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On Tracking the Behavior of an Output-Queued
Switch Using an Input-Queued Switch
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Abstract—We address the problem of fair scheduling of packets
in Internet routers with input-queued (IQ) switches and unity
speedup. Scheduling in IQ switches is formulated as tracking the
behavior of an output-queued (OQ) switch that provides optimal
performance. We present the notion of “lag” as a performance
metric that measures the difference between a packet’s depar-
ture time in an IQ switch over that provided by an OQ switch.
We prove that per-packet mean lag is bounded for a maximum
weight-matching scheduling policy that uses lag values for its
weights and derive a bound on the mean lag value using a Lya-
punov function technique. Furthermore, we propose a simple
heuristic tracking scheduling policy and evaluate its performance
by simulation.

Index Terms—Input-queueing, Lyapunov functions, packet
switch, scheduling, switching.

1. INTRODUCTION

HERE is a tremendous demand for Internet core nodes
T to provide quality-of-service (QoS) guarantees for mul-
timedia services and to provide high switching capacity that
makes use of the virtually unlimited bandwidth of optical fibers.
The Internet’s success depends on the deployment of high-speed
switches and routers that meet these two demands.

On the one hand, the demand for QoS guarantees can be met
using output-queued (OQ) switches, which can provide optimal
throughput. In addition, much research effort has been devoted
to packet scheduling at output ports to support fair bandwidth
sharing that provides delay bounds for regulated traffic, con-
sidering algorithms such as the weighted fair queueing (WFQ)
family (e.g., [1]). However, output queueing for an N x N
switch requires the switching fabric and memory to run up to
N times faster than the line rate; unfortunately, for large or
high-speed data lines, memories with sufficient bandwidth are
not available. On the other hand, the fabric and the memory of an
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input-queued (IQ) switch need only to run as fast as the line rate.
This property makes input queueing very appealing for switches
with fast line rates or with a large number of ports. However, 1Q
switching can suffer from head-of-line (HOL) blocking, which
limits the throughput to just 58.6%, if each input maintains a
single FIFO queue [2]. One method that has been proposed to
reduce HOL blocking is to increase the speedup of a switch. A
switch with a speedup of S can remove up to S packets from
each input and deliver up to S packets to each output within
a time slot, where a time slot is the amount of time needed to
transfer a packet from the input side to the output side of a
switch.

A theoretical result [3] established that an NV x N combined
input and output-queued (CIOQ) switch with a speedup of two
could exactly emulate an N x N OQ switch for any traffic pat-
tern of input cells. Emulation occurs at every time instance if,
under identical inputs, both systems produce identical depar-
tures. Unfortunately, the complexity of the scheduling algorithm
presented in [3] renders OQ switch emulation infeasible (see
[4] and [5] for a discussion of the complexity). The tradeoff be-
tween the delay and speedup in a CIOQ switch has been ana-
lyzed in [6]. Furthermore, Minkenberg [7] has shown that exact
emulation of an OQ switch using a CIOQ switch is possible only
if the CIOQ switch has infinite output buffers.

Many commercial high-performance switches and routers
(e.g., CISCO 12000 [8], BBN [9], Lucent Cajun [10] family,
or Avici TSR45000 [11]) use IQ switches. Most of these
high-speed switches are built around a crossbar switch that is
configured using a centralized scheduler designed to provide
high throughput and use a fixed-length cell as a transfer unit.
Fixed-length switching technology is widely accepted for
achieving high switching efficiency such that variable-length
packets are segmented into fixed-length cells at the inputs
and are reassembled at outputs. We assume fixed-length cell
scheduling for the remainder of this paper.!

We consider scheduling policies in an IQ-crossbar switch
with a unity speedup. Given that an IQ switch requires at least
a speedup of two to exactly emulate an OQ switch [3], an 1Q
scheduling policy with a unity speedup cannot exactly emulate
the behavior of an OQ switch, under all possible traffic pat-
terns. Consequently, we formulate scheduling in an IQ switch
as the problem of tracking an OQ switch. We propose the “lag”
as a performance metric that measures the difference between
a packet’s departure time in an IQ switch over that provided
by an OQ switch. We present an IQ scheduling policy with
unity speedup for which the lag is bounded and derive a bound

IThe words packet and cell are used interchangeably for the remainder of this
paper.
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Fig. 1. Logical structure of an 1Q switch.

on the mean lag value per packet. Furthermore, we propose a
simple heuristic tracking scheduling policy and evaluate its per-
formance by simulation. In this paper, we describe the case of
tracking an OQ switch implementing a FIFO scheduling policy.

This paper is organized as follows. Section II formulates
scheduling in an IQ switch with unity speedup as tracking the
behavior of an OQ switch. Section III provides motivation for
tracking the behavior of an OQ switch and discusses related
work. In Section IV, we present two scheduling policies for
tracking the behavior of an OQ switch. First, we present a
scheduling policy called maximum weighted lag (MWL). We
prove that the mean lag value is bounded for MWL and derive
an upper bound on its value using a Lyapunov function tech-
nique. The MWL scheduling policy has a high implementation
cost, but serves as a solid base for developing other practical
scheduling policies that approximate its performance. Con-
sequently, we present a simpler heuristic tracking policy that
can be readily implemented in hardware. The performance of
the proposed scheduling policies is evaluated by simulation in
Section VI. Section VII provides our conclusions.

