
performance degradation at the application layer. Furthermore,
the design of a scheduling algorithm for IQ routers with low
jitter and unity speedup is in itself a significant unsolved
problem [12-38]. In summary, there are significant problems
when using existing schedulers and the inherently high jitter
TCP flow control protocol in IP networks.

Fig. 11(d) illustrates that the proposed low-jitter RFSMD
scheduling algorithm results in extremely low amounts of
buffering. Each flow buffers 1.445 cells per IP router on aver-
age, several orders of magnitude less buffering than existing
IP routers. Rigorous bounds on the buffer requirements are
presented in [51].

B. Applications

Consider an IP/MPLS domain where variable-size IP pack-
ets are fragmented into fixed-size cells upon entry and re-
constructed upon exit of the domain, and where the RFSMD
algorithm is used to schedule traffic through each router. Each
router will only need to buffer a small number of cells in
its VOQs, to guarantee that the transmission pipeline never
becomes idle. Cells will be transported along the end-to-end
path with near minimal queueing delays. If a playback buffer is
used at the destination to filter out residual network-introduced
jitter, traffic can be delivered with essentially-zero network-
introduced delay jitter. In [49], it is shown that supercom-
puter traffic can be delivered across a Fat-Tree network with
essentially-zero network-introduced delay jitter, with near-
optimal queueing delays, with 100% load and no speedup.
In [50], it is shown that bursty leaky-bucket constrained IPTV
traffic can be multicast across the Internet with essentially-zero
network-introduced delay jitter, with near-optimal queueing
delays, with 100% load and no speedup. In [52][53] it is
shown that traffic can be scheduled between Base-Stations
in infra-structure based multihop Wireless Mesh Networks
with essentially-zero network-introduced delay jitter, with
near-optimal queueing delays, with 100% throughput and no
speedup. Finally, the RFSMD algorithm can also be used

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

3458 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 11, NOVEMBER 2009

(a) IDT PDF leaving switch #1. (b) IDT PDF leaving switch
#16.

(c) Cumulative IDT PDF, all
193 flows, all 16 switches.

(d)

(d) PDF, number queued cells
per flow per router.

Fig. 11.

to schedule traffic through a crosspoint buffered crossbar
switch with zero or one cell buffer at each crosspoint. Each
permutation from the RFSMD algorithm can be processed so
that the writes to the crosspoint buffers occur at time-slot t,
and the reads from the crosspoint buffers occur in the time-
slots t or t+1. In this case, the maximum buffer size at any
crosspoint to ensure 100% throughput is 0 or 1 cell, and the
same IDT and service lag bounds developed herein apply.

VII. CONCLUSIONS

A low-jitter Guaranteed-Rate scheduling algorithm for
packet-switched IP routers has been presented. An IntServ,
DiffServ or RSVP protocol can be used to reserve bandwidth
and buffer-space for guaranteed-rate traffic in each router
along an end-to-end path of IP/MPLS-routers. The proposed
RFSMD algorithm can be used to schedule each router to meet
rate and delay guarantees for all admissible traffic patterns
and all loads up to 100 %. The RFSMD scheduling algorithm
naturally supports multicast traffic, which can be specified
along with non-multicast traffic in the traffic rate matrix.
The algorithm applies to IQ switches without speedup, OQ
switches without speedup, combined CIOQ switches without
speedup, and to switches with combined input and crosspoint
queueing without speedup. Each packet-switched router acts
as an essentially-transparent programmable circuit switch for
guaranteed-rate traffic, where the average queueing delay per
router is bounded by a small number of ideal cell delays
(typically several IIDT). The jitter and service lag per router
are also bounded by a small number of IIDTs. In a large
IP/MPLS network, bounds on the end-to-end delay, jitter and
service lag are presented in [51]. When an appropriately-sized
playback buffer is employed, essentially-zero delay jitter can
be achieved on an end-to-end path in any IP/MPLS network
for all shaped traffic flows [51]. The algorithm can be used to
schedule low-jitter traffic in crossbar-based packet-switches,
satellite packet systems, all-optical packet switches, frame-
relay systems, wireless networks and other related systems,
to provide near-perfect end-to-end QoS with rate and delay
guarantees and essentially-zero jitter. Applications of the al-
gorithm to provision time-sensitive telerobotic control systems
such as telerobotically-controlled surgery [1] over a saturated
Internet backbone network are presented in [54]. Optimized
software and hardware implementations are being developed.

