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Abstract—We present a novel distributed scheduling paradigm for Internet routers with input-queued (IQ) switches, called cooperative

token ring (CTR), that provides significant performance improvement over existing scheduling schemes with comparable complexity.

Many classical schedulers for IQ switches employ round-robin arbiters, which can be viewed as noncooperative token rings, where a

separate token is used to resolve contention for each shared resource (e.g., an output port), and each input port acquires a token

oblivious of the state of other input ports. Although classical round-robin scheduling schemes achieve fairness and high throughput for

uniform traffic, under nonuniform traffic, the performance degrades significantly. We show that by using a simple cooperative

mechanism between the otherwise noncooperative arbiters, the performance can be significantly improved. The CTR scheduler

dynamically adapts to nonuniform traffic patterns and achieves essentially 100 percent throughput. In addition, our proposed CTR

scheduling paradigm can amortize the arbitration time over multiple time slots such that tokens are exchanged only on an as-needed

basis. The proposed cooperative mechanism is conceptually simple and is supported by experimental results. To provide adequate

support for rate guarantees in IQ switches, we present a weighted CTR, a simple hierarchical scheduling mechanism. Finally, we

analyze the hardware complexity introduced by the cooperative mechanism and describe an optimal hardware implementation for an

N �N switch with a time complexity of �ðlogNÞ and a circuit size of �ðN logNÞ per port.

Index Terms—Switch scheduling, quality of service, input-queued switch, parallel prefix.

Ç

1 INTRODUCTION

MOST commercial high-performance switches and
routers (e.g., CISCO 1200 [1] and BBN [2]) employ

input-queued (IQ) switches because output-queued
switches are difficult to build in practice. Although output
queuing provides optimal performance, for an N �N
switch, it requires the switching fabric and memory to run
up to N times faster than the line rate; unfortunately, for
large or for high-speed data lines, memories with sufficient
bandwidth are not available. In contrast, the fabric and the
memory of an IQ switch need to run only as fast as the
line rate, which makes input queuing very appealing for
switches with fast line rates or with a large number of
ports. Unfortunately, IQ switching can suffer from head-
of-line (HOL) blocking, which limits the throughput under
uniform traffic to just 58.6 percent, if each input maintains
a single FIFO queue [3].

The virtual output queuing (VOQ) architecture is
commonly used for avoiding HOL blocking such that each
input port maintains a separate queue for each output port
[4]. Fixed-length switching technology is widely accepted

for achieving high switching efficiency such that variable-
length IP packets are segmented into fixed-length cells at
each input port and are reassembled at each output port.

We assume fixed-length cell scheduling for the remainder
of this paper.

In the VOQ architecture, incoming cells are queued at
the input ports, and a scheduling algorithm configures the
switch fabric during each time slot. The scheduler essen-
tially computes a bipartite graph matching in each time
slot. The graph corresponding to the scheduling problem
has N source vertices that correspond to the N inputs of
the switch, and N sink vertices that correspond to the
outputs. An input and an output are connected by an edge
if the corresponding VOQ is not empty; thus, there are at
most N2 edges between source and sink vertices. A
matching M on this graph is any subset of the edges such
that no two edges in M have a common vertex; that is, at
most one cell is transferred from each input, and at most
one cell is received at each output.

In an N �N switch, the scheduler must examine the
contents of N2 VOQs and determine a conflict-free match-
ing. Although IQ scheduling can be optimally solved using
a maximum-weight matching algorithm [5], it requires a
runtime complexity of �ðN3Þ on a sequential model, which
makes the optimum algorithm prohibitively expensive.
Instead, most practical algorithms are based on simple
heuristics that aim at maximizing the number of connections
between inputs and outputs and attempt to achieve a
maximal match (e.g., iFair [6], iDRR [7], and FIFOMS [8]). A
maximal matching can be achieved by adding edges
incrementally, without removing edges made earlier in the
process. These schemes may use multiple iterations to
converge on a maximal matching and requireN iterations in
the worst case. Although these maximal matching algo-
rithms provide fairness, QoS support, and good throughput
for uniform traffic, the performance degrades for realistic
nonuniform traffic.
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In summary, it is a challenge to find a scheduling scheme

for IQ switches that meets the following requirements:

1. It provides high throughput, essentially 100 percent,
for both uniform and nonuniform traffic.

2. It provides rate guarantees for QoS traffic and
proportional bandwidth sharing.

3. It is readily implemented in hardware. Most prac-
tical schedulers are iterative with a hardware time
complexity of �ðlogNÞ per iteration, where N is the
size of the switch; usually, logðNÞ iterations are used
in practice [9].

A precise statement of our objective is the following: to

find an iterative scheduling algorithm for IQ switches that

achieves all the previous three requirements; i.e., it achieves

essentially 100 percent throughput for uniform and nonuni-

form traffic, it provides rate guarantees, and it has a

complexity comparable to existing iterative schedulers.
We present a solution, called the cooperative token ring

(CTR), that meets all these requirements. We emphasize that

almost all practical scheduling policies in the literature can

provide high throughput under uniform traffic; however,

under nonuniform traffic, the throughput usually degrades

significantly. In contrast, the proposed CTR solution dyna-

mically adapts to nonuniform traffic patterns and achieves

essentially 100 percent throughput.
This paper is organized as follows: Section 2 provides an

overview of related work on scheduling for IQ switches.

Section 3 provides an overview of the proposed CTR

scheduling paradigm. In Section 4, we present the algorithmic

details of the proposed CTR scheduler. We present a parallel

implementation of CTR in Section 5. The performance of CTR,

for best effort traffic, is evaluated by simulation in Section 6. In

Section 7, we examine the fairness of the proposed CTR

scheduler. We propose a two-level hierarchical scheduler, the

weighted CTR (WCTR) scheduler, which supports rate

guarantees and proportional bandwidth sharing in Section 8.

In Section 9, we provide an optimal hardware implementa-

tion for the proposed cooperative mechanism. Finally,

Section 10 provides our conclusions.