II. PROBLEM FORMULATION

We consider an N x N OQ switch that uses scheduling policy
IIoq and an IQ switch with unity speedup that uses scheduling
policy Il1q. For an N x N switch, we use the following nota-
tional conventions: 7 an input, 1 < ¢z < N; j an output, 1 <
Jj < N; @ ; is the virtual output queue (VOQ) at input 7 and
buffers cells destined for output j; HOL; ; is the head-of-line
cell at Q; ;.

In this paper, we consider only the case of [l = FIFO. The
architecture of our IQ switch is shown in Fig. 1. We use VOQs
at each input port of the switch and a crossbar as the switching
fabric.

Let the average cell arrival rate at input  for output j be
Aij. We assume that incoming traffic is admissible; that is,
Zf\;l Aij < 1, and Zj\;l Aij < 1. The arrival process is
identical to both switches. The goal is to find a scheduling
policy IIq that tracks the behavior of the OQ switch as close as
possible, where we define what tracking means more precisely
after introducing some definitions. Given that an I1Q switch
requires at least a speedup of two to exactly emulate an OQ
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switch [3], a scheduling policy for an IQ switch with a unity
speedup cannot exactly emulate the behavior of an OQ switch,
under all possible traffic patterns. In general, cells arriving to
the IQ switch implementing II;q will depart at some later time
than the OQ switch implementing I1q. Consequently, we say
that an IQ switch implementing II;q lags the behavior of the
0OQ switch implementing Ilpq.

A. Definition of Terms

Here we make precise some of the terminology used
throughout this paper.

Definition 1: Arrival Rate Matrix (A\): A = [\;;], where the
arrival process is assumed to be admissible and stationary; that
is, Z?:l Aij < 1, Z?Zl Aij < 1, Ajj > 0. The associated ar-
rival rate vector A = (g1, .. D S
The arrival process at each input port ¢ is assumed to be an i.i.d.
process of fixed-size cells. At the beginning of each slot, ei-
ther zero or one cell arrives at each input port. Virtual output
queueing is used such that when a cell arrives at time slot n for
output 7 at input ¢, it is placed in queue @Q; ;.

Definition 2: Ideal Departure Time (IDT): The ideal depar-
ture time for a cell ¢, IDT(¢), is the time slot at which ¢ will
depart from an OQ switch using .

Definition 3: Actual Departure Time (ADT): The actual de-
parture time for a cell ¢, ADT(c), is the time slot at which ¢ de-
parts from the switch under consideration (i.e., IQ implementing
HIQ).

Definition 4: Cell Lag (CL): The cell lag for a cell ¢, CL(c),
is the difference between the IDT and the ADT. Precisely

_ J ADT(¢) —IDT(c), ADT(c) > IDT(c)
CL(e) = {0, otherwise.

In addition, we define the cell lag for a cell ¢ given the current
time slot nn, CL(¢|n), as the difference between the IDT and the
current time slot. Precisely

CL(c|n) = { 37_ IDT(c),

ey

n > IDT(c)
otherwise.

The goal of a scheduling policy can be characterized by any
statistical metric that attempts to minimize the cell lag. For ex-
ample, in Section IV-B, we present a scheduling policy that min-
imizes the mean lag value per packet.

Note that according to (1), the lag is nonnegative and gener-
ally acell’s ADT is greater than its IDT. However, a cell may oc-
casionally depart from an 1Q switch earlier than an OQ switch.
For example, consider a 2 x 2 switch at a specific time slot such
that the two most lagging cells for its outputs (e.g., outputs 1
and 2) reside at the same input port (e.g., input 1). Because the
scheduling policy can transfer at most one cell from each input
port (e.g., input 1), another cell with an IDT in the future can be
selected from the other input port (e.g., input 2) to improve the
throughput.

III. MOTIVATION AND RELATED WORK

In an OQ switch, arriving packets are immediately available
at the outgoing link. Consequently, the only shared resource in
an OQ switch is the outgoing link for which packets contend for
access (output contention). In an IQ switch, packets are queued
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at the input port of the switch, and they must first contend for
access to the switch fabric (input contention) before contending
for the outgoing link. That is, in an IQ switch, there are two
shared resources: the switch fabric and the outgoing link.

All present IQ scheduling policies resolve input and output
contention using heuristics such as using a round-robin scheme
at both the input and output to solve the contention fairly [12] or
using the packet’s age (i.e., time in the switch) to resolve con-
tention [13]. All these schemes can be seen as an approximation
to the ideal case of an OQ switch, where all of the outgoing links
are independent and packets are served fairly in each outgoing
link. That is, by tracking the behavior of an OQ switch and min-
imizing the lag, we automatically resolve input and output con-
tention in a fair manner and eliminate any starvation problem of
inputs that other scheduling policies have to carefully handle.