ACKNOWLEDGEMENT

The thoughtful questions of the reviewers are acknowl-
edged. Financial support is acknowledged from the Ontario

Centers of Excellence and the Red Wilson/Bell Canada Chair
in Data Communications for the testing of the RFSMD algo-
rithm at McMaster University. The algorithm was developed
by THS Technologies.

REFERENCES

[1] Cisco News Release, “Bell Canada uses CISCO technology to help
deliver surgical grade network to power historic telerobotics assisted
surgery,” Mar. 2003. [Online]. Available: www.cisco.com

[2] Cisco Systems White Paper, “Optimizing video transport in your IP
triple play network,” 2006. [Online]. Available: www.cisco.com

[3] M. Hluchyi, M. Karol, and S. Morgan, “Input versus output queueing
on a space division switch,” IEEE Trans. Commun., vol. 35, 1987.

[4] R. Cruz, “A calculus for network delays—part 1: network elements in
isolation,” IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 114-131, Jan.
1991.

[5] R. Cruz, “A calculus for network delays—part 2: network delay,” IEEE
Trans. Inf. Theory, vol. 37, no. 1, pp. 132-141, Jan. 1991.

[6] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated service networks: the single node
case,” IEEE/ACM Trans. Networking, vol. 1, pp. 344-357, 1993.

[7] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated service networks: the multiple
node case,” IEEE/ACM Trans. Networking, vol. 2, no. 2, pp. 137-150,
1994.

[8] V. Anantharam, N. McKeown, A. Mekittikul, and J. Walrand, “Achiev-
ing 100% throughput in an input queued switch,” IEEE Trans. Commun.,
vol. 47, no. 8, pp. 1260-1267, 1999.

[9] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “Bounds on the
delay and queue lengths in input-queued cell switches,” J. ACM, vol.
50, no. 4, pp. 520-550, July 2003.

[10] S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
output queueing with a combined input/output-queued switch,” IEEE J.
Sel. Areas Commun., vol. 17, no. 6, pp. 1030-1039, June 1999.

[11] N. Nabeshima, “Performance evaluation of a combined input and
crosspoint queued switch,” IEICE Trans. Commun., vol. E83-B, no. 3,
pp. 737-741, Mar. 2000.

[12] C. E Koksal, R. G. Gallager, and C. E. Rohrs, “Rate quantization and
service quality over single crossbar switches,” in Proc. IEEE Infocom.,
2004.

[13] P. Gopya and H. M. Vin, “Generalized guaranteed rate scheduling
algorithms: a framework,” IEE/ACM Trans. Networking, vol. 5, no. 4,
pp. 561-571, Aug. 1977.

[14] I. Keslassy, M. Kodialam, T. V. Lakshamn, and D. Stiliadis, “On
guaranteed smooth scheduling for input-queued switches,” IEEE/ACM
Trans. Networking, vol. 13, no. 6, Dec. 2005.

[15] M. S. Kodialam, T. V. Lakshman, and D. Stilladis, “Scheduling of
guaranteed-bandwidth low-jitter traffic in input-buffered switches,” US
Patent Application 20030227901, 2003.

[16] M. Hall, Combinatorial Theory. Waltham, MA: Blaisdell.
[17] V. E. Benes, Mathematical Theory of Connecting Networks and Tele-

phone Traffic. Academic Press, 1965.
[18] F. K. Hwang, The Mathematical Theory of Nonblocking Switching Net-

works,” World Scientific Series on Applied Mathematics. New Jersey:
1998.

[19] A. Jajszczyk, “Nonblocking, repackable and rearrangeable Clos net-
works: fifty years of the theory evolution,” IEEE Commun. Mag., pp.
28-33, Oct. 2003.

[20] J. S. Turner and R. Melen, “Multirate Clos networks: 50Th anniversary
of Clos networks,” IEEE Commun. Mag., pp. 38-44, 2003.