2 RELATED WORK

In an IQ switch, there are essentially two shared resources:

the switch fabric and the outgoing link. Arriving packets

are queued at the input ports of the switch, and they must

first contend for access to the switch fabric, before

contending for the outgoing link. A simple paradigm that

is commonly employed in implementing maximal matching

is using an input arbiter at each input port to resolve input

contention and an output arbiter at each output port to

resolve output contention such that a maximal match is

achieved by iteratively pairing inputs to outputs. Specifi-

cally, two schemes can be classified under this iterative

paradigm: the two-phase and three-phase schemes with

different implementation trade-offs. Initially, all the inputs

and outputs are not matched. A three-phase algorithm

comprises the following phases:

1. Request phase. Each unmatched input arbiter sends a
request to every output arbiter for which it has a
queued cell.

2. Grant phase. Each unmatched output arbiter resolves
output port contention by selecting only one of the
input requests and sending back a grant signal to the
selected input port.

3. Accept phase. Each input arbiter resolves input port
contention by accepting only one of the received
grants. It sends back an accept signal to the corre-
sponding output arbiter to confirm the match.

The previous phases are repeated until either a
maximal matching is found or a fixed number of
iterations are performed.

In a two-phase algorithm [10], each input arbiter sends at
most one request; subsequently, it receives at most one
grant signal, and the accept phase is not needed; for
example, the dual round-robin (DRR) algorithm [11] per-
forms the following two phases:

1. Request phase. Each unmatched input arbiter sends a
request to an output arbiter corresponding to the
first nonempty VOQ in a fixed round-robin order,
starting from the current pointer position. The
pointer remains at that nonempty VOQ if the request
is not granted in the second phase.

2. Grant phase. If an output arbiter receives one or more
requests, it grants the one that appears next in a
fixed round-robin order starting from the current
pointer position. The output arbiter notifies each
input port whether or not its request was granted.
The pointer of the output arbiter is incremented to
one location beyond the granted input port. If there
are no requests, the pointer’s position does not
change.

On one hand, a two-phase algorithm requires less
communication and is simpler to implement than a three-
phase algorithm; on the other hand, a three-phase algorithm
tends to converge to a maximal matching faster than a two-
phase algorithm. Consequently, with the same number of
iterations, a three-phase algorithm usually provides better
performance. For simplicity, we refer to all scheduling
schemes based on either the two-phase or three-phase
matching paradigm as �RGA.

Generally, most scheduling schemes based on the �RGA
scheduling paradigm could be viewed as employing
traditional token rings, where nodes in the ring correspond
to input arbiters that perform the request and accept phases
and where tokens correspond to output ports. A token that
is acquired by a node corresponds to an input port being
matched to an output port. The token rotation corresponds
to the case where a match is not confirmed between an input
port and an output port, and other potential matches are
then considered.

Anderson et al. [4] proposed Parallel Iterative Matching
(PIM), a three-phase algorithm that uses random selection at
each input and output arbiter. Although finding a maximal
matching using PIM may, in the worst case, takeN iterations,
it was shown that [4] under uniform independent identically
distributed (i.i.d.) traffic, the algorithm converges to a

352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 3, MARCH 2009

Authorized licensed use limited to: McMaster University. Downloaded on January 13, 2010 at 10:56 from IEEE Xplore.  Restrictions apply. 



maximal matching in �ðlogNÞ iterations; however, for a
single iteration, the throughput is limited to approximately
63 percent for uniform i.i.d. traffic.

McKeown proposed the iSLIP algorithm [9], which uses
rotating priority round-robin arbiters. Under uniform traffic,
the pointers used in the input and output arbiters (i.e., for the
grant and accept phases) tend to point to different ports
(desynchronize) such that each arbiter tends to point to a
different port compared to other arbiters and the largest
number of input and output ports tend to be matched.
Consequently, under uniform Bernoulli i.i.d. traffic, iSLIP
arbiters adapt to a time-division multiplexing scheme,
providing a perfect matching and 100 percent throughput
[9]. However, under nonuniform traffic, the pointers are not
necessarily desynchronized and the performance potentially
degrades—Chang et al. [12] showed, using a pathological
traffic pattern for a 3 � 3 switch, how iSLIP can get
trapped in “bad modes” such that the throughput is limited
to 66.67 percent.

In [13], a scheduling algorithm, FIRM, is proposed to
better approximate FCFS than iSLIP with a slight modifica-
tion to the grant phase of iSLIP. Although FIRM reduces
the absolute maximum waiting time for any request from
ðN � 1Þ2 þN2 for iSLIP to N2 at no additional implementa-
tion cost, its sustained throughput is essentially identical to
iSLIP under different traffic models; that is, the throughput
degrades under nonuniform traffic models.

McKeown [14] proposed a class of schedulers based on
weighted �RGA such that rather than using a 1-bit request,
a weight is assigned to each request. The grant phase selects
the request with the highest weight rather than using the
round-robin order. Different weight functions have been
proposed for this class of schedulers; for example, iLQF
uses the queue length as the weight, whereas iOCF assigns
an arrival time stamp to each cell, and the grant phase
selects the cell with the oldest age. The iLPF scheduling
algorithm [15] uses a weight for every VOQ that equals that
length of all cells at its input port (i.e., summation of the
occupancies of all the VOQs at this input) plus the
summation of all cells in the switch destined to the same
output (i.e., summation of all occupancies of all the VOQs at
other inputs destined to the same output). RPA [16] is also a
weighted heuristic scheduler where cells are selected based
on their urgency.

Although these weighted schedulers generally perform
better than nonweighted algorithms, they require complex
comparators rather than the simple round-robin arbiters
used in the nonweighted schedulers. To maintain the
occupancies of each VOQ, addition/subtraction computa-
tions need to be performed for every input port during
every time slot. In addition, some of these schemes like
iLQF could suffer from a starvation problem [14], and
algorithms like iOCF require computing a time stamp for
every single cell in the switch, which is expensive to
implement in hardware at high speeds (see [14, pp. 84-87]
for a discussion on the complexity of these weighted
schedulers).