Tabatabaee et al. [14] consider the related problem of packe-
tizing arbitrary fluid policies in an /N x N crossbar switch using
FIFO virtual output queues. They define trackable fluid poli-
cies such that for each pair of input and output ports, at each
time-step, the cumulative number of packets sent between these
ports differs from the cumulative fluid scheduled between these
ports by less than 1. They prove that a tracking policy always
exists for the special case of a 2 x 2 switch, provide an example
for a 3 x 3 switch where a nonanticipative tracking policy does
not exist, and propose several heuristics for packetizing fluid
policies on general N x N switches. Rosenblum ez al. [15] fur-
ther extend the results in [14] by relaxing the tracking constraint
such that the cumulative difference in the number of packets sent
using the fluid and packetized policies can be more than one
packet. This paper’s results are compatible with the seminal re-
sults of [14]. Our work differs from [14] and [15] in that we track
the precise packet departure sequence in an OQ switch rather
than the aggregate rate provided by a fluid scheduling policy in
an IQ switch, which does not necessarily track an OQ switch.
For two scheduling policies to provide the same service rate,
they need to serve only the same number of packets per link,
rather than tracking the precise packet departure order, which
can be different between the two scheduling policies. This issue
is discussed in more detail in Section I'V-B.

IV. TRACKING SCHEDULING POLICIES

A. Computing the Ideal Departure Time

For Iloq = FIFO, arriving cells at the IQ switch can be im-
mediately assigned an IDT using a simple parallel prefix circuit
[16] (i.e., a ranker circuit). Let N;(n) be the number of cells in
the OQ switch destined to output 5 at time slot n. The 1Q switch
uses IV rankers such that each ranker calculates the number of
cells present in the OQ switch being tracked. At the beginning
of each time slot, n, the number of packets in the OQ switch is
computed as follows:

_ N]-(n—l)—l, N]'(TL—
Njn) = {0./ N;(n—1)=0.

Note that the subtraction of one in the previous equation ac-
counts for one (cell/time slot) departure in the OQ switch. For
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every new cell ¢ arriving at time slot n destined to output j,
ranker j assigns a numeric rank (from 1 to V) in a linear? order
to packets arriving for output port 5. The IDT of each cell is
equal to its numeric rank plus N;(n — 1), and N;(n — 1) is up-
dated accordingly. The complexity of computing the IDT(c) in
hardware using a parallel prefix computation is ©(log N) depth
and O () circuit size, expressed in terms of binary operators
[16].

B. Maximum Weighted Lag Scheduling Policy

MWL is based on the implementation of a maximum bipartite
weight-matching algorithm (MWM) [17]. A maximum weight
matching on a bipartite graph with weighted edges is defined as
a set of edges between input and output nodes with the max-
imum total weight among all possible sets satisfying the con-
straint that any input node is matched to at most one output node.
At every time slot n, we associate a weight W; ; to every @, ;
such that W; ; = CL(HOL,; j|n); that is, W; ; is the lag of an
HOL packet in @Q; ;. The maximum weighted lag scheduling
policy finds a matching M that maximizes Z@? feM W; ; and
can be found by solving an equivalent network flow problem
[17]. The sequential run time complexity of MWM is ©(N3)
[17].

Previous work on MWM considered only the weight to be
either some function of the occupancy of the VOQs (i.e., the
number of packets in each VOQ) or the waiting time of the cell at
the HOL of each VOQ (e.g., [13] and [18]-[21]). Consequently,
these algorithms do not necessarily track the behavior of an OQ
switch, and a cell’s departure time may deviate from the ideal
case under nonuniform traffic. In addition, using the occupancy
of the VOQs as the edge weight can lead to starvation of certain
inputs [13].

Because MWL computes the matching with the maximum
possible total weight during every time slot, it aims at mini-
mizing the mean lag. Although this algorithm is too complex to
implement in practice, it serves as a reference model for which
other approximation algorithms are developed.

The stability of maximum weighted matching scheduling
policies is a well-studied problem in the literature. McKeown
et al. [13] proved the stability of longest queue first (LQF)
and oldest cell first (OCF) maximum weight matching for
all admissible independent identically distributed (i.i.d.) ar-
rival processes using a Lyapunov function technique; Dai and
Prabhakar [19] extended the results to prove the stability of a
maximum weight matching algorithm under any admissible
arrival processes using fluid model techniques.

Although the results for the fluid model technique established
in [19] could easily be used to prove the stability of MWL, they
cannot be further extended to derive a bound on the expected
lag value. Consequently, we use a Lyapunov function technique
that allows us to derive a bound on the expected lag value as
described in Appendix II.

Theorem 1: A FIFO tracking policy that uses the MWL as
the scheduling policy is stable (achieves 100% throughput) for
all admissible i.i.d. arrival processes.

2We investigated diverse ordering schemes (e.g., round-robin, linear, etc.) for
assigning IDT to simultaneous cell arrivals destined to the same output and
found it to have an insignificant effect on the results.
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Proof: The proofis given in Appendix I. The proof of The-
orem 1 for the stability of MWL uses similar techniques to the
proof for stability of OCF scheduling presented in [13].

Having established the stability of the MWL scheme in The-
orem 1, we now proceed to bound the maximum lag experienced
by an individual cell. A methodology for deriving bounds on
the cell delay and queue size is described in [21]. In [13], it was
shown that LQF could potentially lead to starvation. Longest
Port First (LPF) was proposed in [22] and was shown by simu-
lation to provide better performance than LQF and OCEF, but it is
possible to construct a traffic pattern that leads to starvation for
LPF [23]. All the previous results are applicable to stability in
a single node (switch). The problem of scheduling a network of
input-queued switches is considered in [24], and it is shown that
both the LQF and LPF scheduling policies can be unstable for
a fixed traffic pattern in a simple network of eight IQ switches.