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

SZYMANSKI: A LOW-JITTER GUARANTEED-RATE SCHEDULING ALGORITHM FOR PACKET-SWITCHED IP ROUTERS 3459

[21] T. Inukai, “An efficient SS/TDMA time slot assignment algorithm,”
IEEE Trans. Commun., no. 10, pp. 1449-1455, 1979.

[22] T. Weller and B. Hajek, “Scheduling nonuniform traffic in a packet
switching system with small propagation delay,” IEEE/ACM Trans.
Networking, vol. 5, no. 6, pp. 813-823, 1997.

[23] A. Hung, G. Kesidis, and N. McKeown, “ATM input buffered switches
with guaranteed rate property,” in Proc. IEEE ISCC, 1998.

[24] B. Towles and W. J. Dally, “Guaranteed scheduling for switches with
configuration overhead,” IEEE Trans. Networking, vol. 11, no. 5, pp.
835-847, Oct. 2003.

[25] W. J. Chen, C.-S. Chang, and H.-Y. Huang, “Birkhoff-von Neumann
input buffered crossbar switches,” in Proc. IEEE Infocom, 2000.

[26] C.-S. Chang, W. J. Chen, and H.-Y. Huang, “On service guarantees for
input buffered crossbar wwitches: a capacity decomposition approach
by Birkhoff and von Neuman,” in Proc. IEEE iWQoS, pp. 79-86, 1999.

[27] S. R. Mohanty and L. N. Bhuyan, “Guaranteed smooth switch schedul-
ing with low complexity,” in Proc. IEEE Globecom, 2005, pp. 626-630.

[28] M. C. Paull, “Reswitching of connection networks,” Bell Syst. Tech. J.,
vol. 41, pp. 833-855, 1962.

[29] D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable
switching networks—part I: control algorithm,” Bell Syst. Tech. J., vol.
5O, no. 5, pp. 1579-1600, May-June 1971.

[30] S. Andresen, “The looping algorithm extended to base 2 rearrangeable
switching networks,” IEEE Trans. Commun., vol. vol. 25, no. 10, pp.
1057-1063, Oct. 1977.

[31] F. Hwang, “Control algorithms for rearrangeable Clos networks,” IEEE
Trans. Commun., vol. 31, pp. 952-954, Aug. 1983.

[32] J. Gordon and S. Srikanthan, “Novel algorithm for Clos-type networks,”
IEEE Electron. Lett., vol. 26, no. 21, pp. 1772-1774, Oct. 1990.

[33] Y. K. Chiu and W. C. Siu, “Comment: novel algorithm for Clos-type
networks,” IEEE Electron. Lett., vol. 27, no. 6, pp. 524-526, Mar. 1991.

[34] H. R. Ramanujam, “Decomposition of permutation networks,” IEEE
Trans. Comput., vol. C-22, pp. 639-643, July 1973.

[35] M. Kubale, “Comments on decomposition of permutation networks,”
IEEE Trans. Comput., vol. C-31, pp. 265, Mar. 1982.

[36] A. Jajszczyk, “A simple algorithm for the control of rearrangeable
switching networks,” IEEE Trans. Commun., vol. 33, pp. 169-171, Feb.
1985.

[37] C. Cardot, “Comments on a simple control algorithm for the control of
rearrangeable switching networks,” IEEE Trans. Commun., vol. 34, p.
395, Apr. 1986.

[38] J. D. Carpinelli and A. Y. Oruc, “A nonbacktracking matrix decompo-
sition algorithm for routing on Clos networks,” IEEE Trans. Commun.,
vol. 41, no. 8, pp. 1245-1251, Aug. 1993.

[39] Y. Ganjali and N. McKeown, “Update on buffer sizing in Internet
routers,” ACM Sigcomm Comp. Commun. Rev., vol. 36, no. 5, pp. 67-70,
Oct. 2006.

[40] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in Proc. Sigcomm, pp. 281-292, ACM Press, 2004.

[41] G. Raina and D. Wishick, “Buffer sizes for large multiplexers: TCP
queueing theory and instability analysis,” in Proc. EuroNGI, Apr. 2005.