Duan et al. [17] proposed a matrix unit cell scheduler

(MUCS) that is based on a weighted heuristic. In MUCS, a

matrix is computed where rows corresponds to inputs and

columns corresponds to outputs. The algorithm is iterative,

and during every iteration, an entry weight is computed for

each element in the matrix that is a weighted summation of

its row (input port) and column (cells destined to the same

output port). Subsequently, the element with the heaviest

weight is selected as the winner, ties are broken randomly,

and its corresponding row (input) is matched to its column

(output) and is removed from subsequent iterations of the

algorithm. The heaviest element in the matrix corresponds

to the cell with the least contending candidates (input and

output contention). By choosing the heaviest element first,

each iteration of MUCS renders the remaining elements

with the maximum number of scheduling opportunities.

On one hand, this algorithm tends to perform well under

several traffic models; on the other hand, the computation

performed per iteration is relatively complex as a weighted

addition of all inputs and outputs needs to be performed

and a comparator tree is required to select the element with

the heaviest weight. MUCS uses a mixed digital-analog

core for computing the element with the heaviest weight,

which alleviates some of this complexity but makes it

difficult to support QoS by setting each element’s initial

value to a single binary bit value. Also, note that unlike

�RGA algorithms, MUCS is inherently sequential in nature

in the sense that every iteration matches exactly one input

to one output, and consequently, it requires N iterations for

computing a maximal matching. In contrast, �RGA usually

matches several input-output pairs during every iteration

and on the average requires �ðlogNÞ iterations to converge

to a maximal matching. The sequential time complexity of

MUCS is �ðN3Þ.
Randomized scheduling algorithms have been proposed

for IQ switches [18] in an attempt to simplify the scheduling
problem and provide fairness. The basic idea of randomized
scheduling is to select the best matching from a set of
random matches. The best matching is defined to be the
matching with the maximum weight, where the weight of
each edge typically corresponds to the length of the
corresponding VOQ, and the weight of the entire matching
is the summation of all the edge weights in the matching.
The algorithms proposed in [19] start with an initial
matching from a previous time slot. During each iteration,
a maximal matching is randomly computed and merged
with the initial matching to form a new matching with a
weight that is at least equal to any of the two merged
matchings. The algorithms described in [19] use the length
of each VOQ and an arrival matrix to compute a new
random matching. The merging of two matchings requires
sequentially comparing the edge weights from both match-
ings and selecting the one with the larger weight. The
computational complexity per iteration of these randomized
algorithms is significantly higher compared to other
nonweighted schemes. Each iteration requires the computa-
tion of a full maximal matching based on assigned weights
and a merge with an existing matching. Furthermore, given
the randomized nature of the algorithm, it is not clear how it
can be extended to provide deterministic rate guarantees.
At best, these schemes could be extended to provide
probabilistic guarantees. Finally, the hardware complexity
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of these randomized algorithms has never been thoroughly
addressed in the literature, and the feasibility of their
hardware implementation at high speeds is unknown.

Load-balanced Birkhoff-von Neumann [12] switches
address the problem of scheduling nonuniform traffic using
a two-stage scheduler: a load balancing stage followed by a
second scheduling stage that essentially operates on uni-
form traffic. The main drawback of this architecture is that
packets can be missequenced. Furthermore, providing a
scalable solution that simultaneously provides QoS support
and solves the packet missequencing problem is a major
difficulty in the load-balanced router architecture.

To cope with degrading performance under nonuniform
traffic, without increasing the scheduler’s complexity,
Li et al. [20] proposed coupling the �RGA paradigm with
exhaustive matching (EM). In EM, after an input port is
matched to an output port, the VOQ is served continuously
until it becomes empty. Specifically, it was shown [20] that
exhaustive iSLIP (EiSLIP) produces the best results com-
pared to several proposed exhaustive scheduling algo-
rithms and performs better than nonexhaustive matching
algorithms, under some nonuniform traffic patterns.

3 OVERVIEW OF COOPERATIVE TOKEN-RING

SCHEDULING

In this section, we informally describe the CTR scheduling
policy. The goal is to provide an intuitive understanding of
the concept rather than to list the algorithmic details, which
are given in Section 4.

Consider the system shown in Fig. 1a. There are a set of
four nodes (users) that are alphabetically labeled A, B, C,
and D. There are four resources, which are represented by

the four tokens T1, T2, T3, and T4. These tokens rotate
clockwise in the ring and could be acquired by any of the
nodes subject to the constraint that each node acquires at
most one token simultaneously. Each node maintains a
separate queue of requests for each token that represents
backlogged work for that resource. We assume that time is
slotted such that token arbitration is performed during each
time slot, wherein each node may acquire an unclaimed
token or release an acquired token. At the end of token
arbitration, each node may acquire at most one token, in
which case it consumes one request from the corresponding
queue of backlogged requests. By definition, a node that
acquires a token is considered matched; otherwise, it is
unmatched.

Consider the configuration shown in Fig. 1a where each
of the four nodes has backlogged queues for resources,
which are represented by the rectangle boxes outside the
ring: node A has requests for tokens T1 and T2, node B has
requests only for token T1, node C has requests for tokens T3

and T4, and node D has requests only for token T4. The
initial token position(s) are as shown in Fig. 1a: T1 resides at
nodeD, T3 and T4 reside at nodeB, and T2 resides at node C.
Note that a token can reside at a node without necessarily
being matched to that node. Furthermore, multiple unac-
quired tokens can reside at one node. For the purposes of
this discussion, we assume that in one iteration of the CTR
algorithm, an unacquired and unrequested token can
complete one revolution of the ring. If it is unclaimed by
any node, it resides where it started.

In classical scheduling schemes employing round-robin
arbiters, each node makes an independent token-selection
decision oblivious of the state of other nodes; for example,
given the initial state shown in Fig. 1a, each node could
acquire the first available token to result in the matching
state shown in Fig. 1b, where node A acquires token T1, and
node C acquires token T4. The resource utilization in this
example using classical round-robin arbiters is 50 percent.
Note that nodes B and D do not require tokens T2 and T3.