Before we proceed, we need the following definitions in ad-
dition to the definitions used for the proof of Theorem 1 in
Appendix . »

Definition 5: L; Norm: Given a vector Z € RNZ, the norm
IZ]|1 is defined as

N2

1ZIl = |2l
k=1

Definition 6: Input-Output Norm: Given a vector Z € RN’ ,
Z ={zp,k=(N—-1)i+j,4,5=1,...,N}, thenorm || Z]|10
is defined as

N N
1Z]lio = =11113XN {Z lzn(k—1)+1ls Z |ZN(j—1)+z|} :

J k=1 =1

IZ]]1o takes the maximum of the sum of quantities related to
all the queues referring either to the same input or to the same
output. For example, the traffic arrival vector is admissible if
and only if ||Allilo < 1.

Definition 7: Let L(n) be the lag vector at time slot n such
that
L(n)=(L1,1(n),...,Lin(n),...,Ly1(n), ..., Ly,n(n)"

5

where L; ;(n) is the lag of HOL; ; at time slot n.

Theorem 2: A bound on the mean lag, E[||L(n)||1], using
a MWL scheduling policy under any admissible i.i.d. arrival
process is given by

N® + 3N?||A[|x
2(1=[1Allo) -

Proof: The proof is given in Appendix II.

‘We emphasize that the bound in Theorem 2 is a much stronger
property than bounding the average packet delay in an IQ switch
over that in an OQ switch. Not only does Theorem 2 provide a
bound on the additional mean delay for all packets departing
an IQ switch using MWL over an OQ switch, it also applies to
any individual packet departing the IQ switch. Specifically, The-
orem 2 provides a bound on the difference between the precise
packet departure sequence from an 1Q switch using MWL over
that provided by an OQ switch. For example, consider an 1Q

EIL(n)]l,] <
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scheduling policy that periodically serves the same number of
packets per output port as an OQ switch over a time interval
larger than the corresponding time interval in an OQ switch.
For all admissible traffic, this behavior would imply a bounded
per-packet average delay compared to an OQ switch, but it does
not imply the property of Theorem 2. This behavior occurs be-
cause each packet’s departure order could be different from the
IQ scheduling policy compared to the OQ scheduling policy.
The key difference lies in the lag definition such that a packet
departing ahead of its time would have a zero lag. Observe that
if a negative lag was allowed, then the mean lag value becomes
the additional mean delay in an 1Q switch over that in an OQ
switch as packets departing ahead of their IDT (negative lag)
would offset packets departing after their IDT (positive lag).
Furthermore, bounding the mean delay in an IQ switch over that
in an OQ switch requires only knowledge about the average ser-
vice rate per output port in both switches rather than the precise
packet departure sequence from each switch.

V. ITERATIVE LAG SCHEDULING POLICY

Iterative lag (iLag) is a simple heuristic based on maximal
matching. A maximal matching algorithm is one that adds
connections incrementally, without removing connections
made earlier. iLag can be implemented using an arbiter at each
input and output port using a request—grant—accept paradigm.
Initially, all input and output arbiters are unmatched, then in
each iteration:

1) Request: Each unmatched input sends a request to every

unmatched output for which it has a queued cell.

2) Grant: If an unmatched output receives any requests, it
chooses the request with the most lagging cell and sends
a grant to this input.

3) Accept: If an unmatched input receives any grants, it
chooses the grant for its most lagging cell and sends an
accept signal to this output.

The input and output arbiter are considered matched. The al-

gorithm executes until either no more matches can be made or
a fixed number of iterations are performed.

VI. SIMULATION RESULTS

The average cell delay and E/[||L||1] of MWL and iLag are
evaluated by simulation for a 16 x 16 switch and compared to
LPF [22], LQF [13], islip [12], and PIM [25]. All simulations
were performed with 99% confidence and 1% accuracy. iLag,
islip, and PIM were executed with four iterations. Bernoulli
traffic distribution is used for performance evaluation.

A. Bernoulli Traffic Distribution

For Bernoulli i.i.d. distribution, we use three traffic models:
uniform, log diagonal, and diagonal arrival patterns. Let |k| =
(k mod N).

1) Uniform: A; ; = p/N Vi,j, where N = 16 is the size of

the switch.

2) LogDiagonal: \; ; = 2X;|j+1), and >, A;; = p. For
example, the distribution of the load at input 1 across all
outputs is A1 ; = 2V=9p/(2" — 1). This arrival pattern is
more skewed than uniform loading.
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Fig. 3. Average cell delay versus offered load for uniform Bernoulli i.i.d.
traffic.

3) Diagonal: \; j = 2p/3, A jiy1) = p/3 Vi, and \;; = 0
for all other 7 and j. This is a very skewed loading and is
more difficult to schedule than uniform loading.

As shown in Fig. 2, MWL provides the lowest F[||L||1]
compared to other maximum weight-matching schemes
under uniform Bernoulli arrivals, although all maximum
weight-matching schemes have almost the same average cell
delay as shown in Fig. 3. The same trend occurs for ilLag
compared to islip and PIM. In particular, among the maximum
weight-matching schemes considered, at a load of 0.9, the
MWL scheme has F||L||1] = 10 time slots, whereas the LQF
and LPF have E[||L||1] = 100 time slots. Among the iterative
schemes, iLag has E[||L|l;] = 300 time slots, whereas the
iSLIP has E[||L||1] = 900 time slots. In both cases, the use of
the lag metric results in significant reductions in the mean lag.