[42] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
“Routers with very small buffers,” in Proc. IEEE Infocom., Apr. 2006

[43] A. Dhamdhere and C. Dovrolis, “Open issues in router buffer sizing,”
ACM/SIGCOMM Comp. Commun. Rev., vol. 36, no. 1, pp. 87-92, Jan.
2006.

[44] G. Vu-Brugier, R. S. Stanojevic, D. J. Leith, and R. N. Shorten, “A

critique of recently proposed buffer sizing strategies,” ACM/SIGCOMM
Comp. Commun. Rev., vol. 37, no. 1, pp. 43-47, May 2007.

[45] T. H. Szymanski, “QoS switch scheduling using recursive fair stochastic
matrix decomposition,” in Proc. IEEE High Performance Switching and
Routing (HPSR) Conf., 2006, pp. 417-424.

[46] T. H. Szymanski, “Method and apparatus to schedule packets through
a crossbar switch with delay guarantees,” US Patent Application, sub-
mitted.

[47] T. H. Szymanski and C. Feng, “Randomized routing of virtual connec-
tions in an essentially nonblocking log N-depth network,” IEEE Trans.
Commun., vol. 43, no. 9, pp. 2521-2531, Sep. 1995.

[48] T. H. Szymanski and D. Gilbert, “Delivery of guaranteed rate internet
traffic with very low delay jitter,” in Proc. IEEE Pacific Rim Conf.
Control, Commun. Signal Processing, Aug. 2007, pp. 450-455.

[49] T. H. Szymanski and D. Gilbert, “Low-jitter guaranteed-rate commu-
nications for cluster computing systems” (invited), Pacific Rim Special
Issue, Int. J. Computer Networks Distributed Syst., vol. 2. no. 1, pp.
140-160, 2008.

[50] T. H. Szymanski and D. Gilbert, “Internet multicasting of IPTV with
essentially zero delay fitter,” IEEE Trans. Broadcast., vol. 55, no. 1, pp.
20-30, Mar. 2009.

[51] T. H. Szymanski, “Bounds on the end-to-end delay and jitter in input-
buffered and internally buffered IP networks,” in Proc. IEEE Sarnoff
Symposium, Apr. 2009.

[52] T. H. Szymanski, “A conflict-free low-jitter guaranteed rate MAC
protocol for base-station communications in a wireless mesh network.”
in Proc. Int. Conf. Accessnets, Oct 2008.

[53] T. H. Szymanski, “Throughput and QoS optimization in nonuniform
wireless mesh networks,” in Proc. ACM Int. Workshop Q2SWINET, Nov.
2008, pp. 9-19.

[54] T. H. Szymanski and D. Gilbert, “Provisioning mission-critical teler-
obotic control systems over Internet backbone networks with essentially-
perfect QoS,” submitted.

Ted H. Szymanski completed a BaSc. in En-
gineering Science and the MaSc. and Ph.D. de-
grees in Electrical Engineering at the University of
Toronto. He has held faculty positions at Columbia
University in New York, where he was affiliated
with the Center for Telecommunications Research
(CTR), and McGill University in Montreal, where
he was affiliated with the Canadian Institute for
Telecommunications Research (CITR). From 1993
to 2003, he was a principle architect in a national
research program on Photonic Systems funded by

the Canadian Networks of Centers of Excellence (NCE) program. The
program brought together significant industrial and academic collaborators,
including Nortel Networks, Newbridge Networks (now Alcatel), Lockheed-
Martin/Sanders, Lucent Technologies, and McGill, McMaster, Toronto, and
Heriot-Watt Universities. The program demonstrated a free-space “intelligent
optical backplane” exploiting emerging optoelectronic technologies, with
1,024 micro-optic laser channels per square centimeter of bisection area, for
which he holds two patents. He currently holds the Red Wilson / Bell Canada
Chair in Data Communications at McMaster University. His current interests
include switching, scheduling, and network QoS for emerging telemedicine
and telerobotic control systems. He has consulted for several companies and
has served as the Associate Chair (undergraduate) and the undergraduate
student advisor in the ECE Department.

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:53 from IEEE Xplore. Restrictions apply.