CTR is an iterative scheme such that each iteration
comprises two phases. In the first phase, a token request
vector (TRV) for each token is computed, as shown in Fig. 1c.
In the second phase, tokens propagate along the ring and
may be acquired. The main idea of CTR is to create a TRV
along the ring for each token, from its current position to the
last unmatched downstream node in the ring that requires
that token. The vectors for the initial token configuration in
Fig. 1a are pictorially shown in Fig. 1c; for example, the
vector for token T1 starts at node D and ends at node B,
which is the last unmatched downstream node that requires
token T1. The value of the TRV, for each token, at each node
is a Boolean variable that indicates whether this token is
requested by any unmatched downstream node along the
ring. Subsequently, tokens propagate along the ring such
that each node uses the TRVs to decide whether to acquire,
swap, or release a token to improve the overall resource
utilization. Specifically, the token propagation/acquisition
in the second phase of the CTR algorithm is performed at
each node to achieve the following two goals:

G1. Improve a node’s resource utilization. If a node is
unmatched, then it acquires the first available token
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that it needs, regardless of whether this token is
requested by other downstream nodes along the ring.

G2. Improve the overall resource utilization of the ring by
swapping an acquired token for another unrequested token,
thereby breaking an existing match to create a new match.
This token swapping is performed using the TRVs
that have been previously computed.

After computing the vectors in Fig. 1c, tokens propagate
in the ring. When node A receives token T1, it acquires it
according to ½G1�. When tokens T3 and T4 arrive at node C,
node C acquires T3 according to ½G2�. Node C observes that
T4 is requested by a downstream node, whereas T3 is not.
Therefore, to maximize resource utilization, node C acquires
token T3.

Token T4 subsequently propagates along the ring and is
acquired by node D according to ½G1�. When token T2

arrives at node A, node A swaps token T1 for the token T2

according to ½G2�. Token T1 is thus released and propagates
to node B, where it gets acquired according to ½G1�. The final
state is shown in Fig. 1d, where each node is matched, and
the resource utilization is 100 percent.

In essence, the main difference between traditional
scheduling algorithms employing round-robin arbiters
and the CTR algorithm is that each arbiter in the traditional
scheme only considers its own resource utilization, whereas
in the CTR scheme, each node additionally cooperates with
other nodes in the ring to improve the overall resource
utilization.

4 DESCRIPTION OF COOPERATIVE TOKEN-RING

SCHEDULER

The basic architecture of a CTR switch is shown in Fig. 2.
There are N tokens in the ring that correspond to the
N output ports of the switch such that each CTR arbiter is
allowed to acquire at most one token. When input i is

matched to output j in a time slot, then it is allowed to
transmit a cell to output j during that time slot.

CTR is an iterative algorithm such that each iteration
comprises two phases:

1. Computing the TRVs. In this phase, a TRV is
computed for each token. As shown in Fig. 1c, the
TRV for each token is distributed among all nodes.
At each node, the value of the TRV for a specific
token indicates whether this token is requested by an
unmatched downstream node(s): a 1 bit indicates
that the token is requested, and a 0 bit indicates
otherwise. Computing the TRV is described in
Section 4.1, and its hardware complexity is examined
in Section 9.1.

2. Token propagation/acquisition. In this phase, tokens
propagate along the ring, and each CTR arbiter may
acquire a token based on its VOQ status and TRV.

Our design strategy is to have a communication structure
that is feasible to implement in hardware and that could be
used to iteratively improve the throughput such that a
trade-off could be made between the number of iterations
performed and the achieved throughput. We would like the
communication structure to reflect the dynamic nature of
the traffic conditions such that the scheduler is able to
dynamically adapt to time-varying traffic, which manifests
itself in the status of VOQs, such that little or no exchange of
tokens is performed between the different arbiters when the
status of VOQs does not change and more communication is
performed when the status of the VOQ changes and arbiters
become unmatched. The communication structure in the
CTR is the TRVs computed among all nodes. Unequivo-
cally, the TRV s can be viewed as forming guided paths for
the tokens to reach their intended destinations that lead to
an overall performance improvement.

The computation of the TRVs and token propagation/
acquisition phases are described in detail in Sections 4.1 and
4.2, respectively.

4.1 Computing the Token Request Vector

The TRV computations are distributed over all N nodes in
the ring. Let TRVi;j be the value of the TRV at node i for
token j. TRVi;j is set to true if there is an unmatched
downstream node along the ring from node i that requests
token j. Here, we make precise some terminology used for
the remainder of this paper. We adopt a matrix represen-
tation to represent the switch’s state. We use the following
standard notations:

. þ denotes the standard Boolean OR operation.

. � denotes standard Boolean AND operation.

. 1 denotes true and 0 denotes false.

. A denotes the Boolean not operator applied to the
Boolean parameter A.

Definition 1: The VOQ state matrix VOQ. V OQi;j is set to
one if the VOQ at input i for output j is nonempty and is set
to zero otherwise.

Definition 2: The token position matrix TP. Each row i

represents the tokens that are residing at node i at the
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beginning of an iteration. Specifically, TPi;j ¼ 1 if the token
for output port j is located at node i at the beginning of an
iteration and is set to zero otherwise. Note that multiple tokens
can reside at the same node, and also, when token j is located at
node i, it does not necessarily imply that node i is matched to
output j.

Definition 3: The request matrix R. Ri;j is the request by
node i for token j. Ri;j is set to zero, if node i is matched and is
set to VOQi;j otherwise. The request matrix is used for
computing the TRVs.

Consider the computation of the TRV for token j in a
ring with eight nodes labeled 0; . . . ; 7, where token j is at
node 4 initially. The token can only perform one revolution
per iteration. From node 0’s perspective, the set of
downstream nodes that may request token j are nodes 1,
2, and 3. Therefore, the calculation of TRV0;j for node 0
needs to consider only nodes 1; . . . ; 3; TRV0;j ¼ 1 if any of
nodes 1; . . . ; 3 requests token j. Furthermore, assume that
token k is located at node 7 initially. From node 0’s
perspective, the set of downstream nodes that may request
token k are nodes 1; . . . ; 6. Therefore, the calculation of
TRV0;k for node 0 needs to consider only nodes 1; . . . ; 6;
TRV0;k ¼ 1 if any of nodes 1; . . . ; 6 requests token k.