Similarly, under log diagonal traffic, MWL provides the
lowest E[||L||1], as shown in Fig. 4, whereas the delay of all
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maximum weighted-matching scheduling policies is almost
identical as shown in Fig. 5.

The same trend occurs for diagonal traffic as shown in Figs. 6
and 7.

VII. CONCLUSION

1Q switches are commercially used in most Internet routers
due to their capability of operating at high line speeds with a
lower memory bandwidth requirement than OQ switches. In
this paper, we addressed the issue of fair scheduling in Internet
routers with IQ switches. We formulated switch scheduling in
an 1Q switch with unity speedup as tracking the behavior of
an OQ switch. By tracking the behavior of an OQ switch, an
IQ switch resolves input and output contention fairly, elimi-
nates any starvation of inputs, and approximates the behavior
of an OQ switch as close as possible. We introduced the lag
as a performance metric that measures the difference between
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a packet’s departure time in an IQ switch compared to an OQ
switch. We proved that per-packet lag is bounded for a max-
imum weighted-matching scheduling policy that uses lag values
for its weights and derived a bound on the mean lag value using
a Lyapunov function technique. Finally, we proposed a heuristic
tracking scheduling policy and evaluated its performance by
simulation. The proposed iterative lag-based scheduler offers
significant reductions in the mean lag compared to other iter-
ative schemes such as iSlip.

APPENDIX I
MWL STABILITY PROOF

Definition 8: Let Q(n) be the occupancy vector at time slot
n such that

Q(n)=(Q11(n),...,.Q1n(n),... Qnn(n)".

7QN,1(77')7 e

1983

Definition 9: Let A\in = min(), ;,1 < 4,5 < N). Without
loss of generality, Ay > 0.

Definition 10: Let C; j(n) denote the HOL cell of @); ; at
time slot 7.

Definition 11: Let A(n) be the arrival matrix representing the
arrivals into each queue at time slot n, A(n) = [4; j(n)] where

Aii(n) = 1, if an arrival occurs at ); ; at time slot n
IV 71 0, otherwise.

The associated arrival vector is
A(n) = (Alyl(n), e 7A1,N(n)7 .

Definition 12: Let S(n) be the service matrix indicating
which queues are served during time slot n, S(n) = [S; ;(n)]
where

Sii(n) = 1, if Q; ; is served at time slot n
“d 0, otherwise

and S(n) € S, the set of service matrices. This def-
inition of the “service” matrix is a permutation ma-
trix, which includes the case where an empty queue is
served. Note that S(n) is a permutation matrix; that is,
SN S = Zj\;l Si; = 1. We define the associated service
vector ﬁ(n) = (Sl,l(n), R Sl,N(n); e ,‘SN,N(TI,))T.

Definition 13: Given a vector X € RV 2, the second order
norm || X|| is defined as

Definition 14: Let L(n) be the lag vector at time slot n such
that
o Lya(n),...,Lyn(n)"
where L; j(n) is the lag of HOL; ; at time slot n.

Definition 15: Let Lynax(n) = max(L; j(n),1 <i,j < N).

Definition 16: Let T be a positive-definite diagonal matrix
whose diagonal elements are

)\1’1, . ,)\LN7 . ;)\N,h - 7)\N,N~

Definition 17: [a ® b ® c] denotes a vector in which each
element is a Hadamard product of the corresponding elements
of the vectors: a, b, and ¢, i.e., a; ;b; jc; ;.

Definition 18: Let 1 denote a column vector of dimension N2
whose elements are all ones.

Definition 19: Let 0 denote a column vector of dimension N2
whose elements are all zeros.

Definition 20: Let E; j(n) denote the arrival time of the HOL
cell in ); ; at time n. Let 7; j(n) denote the interarrival time
between the HOL cell and the cell behind it in Q); ;. Therefore,
E; j(n+1) = E; j(n)+ 7 j(n). Let =(n) be a vector of inter-
arrival times such that

r(n) = (ma(n),...,in(m), .. v (n), .. v ()T
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Let A7(n) be a vector of time intervals, where A7; ;(n) =
[E;,j(n), E; j(n) + 7; j(n)] such that

A7(n) = ([E1,1(n), E1a(n) + ma(n)], ...,
[Ern(n), Eyn(n) + v (R)], -
[ENJ(?’L%ENJ(TL) + TNvl(n)] ey
[Ex.n(n), Ex,n(n) + man ()T

Definition 21: Let Z(At(n)) be the aggregate arrival vector
for each output port during the time interval A7 (n) (interpreted
component-wise)

Z(A1(n)) = (Z11 (Ar1a(n)). -, Zyn (ATyn(n)T

where Z; j(Ar; ;(n)) represents the aggregate number of cells
that arrived to the switch during the time interval A7; ;(n) des-
tined to output j. B

Definition 22: The approximate Lag next-state vector, L,
which does not consider the case of an empty queue, is given
by (the max function is interpreted component-wise)

L(n+ 1)=max (L(n) + 1 - S(n)0[r(n) + Z (Az(n))],0).
_ 2

The approximate next-state vector, L, assumes that each VOQ
always has a packet. The exact next-state vector, L, takes the

empty queue case into account.