Assume a token ring with N nodes and N tokens, labeled
from 1 to N . Let jkj ¼ ðk mod ðN þ 1ÞÞ. Identify a down-
stream node, m, from node i, with respect to token j by the
predicate

Qt¼m
t¼1 TP jiþtj;j; that is, the predicate evaluates to

true (m is a downstream node) if token j is not at any
intermediate node between i and m circularwise. The same
algorithm is used to compute the TRV for each token in the
ring. To simplify the notation, we focus on computing one
element in the TRV at node i for token j and drop the
second subscript. The value of the TRV at node i for token j
is given by

TRVi;j ¼ Rjiþ1j þ
Xj¼iþN�1

j¼iþ2

Rjjj
Yk¼j�1

k¼iþ1

TP jkj: ð1Þ

The predicate
Qt¼m

t¼1 TP jiþtj;j in (1) is interpreted as masking
out the requests for upstream nodes such that only the
downstream requests are ORed together.

Various implementation schemes could be used to
compute the TRVbased on (1). One possible implementation
is to exploit the linear ring structure and propagate informa-
tion along the ring. The time complexity using this technique
is �ðNÞ. In Section 9, we describe how a binary tree structure
could be used to evaluate (1) in �ðlogNÞ time. We emphasize
that computing TRV at each node requires simple Boolean
operations that is readily implementable in hardware.

4.2 Phase 2: Token Propagation/Acquisition Phase

The CTR arbiter at each node performs token acquisition
using the computed TRV s for all tokens at this node. By
definition, TRVi;j ¼ 0 indicates that token j is critical at
node i; i.e., it is not requested by any other downstream
nodes from node i; otherwise, it is noncritical. A precondi-
tion for an arbiter to acquire a token is that the correspond-
ing VOQ is nonempty. Each CTR arbiter acquires a token
according to the following rules:

R1. An input that is not matched acquires the first
available token regardless of whether this token is
critical or not—this ensures that the matching
converges.

R2. The acquisition of a critical token takes precedence
over the acquisition of a noncritical token.

R3. An acquired token is swapped for a critical token,
when possible.

R4. An input arbiter that has backlogged cells for its
acquired token can hold its acquired token for more
than one time slot.

The prioritization according to ½R2� is done to provide
other unmatched downstream inputs the chance to acquire
noncritical tokens and improve the overall throughput.
½R3� allows two cases for token swapping: swapping an

acquired noncritical token for a critical token as in ½R2� and
swapping an acquired critical token for another critical
token. The swapping of critical tokens allows the breaking of
cyclic dependencies; for example, consider a token ring with
three nodes A, B, and C such that C is not matched and
requests a token that is acquired by B.Bwould relinquish its
acquired token only if it acquires the token that is acquired
by node A. According to Definition 3, node B cannot send a
request for the token acquired by node A because B is
already matched; however, node A would swap its acquired
token according to ½R3�, which in turn would be acquired by
B, thereby releasing the token required by node C to achieve
100 percent utilization. A detailed example that shows how
swapping critical tokens could break a cyclic dependency
and other detailed examples that show a step-by-step
operation of the CTR scheduling policy are provided in [21].
½R4� is based on the observation that the state of the

VOQs changes slightly between time slots. Therefore, rather
than starting each matching from scratch at the beginning of
each time slot, ½R4� attempts to improve over the matching
computed from the previous time slot.

There are various mechanisms for implementing a CTR
scheduler with implementation trade-offs. We emphasize
that our description so far has been only a logical description:
any hardware implementation that logically implements the
CTR scheduler could be used; for example, in Section 5, we
describe how CTR could be physically implemented using a
�RGA paradigm, which is typically employed in high-speed
IQ switch implementations [22].

5 PARALLEL IMPLEMENTATION OF COOPERATIVE

TOKEN-RING

In this section, we present a parallel implementation of the
CTR scheduler that is tailored toward high-speed imple-
mentation with a hardware time complexity of �ðlogNÞ per
iteration based on the �RGA paradigm.

In the first phase of each iteration, a TRV is computed
for each token as described in Section 4.1. In the second
phase of each iteration, the token propagation/acquisition
is performed using the �RGA paradigm as described next.

As shown in Fig. 3, a round-robin arbiter is used at each
output port, and a CTR arbiter is used at each input port.
The round-robin arbiter at each output implements the
logical token ring for the corresponding output, whereas
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the CTR arbiter implements the token selection described in

Section 4.2; the CTR arbiter implements the request and
accept phases, and the round-robin arbiter implements the

grant phase of the �RGA paradigm. Each CTR arbiter and
round-robin arbiter uses a rotating round-robin priority

encoder as described next. Specifically, each iteration of the
CTR algorithm comprises the following steps:

1. Compute the TRV for each token as described in

Section 4.1.
2. Request step. Each unmatched CTR arbiter sends a

request to every output arbiter for which it has a
queued cell, whereas each matched CTR arbiter sends
a request to every critical and unmatched output1 for
which it has a queued cell.

3. Grant step. If an unmatched output arbiter receives
any requests, it chooses the one that appears next in
fixed round-robin priority order. The output notifies
each input whether or not its request was granted
through a grant signal. The pointer to the new highest
priority element of the round-robin arbiter is in-
cremented (modulo N) to one location beyond the
granted input.

4. Accept step. Each CTR arbiter selects one of the grant
signals and sends an accept signal to the correspond-
ing output arbiter. The selection of a grant follows
½R1�-½R3� as described in Section 4.2, which are
reiterated here for completeness. There are two cases:

a. Unmatched input. Select a grant for a critical
output if possible; otherwise, select a grant for
a noncritical output and send the accept signal
starting with the highest priority element. The
corresponding input and output are considered
matched. The round-robin pointer is incremen-
ted (modulo N) to one location beyond the
accepted output.

b. Matched input. By definition, the received grants
are from critical outputs (as matched inputs only
sent requests to critical outputs in the request
step). The input arbiter accepts one of these
grants in a round-robin fashion starting with the
highest priority element—the CTR arbiter uses a
rotating round-robin priority. The matched input
resets (breaks) its acquisition to its previously

matched output and sends an accept signal (and
becomes matched) to the critical output whose
grant it is accepting. The round-robin pointer is
incremented (modulo N) to one location beyond
the accepted output.

6 SIMULATION RESULTS FOR BEST EFFORT

TRAFFIC

In this section, we evaluate the performance of CTR, iSLIP,
EiSLIP, DRR, and PIM for a 16 � 16 switch with four
iterations. All simulations were performed with 99 percent
confidence and 1 percent accuracy; that is, the simulations
were run until the relative width of the confidence interval
equals 1 percent with probability � 99 percent. We evaluate
the performance for both Bernoulli traffic distributions and
bursty traffic models.

6.1 Bernoulli Traffic Distribution

We use various traffic models recommended by the
switching fabric benchmarking group [23]. The following
arrival patterns are used with Bernoulli traffic distribution
(note that � denotes the normalized load such that all inputs
are equally loaded, and N is the switch size):

1. Uniform. �i;j ¼ �=N 8i, j.
2. Diagonal. �i;j ¼ 2�=3, �i;jiþ1j ¼ �=3 8i, and �i;j ¼ 0 for

all other i and j. This is very skewed loading and is
more difficult to schedule than uniform loading.

3. Log diagonal. �i;j ¼ 2�i;jjþ1j, and
P

i �i;j ¼ �; for
example, the distribution of the load at input i

across outputs is �i;j ¼ 2N�j�
2N�1

. This type of load is
more balanced than diagonal loading but more
skewed than uniform loading.

Figs. 4, 5, and 6 show the average delay under uniform, log-
diagonal, and diagonal traffic, respectively. The CTR sche-
duler provides the best performance, i.e., the lowest average
cell delay and the highest throughput, under the three traffic
patterns. The improvement achieved by the proposed CTR
scheduling policy manifests itself clearly as the arrival pattern
becomes more skewed. Under uniform arrivals in Fig. 4, all
schemes can sustain up to essentially 100 percent traffic load,
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1. Technically, it is irrelevant whether an input sends a request to a
matched output because by definition a matched output ignores the
requests it receives, but it helps simplify our presentation.

Fig. 3. Parallel implementation of CTR.

Fig. 4. Performance of CTR, iSLIP, DRR, PIM, and EiSLIP for uniform

traffic.
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and CTR provides the lowest delay. In Fig. 5, the arrival
pattern becomes more skewed under log-diagonal traffic. The
iSLIP, PIM, and EiSLIP schedulers saturate at approximately
80 percent, 85 percent, and 90 percent loads, respectively. In
contrast, the CTR scheduler provides essentially 100 percent
throughput for traffic loads exceeding 90 percent. Fig. 6
illustrates the diagonal arrival pattern, which is the most
skewed pattern. The iSLIP, PIM, and EiSLIP schedulers
saturate at 80-85 percent loads. Only the CTR scheduler is able
to provide essentially 100 percent throughput for traffic loads
larger than 85 percent.

6.2 Simulation as a Function of the Switch Size

Fig. 7 shows the average latency imposed by a CTR
scheduler as a function of offered load for switches with 4,
8, 16, and 32 ports for Bernoulli uniform traffic with logðNÞ
iterations. The performance is almost identical for the
various switch sizes.

6.3 Bursty Traffic Distribution

Real Internet traffic is bursty [24], and bursty traffic models

were considered in the simulations. Specifically, an on/off

Markov modulated arrival process with a geometrically
distributed burst size was used.

Each input port is connected to a burst source that
generates traffic cells using a two-state Markov process that
alternates between busy and idle states. The process
remains in the busy and idle states for a geometrically
distributed number of cell times. When the server is in the
busy state, a cell arrives at the beginning of every time slot,
and all cells in the burst have the same destinations. This
traffic model is described in detail in [23]. An average burst
size of 16 was used.

As shown in Fig. 8, the same trend occurs, and CTR
provides the best performance.

6.4 Effects of Increasing the Number of Iterations

One of the main arguments for CTR is that its performance
iteratively improves as more iterations are performed. The
effect of increasing the number iterations was evaluated by
simulation for CTR, iSLIP, EiSLIP, DRR, and PIM. A 16 � 16
switch was used, and the numbers of iterations executed
were 1, 2, 4, 8, and 16.
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Fig. 5. Performance of CTR, iSLIP, and EiSLIP for log-diagonal traffic.

Fig. 6. Performance of CTR, iSLIP, DRR, PIM, and EiSLIP for diagonal

traffic.

Fig. 7. The performance of CTR as a function of switch size for uniform

i.i.d. Bernoulli arrivals.

Fig. 8. Average delay under two-state Markov-modulated arrivals with

an average burst size of 16.
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6.4.1 Log-Diagonal Bernoulli Traffic

As shown in Fig. 9, CTR outperforms all other schemes for
the same number of iterations. CTR is the only scheme that
sustains essentially 100 percent traffic load even with a
single iteration. Observe that regardless of executing more
iterations, none of the schemes other than CTR can sustain a
traffic load larger than 90 percent.

6.4.2 Diagonal Bernoulli Traffic

As shown in Fig. 10, none of the schemes other than CTR
sustains a traffic load higher than 85 percent, whereas CTR
provides essentially 100 percent throughput with four
iterations. In addition, the performance of CTR incremen-
tally improves as more iterations are executed, as expected.

6.5 ON/OFF Markov-Modulated Traffic

As shown in Fig. 11, CTR outperforms all other schemes
even with a single iteration under the bursty traffic model
with a geometrically distributed burst size of 16.

7 FAIRNESS OF COOPERATIVE TOKEN-RING

SCHEDULING

Given that the CTR scheduling policy potentially violates
the strict ordering of round-robin arbitration to achieve high
throughput, it is expected that it could suffer from a fairness
problem for an adversarial traffic pattern. We describe the

fairness problem in the current design and then describe
several augmenting schemes to the proposed CTR schedul-
ing policy that address fairness.