Lij(n+1) = { Lijn+1), Qijtn+1)>0
! 0, otherwise.

3)

Explanation: Equation (2) describes the evolution of the lag
vector. In the above equation, if @; ; is not serviced at slot n,
then its corresponding S; ; element in S(n) is zero, and the cor-
responding term in S(n) ® [r(n) + Z(A7(n))] cancels out. In
this case, the lag increases by 1. Alternatively, if the HOL cell at
Q; ; is serviced at time slot n, then we need to calculate the lag
of the cell following it in the queue. We consider two subcases:
CASE A) There were no packet arrivals to the switch destined to

output 5 during the interarrival period between the HOL

cell at @; ; and the cell following it (i.e., Z; ;(AT;;) is

zero). In this case, the corresponding element for Q; ; in

S(n)is 1 and Z; ;(A; ;) is zero. Therefore,
Lij(n+1) = Lij(n) +1 -7 ;(n)

i.e., the new lag is the old lag minus the interarrival time

between the two cells.

CASE B) There were arrivals during the interarrival period be-
tween the HOL cell in @); ; and the cell following it. In
this case, all cells that arrived during this interarrival pe-
riod should depart from the switch (or be selected to be
transferred across the switch by the scheduler) before the
new HOL cell at Q; ;, so the new lag is given by

() + 1= i(n) = Z; j (At j(n)).

The following facts are used in the proof of the stability
of the lag vector.
Fact 1: For all 4, j, n, an interarrival time 7; j(n) is indepen-
dent of the lag L; j(n). This is true because we are assuming an
i.i.d. traffic model.

Liyj(n + 1) = Ll
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Fact 2: 7; j(n) > 1 because there is at most one arrival per
time slot, so the arrival times of any two consecutive cells must
be at least one slot apart.

Proof of Theorem 1

We prove the stability of the lag vector, which implies the
stability of the queue occupancy. Recall that the lag is defined
in terms of the total occupancy of packets in the switch destined
to an output port.

The following Lemma is adapted from [13, Lemma 7].

Lemma 1: L¥(n)A — LT (n)S*(n) < 0 VL(n),\ where
S*(n) is such that LT (n)S*(n) = max(LT(n)S(n)). Note
that S*(n) is the service vector selected by the MWL sched-
uling policy at time slot n.

Proof: 1dentical to the proof of [13], Lemma 2. [ |

The following Lemma is adapted from [13, Lemma 8] and is
simplified for an V x N switch rather than an N x M switch.

Lemma2: Forall A < (1—/)J,, (theinequality is interpreted
component-wise), 0 < § < 1, where ), is any rate vector such
that ||),,||> = N, there exist ¢ > 0 and K < oo such that

E[L (n+1)TL(n+1) = L ()T L(n)|L(m) << | L(n) | + K.
Proof: By expansion

L' (n+ )TL(n+1) = L7 (n)TL(n)+2L" (n))

= 2L (n) [8*(n) © (n) © )]
— 2L (n) [S"(n) © (_T( ))®>\]

+ZA”—225 n)\i
_225
+ZS
+2Z
+Z

z(n
A

Z;j (AT (1)) Aij
) (Ti(n ))2 Aij
Zij (ATij(n))

j (AT j(n)) Aij-

Subtracting L (n)TL(n) from both sides and taking the ex-
pected value and observing that the expected value of 7; ;(n) is
1/)\1‘13', then
E [E (n+1)TL(n+1)— LT
— 217 (m)A— 2L" (n)S" (n)
—2L"(n) (8%(n) ® Z(AT(n)) ® A) + E i j

_QZs;jj —225;‘]
+22 5

+ Z
+ Z ,j (Aﬂ:,j(”)) )‘i,j] .

()T L(w)|L(n)]

VEZi (Aﬂ i(n)) Aijl

Zij (AT j(n))]

“)
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We make use of the following properties to simplify (4) and

establish Lemma 2:

(a) Zi7 j Aij < N; (from the admissibility constraints)

(b) Zi,j S;;(n) > 0; the term in (4) that contains this sum
with a negative coefficient can be ignored to yield an upper
bound for the expectation on the left hand side.

(¢c) LY (n)(S*(n) ® Z(At(n)) ® A) > 0; (because each
element in this term is nonnegative; observe that this term
has a negative sign in (4), so it can be ignored)

(@ 32, ;57 ()E[Z; j(AT; j(n))Ai ;] > 0; (because each
element in this term is nonnegative, observe that this term
has a negative sign in (4), so it can be ignored). Recall
that although all the summation terms have N2 elements,
there can be at most N elements with S} ;(n) = 1. Also,
note that the following positive terms in (4) are bounded:

25

)/ Xij < N/ Amin < 00

Z S7 (ATL,J LJ]
<ZS (A'r” (n)] <N <o
Z n)E[Z; j (A1, j(n))] < N < oo. Q)

From (4), properties (a)—(d), and (5), we obtain

E (L' (n+ DTL(n+1) - L ()T L(w)| ()]
<207 (n)A — 2L (n)S*(n) + 4N + N/Amin-  (6)

Using the assumptions in Lemma 2, we obtain
LT (m)A = L"(n)8"(n) < LT (n)(1 = B)A,, = L" (n)S"(n).

Applying Lemma 1 to the L (n)),, — L™ (n)S*(n) term on the
right-hand side (RHS) (i.e., the term is eliminated because it is
nonpositive), we get

LT (m)A = L"(n)8"(n) <
LT(m)A = LT (n)S*(n) < = B|| LT (n)|| 1]l cos(8) (7)

where # is the angle between L’ (n) and ),,. It can be easily
shown that cos(f) > & for some 6 > 0 whenever L” (n) #
0 using the same approach as in [13, Equations (16)—(18)] to
obtain a lower bound on cos(f)

)\min
cos(f) > —-. 8
6) > > ®
Substituting (8) in (7) and using ||\,,,||* = N, we get
% /\min
LT (m)A = L"(n)S"(n) < =B |L" )] 5" ©)

Substituting (9) in (6), we get

E[L" (n+1)TL(n+1)=L" ()T L(n)|L(n)| <=2 L(n) |+ K
(10)
where € = 20(Amin/N) and K = 4N 4+ N/ Amin- []

1985

Lemma 3: Forall A < (1—03)),, (theinequality is interpreted
component-wise), 0 < 8 < 1, where ), is any rate vector such
that ||A,,||* = N, there exist ¢ > 0 and K < oo such that
E[LY(n+1)TL(n+1)— L (n)TL(n)|L(n)] <—¢||L(n)||+ K.
Observe that the difference between Lemmas 2 and 3 is that
Lemma 2 uses the approximate next-state vector, whereas
Lemma 3 uses the exact next-state vector. The approximate
next-state vector assumes that each VOQ always has a packet.
The exact next-state vector takes the empty queue case into
account.

The proof of this lemma is similar to the proof of [13,
Lemma 9] and is included here for completeness.

Proof: The fact that T is a positive-definite matrix together
with (3) implies that for all n
<L (n+1)TL(n+1).

LT (n+1)TL(n+1)

Therefore

E[L"(n+ 1)TL(n + 1) = L™ (n)TL(n)|L(n)]

<E[L (n+ )TL(n+1)[L(n)]
This proves the lemma. [ |
Lemma 4: There exists a quadratic Lyapunov function
V(L(n)) such that
E[V (L(n+1)) =V (L(n))|L(n)] < —e[|L(n)|| + K (11)
where K,e > 0.

Proof: From Lemma 3, V(L(n)) = L" (n)TL(n), ¢ =

26(Amin/N),and K = 4N + N/Apin. [ |

Theorem 3: Under MWL, the expectations of the lag values
are bounded for all » under all admissible and independent ar-
rival processes, i.e., Vn, E[||L(n)]|] < oo.

Proof: While {L(n)} is not a Markov chain, by appending
the N-dimensional vector Q | (n), whose ith entry is the queue
occupancy of an OQ switch, we see that {(L(n), QOQ(n))} is
a Markov chain. The addition of @ Q(n) to the state of the
process allows one to compute the ideal departure times and the
lag vector (see Section IV-A and Definition 4) from the current
state of the process. Hence, the augmented process is Markov.
Furthermore, each entry in Q Q(n) is the queue length for a
stable Geom/D/1 queue given a finite size IV or the queue length
for a stable M/D/1 queue as N approaches infinity. Therefore, it
is straightforward to show that for some eoq > 0 and Boq <
00

E [Q5,(n + Qoo (n + DIQg(m)]

< —e0al Qoo + Boa. (12)

Combining (11) and (12), we see that V((L(n),QOQ(n))) =
L. (n)TL(n) —|—QOQ (n)QOQ (n)isa .quadran.c Lyapunov func-
tion, and according to the arguments in [26], it follows that the
expectations of the lag values are bounded for all » under the
MWL scheduling policy. [ |
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Theorem 4: Under the MWL scheduling policy, the expec-
tations of the queue occupancy are bounded for all » under
all admissible and independent arrival processes, i.e., Vn,
EfQm)Il] < oo.

Proof: That stability of the lag values implies the stability
of the per packet additional waiting in the IQ switch. Given
the traffic admissibility constraints, each packet’s delay in the
OQ switch being tracked is finite. Consequently, the total delay
provided by the IQ switch using MWL is bounded. Therefore,
all the queue occupancies in the IQ switch under MWL are
bounded for all 7. [ |

APPENDIX 11
LAG BOUND FOR MWL SCHEDULING POLICY

In addition to the definitions given in Appendix I, the fol-
lowing definitions are necessary in this part.

Definition 23: The unit vector parallel to X is denoted by X,
and is defined as

X
1X]

To proceed, we need the following trivial generalization of a
theorem due to Leonardi ez al. [21, Theorem 3.6], which is pre-
sented here in a form appropriate for the problem under consid-
eration. We do not provide the proof, as it is unchanged from
that in [21].

Theorem 5: Consider a system of queues whose evolution is
described by a discrete time Markov chain (DTMC) with state
vector Y,, = (L(n), X (n)), where {X(n)} is itself a DTMC
with all states positive recurrent. If all of the polynomial mo-
ments of lag distributions are finite and if a lower-bounded poly-
nomial function V' (L(n)),V : N¥ — R, canbe found, such that
E[V(L(n))|Y,] < oo and there exist two positive real numbers
e € Rt and B € RT, such that

e

1

>

EV (L(n+1)) =V (L(n)) [Ya] < —€f ([L(n)]])

forall Y;, such that || L(n)|| > B and where f(x) is a continuous
function in R, then

13)

Jim E[f ([[L(n)[D] < lim E[f (L))
LY Zm+1) -

€

( ( ))|Y € Hp XP[Y EHB] (14)

Note that for MWL, we can simply choose X (n) = @ Q (n)
in Theorem 5. In addition, all of the polynomial moments of the
lag distribution can be shown to be finite by a corresponding
trivial generalization of [21, Theorem 3.5].