We have chosen to address the fairness issue separately
for several reasons. First, there are various possible
solutions with trade-offs in their implementation complex-
ities that depend on the desired granularity of fairness that
we believe should be left to the designer. Second, the
solutions to the fairness problem are complementary to the
concept of CTR scheduling, and separating the issue helps
simplify our presentation. Third and more importantly, we
view the decoupling between achieving high throughput
and providing fairness as one of our key contributions. It is
our view that the tight coupling of a rigid fairness scheme in
many scheduling policies, which almost dictates the next
schedule, forces the scheduler to not adapt to the traffic
dynamics, thus causing an overall performance degrada-
tion. On one hand, in a strict round-robin scheduler, the
uniform selection of the next matching element tends to
dovetail with uniform i.i.d. traffic, and the scheduler can
provide essentially 100 percent throughput [25]. However,
for nonuniform traffic, strict round-robin scheduling causes
performance degradation. On the other hand, exhaustive
scheduling policies (e.g., EiSLIP [26]) potentially provide
better performance than strict round-robin schedulers for
bursty traffic, but the scheduler could still get locked into
“bad modes” because each arbiter makes its decision

GOURGY AND SZYMANSKI: COOPERATIVE TOKEN-RING SCHEDULING FOR INPUT-QUEUED SWITCHES 359

Fig. 9. Effects of increasing the number of iterations under log-diagonal

Bernoulli i.i.d. traffic. (a) iSLIP. (b) EiSLIP. (c) DRR. (d) PIM. (e) CTR.

Fig. 10. Effects of increasing the number of iterations under diagonal

Bernoulli i.i.d. traffic. (a) iSLIP. (b) EiSLIP. (c) DRR. (d) PIM. (e) CTR.
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oblivious of the state of the other arbiters in the switch; that
is, the scheduler does not necessarily adapt to traffic
dynamics. Our scheme alleviates this problem by using
the cooperative mechanism described earlier.

Although our proposed CTR provides excellent perfor-
mance for all admissible traffic as previously shown, under
inadmissible traffic, the CTR scheduler could lead to starvation
of some queues. An example of starvation behavior is shown
in Fig. 12 for a 2 � 2 switch. Because all three queues are
permanently occupied, the algorithm will always select the
“cross” traffic, input 1 to output 2 and input 2 to output 1,
and VOQ1;1 will starve.

Although in a real router, decongestion mechanisms
(e.g., RED) are applied at the ingress ports to avoid buffer
overflow associated with inadmissible traffic, it is still
possible to construct an adversarial traffic pattern for CTR
that leads to unfairness. There are several mechanisms for
providing fairness in a CTR scheduler. One simple scheme
is to set a threshold on the number of consecutive time slots
for which a node (an input port) can hold an acquired token
(e.g., k time slots). This threshold would ensure that each
node gets the chance to acquire any token every kðN � 1Þ
time slots. Conversely, a node with a VOQ that has not been
served beyond a threshold period of time slots may send
(broadcast) a “prioritized request,” which must be honored
by the node that currently acquires this token. If a higher
granularity of fairness is desired, then a credit-based

mechanism could be used such that a number of credits
are allocated to each input-output pair, and each CTR
arbiter is allowed to acquire a token only if there are
available credits for the corresponding output port. We
explore this credit-based scheme in Section 8 to provide rate
guarantees in our proposed CTR scheduler.

8 WEIGHTED COOPERATIVE TOKEN-RING

To provide both rate guarantees and proportional band-
width sharing, we propose a two-level scheduler, called the
WCTR. In WCTR, QoS traffic is scheduled first, and best
effort traffic then contends for the remaining bandwidth.

Scheduling QoS in WCTR is performed using frame-
based scheduling such that time is divided into frames, and
a counter is associated with each input-output pair. The
counters are set according to their negotiated bandwidth
shares at the beginning of each frame. Queues with positive
counters compete with higher priority according to CTR.
Then, the remaining queues contend according to CTR for
the available bandwidth. During any time slot, an input can
acquire a token for an output port to send either guaranteed-
rate traffic or best effort traffic, and a flag is used to indicate
the traffic type for which the token is acquired. Scheduling
in each level (QoS or best effort) is performed similar to the
original CTR description in Section 4: computing the TRV
phase followed by a token propagation/acquisition phase.
The main difference is that QoS traffic is prioritized over
best effort traffic. First, the TRVs are computed for QoS
traffic with the semantics that an arbiter sends a token
request only if it has QoS traffic and available credit.
Subsequently, if an arbiter had previously acquired a token
for best effort traffic and the acquired token is now
requested by another unmatched input for QoS traffic, then
it must release it. Conversely, during the best effort
scheduling level, a WCTR arbiter would not release a token
that was acquired for a QoS traffic if this token is requested
by another input.

There are many variations of the presented WCTR
scheduler; for example, it is straightforward to generalize
the scheme to multiple priority levels. In addition, a
centralized module could be used allocate credits for best
effort traffic to ensure fairness in the distribution of
unreserved bandwidth among all input ports.

8.1 Simulation Results for the Weighted
Cooperative Token-Ring Scheduler

To illustrate the fairness of WCTR in bandwidth allocation,
a 4 � 4 switch was simulated such that each input has four
flows, each going to a different output with a different
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Fig. 11. Effects of increasing the number of iterations under two-state

Markov-modulated arrivals with an average burst size of 16. (a) iSLIP.

(b) EiSLIP. (c) DRR. (d) PIM. (e) CTR.

Fig. 12. Under an inadmissible workload, the CTR scheduler will cause

VOQ1;1 to starve.
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bandwidth reservation. Let fkði; jÞ represent flow k from

input port i to output port j. In the simulated switch,

f1ð0; 0Þ, f2ð1; 0Þ, f3ð2; 0Þ, and f4ð3; 0Þ have reserved 10, 20,

30, and 40 percent of the bandwidth, respectively, but they

always maintain the same actual arrival rate. Other flows

have a load of 5 percent each. This traffic model has been

used in [27] and [7]. We used a frame size of 1,000 slots and

measured the throughput per flow at the end of one frame.

As shown in Fig. 13, WCTR is able to provide to each flow

its allocated rate.

9 HARDWARE IMPLEMENTATION OF COOPERATIVE

TOKEN-RING

In this section, we analyze the hardware complexity of

computing the TRVs and prove that its latency is �ðlogNÞ
and the circuit size per node is �ðN logNÞ. Recall from

Section 4.1 that each element in the TRV is given by

TRVi;j ¼ Rjiþ1j þ
Xj¼iþN�1

j¼iþ2

Rjjj
Yk¼j�1

k¼iþ1

TP jkj:

We make the following two observations:

1. Equation (1) cannot be directly implemented using a
parallel prefix circuit [28] because each element is
computed using all the other elements in the ring in
a circular (modulo arithmetic) fashion.

2. Although it is simple to achieve an optimal latency of
�ðlogNÞ by using a separate binary tree to evaluate
(1) for each element of a TRV, the circuit size per
TRV element would be �ðN logNÞ, and conse-
quently, the circuit size per token (i.e., an entire
vector) would be �ðN2 logNÞ, whereas we describe a
technique with optimal latency and circuit size per
token of �ðN logNÞ.

Rather than providing a specific solution for computing

(1), we generalize the problem and present a generic circuit

for computing all elements in a list such that each element

depends on other elements in the list, in a circular fashion,

with a circuit size of �ðN logNÞ and with a time complexity
of �ðlogNÞ, as described in Section 9.1.

9.1 Complete Symmetrical Prefix Problem

Let � be a binary associative operation. The complete
symmetrical prefix problem is to compute, given
x1; x2; . . . ; xn, the results y1; y2; . . . ; yn, where yk ¼ xjkþ1j �
xjkþ2j � . . .� xjkþn�1j, for 1 � k � n.

The problem of computing the token request bit can be
solved on a binary tree network in 2D steps, where D is the
depth of the tree. The algorithm consists of essentially two
interleaving phases: upward phase and downward phase.
In the upward phase, each internal node computes the
product of the entries in the leaves spanned by the node. In
the downward phase, these products are passed downward
the tree so that the leaf can form the result. We describe the
algorithm in more detail in the next sections.

9.1.1 Upward Phase

During the first step, xi is input to the ith leaf for 1 � i � N .
This value is both stored and passed upward to the node’s
parent. In subsequent steps, internal nodes receiving inputs
from children concatenate the inputs and pass the product
upward in the tree. After D steps, every node, other than the
root, will have computed the product of the inputs to the
leaves covered by the node. Fig. 14 shows the computation
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Fig. 13. Plot of throughput per flow for WCTR at the end of one frame.
Fig. 14. Action of (a) an internal node and (b) a leaf during the upward

phase. Inputs to the internal nodes are concatenated and then passed

upward. Inputs to leaves are stored and passed upward.

Fig. 15. Concatenation performed by each node in the complete

symmetrical parallel prefix algorithm for an eight-element string. Each

node computes the product of the inputs that it spans.
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performed by each node, and Fig. 15 shows the actual

products computed by each node for an eight-element string

example.
As each nonleaf node receives its input from below,

it swaps the values computed by the left and right child

nodes. That is, it passes the value computed by the left child

to the right child and conversely. Each node then stores the

new value it receives from its parent, as shown in Fig. 16.
For example, Fig. 17 shows the node values after

swapping for the eight-element string example.

9.1.2 Downward Phase

During the downward phase each node receives the node

value of its parent and computes the result, as depicted

in Fig. 18. The operation is performed for both leaf and

nonleaf nodes.
In total, the algorithm takes 2D steps, where D is the

depth of the tree, and the circuit size is determined by the

number of nodes in the tree, which is �ðN logNÞ given that

each node has a fixed degree of two.

9.2 Computing the Token Request Vector as a
Complete Symmetrical Prefix Problem

Computing the TRV can be modeled as the complete

symmetrical prefix problem by keeping track of whether

each node stage stops a request, propagates a request, or

generates a request. Specifically, let the state at node i be

. stop(s) � if the token is currently at node i,

. propagate(p) � if the token is not currently at
node i and the node does not have a request for the
token, and

. generate(g) � if node i has a request for the token.

Let xi denote the s, p, or g value of ith node and let

jkj ¼ ðk mod NÞ.
Next, let TRVi ¼ xjiþ1j � xjiþ2j � xjiþ3j; . . . ;�xjiþN�1j for

1 � i � N , where � is the binary associative operator

defined in Table 1.
For example, the signal states for the nodes used in

Fig. 19a are shown in Table 2. The token request bit at

module x3 is given by

x3 ¼x4 � x5 � x6 � x7 � x8 � x1 � x2;

x3 ¼ p� g� p� p� s� p� g;
x3 ¼ g:
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Fig. 16. Swapping the node values during the upward propagation

phase.

Fig. 17. The node values after swapping the left and right child for the

eight-element string used in Fig. 15.

Fig. 18. Operation of nodes (leaf and nonleaf nodes) during the

downward phase.

TABLE 1
Multiplication Table for the Operator Defined

for Computing the TRV

For example, S �G ¼ S.

Fig. 19. (a) The request bit at each node. (b) The corresponding value of

TRV at each node.

TABLE 2
The Signal States for the Modules in Fig. 19
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Fig. 20 shows the circuit for computing the TRV for a

ring with four nodes; this circuit was generated using

Synopsys,2 with the optimization setting for high speed.

The circuit computes the TRV for single token in a ring with

four nodes; i.e., it computes the 4 bit elements in the TRV.

10 CONCLUSION

We have proposed CTR scheduling, a novel scheduling

paradigm that provides significant improvement over

existing schedulers with comparable complexity. Our

scheduling paradigm adapts to dynamically varying traffic,

provides high throughput, and is easily implemented in

hardware. We have analyzed the hardware complexity

introduced by the cooperative mechanism and described an

optimal hardware implementation for anN �N switch with

a time complexity of �ðlogNÞ and a circuit size of

�ðN logNÞ per port. The CTR scheduling policy provides

essentially 100 percent throughput over uniform and

nonuniform traffic patterns, whereas the iSLIP and EiSLIP

saturate at approximately 80-85 percent traffic load. We

have proposed WCTR to provide rate guarantees in

IQ switches and proportional bandwidth sharing. Finally,

we note that although CTR was presented in the context of

IQ switches, it is applicable to several other systems,

including SONET all-optical circuit switches, which sche-

dule cells in circuit-based frames by using delay lines and a

star-based WDM broadcast-and-select optical system with

tunable transmitters and fixed receivers. Generally, the

proposed CTR scheme can be applied to solve any resource

allocation problem with a set of nodes competing for

exclusive access to a set of shared resources.
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