The proof of Theorem 2 consists of two steps. First, we find
a lower bound on ¢ in (13). The second step is to use (14) to
derive the bound on E[||L(n)||1].

Using (14) with f(|[L(n)]) =
L" (n)TL(n)

[L(n)[l1 and V/(L(n)) =

_B[ET 4 )L+ 1) — L ()T L)L)
I L(n)Il, > ¢ (15)
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for all L(n) such that ||L(n)||; > B and for some B > 0. The
function on the left-hand side (LHS) of (15) admits a limit for
||L(n)||]s — oo, which depends on the direction of the vector

L(n). Let €xiy, be smallest value for this limit, i.e. (5) holds

E[L"(n+1)TL(n+1)
I L(n)l;

L LT m)TL(n)|L(n)]

IL(n)]ly '

Substituting (4) in the previous equation and observing that
all of the terms in the numerator that do not contain L(n) will
go to zero upon dividing by ||L(n)||1 — oo, we get

(2L A= 2L )8 ()
1L

n 2L"(n) (8"(n) © Z(Az(n)) © A)
IL()]l4 '

Taking 2 as a common factor and rearranging the terms, we get

lim inf <LT( 8" (n) —

lim inf

€min —
|L(n) ||, =00

€min = 1
L) i —eo

LT (n)A

€min = 2

IL(m)ll, —oo L)l
(L) (8°(n) © Z (Ax(n ))®A))' (6)

IL(n)lly

We make use of the following proposition, which was proved
in [21, Proposition A.1] and is included here for completeness.

Proposition 1: For any nonnull normalized vector Z(n) €
RN

> —.
(n)>
Applying Proposition 1 to the second term in (16), we get

LT(n) (8" (n) © Z(Az(n)) ©A) _ Z(Ar(n)) - A

> > 0.
IL(n)]]y N
a7
Now, we use a technique from [21, pp. 542-543] to bound the

following term:

LT(n)8"(n) = L"(n))
L)y
Consider the vector U(n) = E[A(n)]+ (1 —||All10)S*(n). Itis

straightforward to prove that [|U(n)||1o0 < 1. Also, the fact that

the system is stable implies F[A(n)] = F[S*(n)] = A. Thus
8*(n)L"(n) ~U(n)L"(n) _ S*(n)L"(n) —A® L"(n)
1L(n)]]y L)1l
_ (1= 1IAllo) S*(n)L" (n)
L)l
>0
and from Lemma 1 we have
S*(m)L" (n) — AL (n) _ (1= ||All10) S*(n) L (n)
1L(n)]]y - L)y '
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Applying Proposition 1, we get equalities in the previous equation and using the inequality
’ E[X,; 57;(n)Zi j(A7ii(n)] < NAll1, we get
S*(m)L" () = ALT(n) _ (1= ||Alho) g0 (AT

18
i, = N 4
, E[LT(n+ 1)TL(n + 1) — LT (n)TL(n)|L(n)]
Using (17) and (18) to evaluate (16), we get < enin |L()] 1A
> €min [|4& 1 — Al
2
min > — (L —=||A . 19
€ N( 1Allo) (19) 9B ZS Ti s (s s(m) M |+ V22N
The next step is to evaluate (14)
lim B[ ([Lm))] < lim E | £ (1)) ZS S (A () hig | 20)

Substituting (20) in (14), we get

LV (Lt 1) - V(L(n))m € Hy| x PY, € Hyl.

| ET|L(n)],]
i e m BVl + ) < VOO € Ml [y, KU D)V B
BV (L(n+1)) - V (L(n)) Y, € Hz] BlIL)IL] y
=E[L"(n+1)TL(n + 1) — LT (n)TL(n)|L(n)] SE [”L(")”l (1 B in)}
=2L"(n)A — 2L (n)S*(n) N2 +2N| AL+ E I:Zi,j Z2; (A7 j(n)) Azj}
—2L"(n)(S*(n) © Z(Az(n)) © A) + P
+3 A= 2B (Y87 (n) - A + 20 [Zi’j P (A7 () Ai’]} : 1)

€

If we set € = €min, We get

- 2K z ATZ n /\Z 1
Z i (A7ij(n)) Aij N242N| A+ B[S, 22, (A (n) X2,
_ BlILm),]< —
S n min
+ E Z 71‘ — | +28 Z Z; ;i (AT (n)) I1All1 2E[Z¢jzi,j(ATi,j(n)))\?j:|
| id Aij Al ; )
N €min €min
) z () Ay |- V42N + B[S, 722(87i5(m) 23]
o €min
N?24+2N N
Using (17) and (18), we get < AN+ N1IAT
T - ~ (1=1Allz0)
E[L"(n+1)TL(n + 1) = L (n)TL(n)|L(n)] N3N,
-2
~ (1=11Allz0)
N N ( A IO
< emin [|L(n ||1+ZM E > S V343N
' ~ 2(1=Allo)
—2E Z Zij (Arij(m) X
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