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Abstract—An adaptive traffic estimation algorithm for an Auto-
nomic Future Internet which can provide improved throughput,
energy-efficiency and QoS guarantees is proposed. The theory
for a Future Internet which supports multiple service classes,
i.e., the traditional Best-Effort (BE) class and a new Essentially-
Perfect-QoS (QoS) class, has recently been proposed. In this
Future Internet, the routers give preference to the QoS traffic
class. All smoothened end-to-end traffic flows in the QoS class
will never experience congestion and can achieve Essentially
Perfect link-utilizations and end-to-end QoS guarantees, with
significantly improved energy-efficiencies. Each Future Internet
router must provision bandwidth for the QoS traffic class,
and schedule this class with 100% throughput efficiency and
strict QoS guarantees, using a recently-proposed mathematical
scheduling algorithm. In this paper, adaptive traffic estimation
algorithms which allow each Future Internet router to estimate
its future QoS traffic demands and provision bandwidth for the
QoS demands in anticipation of their arrival are proposed. An
Autonomic Controller (AC) in each router maintains a history
of its QoS and Best-Effort traffic demands over a long time
horizon. Several variations of Autoregressive Integrated Moving
Average (ARIMA) filters are used to estimate the future traffic
demands. The AC can then provision resources for the QoS
demands in anticipation of their arrival. To test the algorithms,
real traffic measurements taken every 15 minutes over 4 months
for a European backbone network are used. The estimates are
shown to be very accurate, provisioning bandwidth for the QoS
class with success rates between 93% ... 99%. An Autonomic
Controller (AC) in each router can also be used to automate
the bandwidth provisioning process for existing Differentiated-
Services traffic classes in existing Best-Effort Internet routers.

Index Terms—Future Internet, autonomic, controller, QoS,
traffic estimation, ARIMA filters, energy efficiency

I. INTRODUCTION

The Best-Effort Internet network is a universal platform
for providing new services. However, the Best-Effort Internet
faces challenges including a reliance on significant over-
provisioning to achieve relatively-poor QoS guarantees [1],
which leads to poor resource-utilization and poor energy-
efficiency. The inefficiencies of the Best-Effort Internet con-
tribute to green-house gasses and global warming, and are
estimated to cost hundreds of millions of dollars in excess
energy costs annually. In addition, the current practice of over-
provisioning the Best-Effort Internet to achieve relatively poor
performance guarantees leads to excess capital expenditures,
to build an infrastructure which remains largely under-utilized
on average. To address these problems, governments around
the world are exploring the ’Future Internet Architectures’,
and are open to both evolutionary and revolutionary changes
to the Best-Effort Internet.

In this paper, algorithms to estimate and provision traffic
demands in a recently-proposed Future Internet network are
proposed. In this paper, estimated traffic demands are used to
provision resources for a new QoS traffic class in anticipation
of their arrival. A software-based Autonomic Controller (AC)
can be introduced into each router. The AC in each router
performs the traffic estimation and resource allocation pro-
cesses, a step towards a fully Autonomic Future Internet or
more general Autonomic Computing system [5].

The Future Internet model we consider supports multiple
service classes, i.e., the existing ’Best-Effort’ (BE) class, along
with a new and highly-efficient Essentially-Perfect (QoS) class
[16,17]. The QoS class can contain high-bandwidth aggregated
video traffic from cloud-based servers such as YouTube, Net-
flix and iTunes, or traffic for cloud-based computing systems.
It has been estimated that video-traffic will soon account for
the majority of all Internet traffic. Traffic in the new QoS class
is highly-efficient and can achieve significantly better link-
efficiencies, energy-efficiencies and QoS guarantees compared
to today’s Best-Effort Internet [16,17].

The new QoS traffic class can also lead to considerable
capital-cost savings by removing the need to significantly over-
provision the Best-Effort Internet. Today’s Best-Effort routers
typically operate at light loads (i.e., 33%) to provide statisti-
cally low delays, representing a significant loss of capacity, and
a significant capital cost to pay for over-provisioning capacity
[1]. By allowing the network to achieve mathematically-
provable and very low delays even at 100% loads, the capacity
of an entire backbone network can be increased representing
a considerable capital-cost savings, potentially measured in
the billions of dollars per year. By significantly increasing the
capacity of the Internet infrastructure, the energy-efficiency of
the entire network also improves significantly.

To achieve strict and mathematically-provable QoS guaran-
tees, each Future Internet router must schedule the QoS traffic
flows to achieve 100% efficiency and strict QoS guarantees,
using a recently-proposed mathematical scheduling algorithm.
Achieving 100% throughput and strict QoS guarantees in
one input-queued switch or router without over-provisioning
is a well-known and difficult problem [4,16,18], which is
summarized in section 2.

The Future-Internet network described in [16,17] can use a
reservation-based model such as MPLS, where RSVP is used
to reserve resources for each end-to-end QoS traffic flow, to
provide Essentially-Perfect end-to-end QoS guarantees. Our
traffic estimation algorithms provide estimates of future QoS
demands, which can be provisioned in anticipation of their
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arrival. However, the same algorithms can be used to automate
the resource allocation process for the Differentiated Ser-

vices (DiffServ) model in existing Best-Effort Internet routers.
DiffServ does not use end-to-end reservations. In a DiffServ
network, each router can allocate bandwidth for each DiffServ
traffic class on its outgoing links. Currently, this DiffServ
allocation process is not automated and is performed manually
in each router (if it is used at all). An Autonomic Controller

in each router can also use the proposed traffic estimation
algorithms to provision bandwidth for DiffServ traffic classes
in each router in the existing Best Effort Internet network.

The AC in each router maintains a history of its traffic
demands over a long time horizon. The traffic rates between
Source-Destination (SD) pairs can be low-pass filtered to
reduce transients. Differences of the filtered rates can be used
to estimate the future rates. To provision resources for a end-
to-end QoS traffic flow, the source node can perform a source-
based routing algorithm. The routing algorithm will compute a
desired end-to-end path between the SD pair, which optimizes
a performance metric of the network, i.e., minimum cost,
minimum delay, maximum reliability, etc. In our application,
any good source-based routing algorithm can be used.

In a reservation-based network model, the AC can perform
source-based routing, and reserve resources for the end-to-
end traffic flows using a signalling protocol such as RSVP.
In a non-reservation-based network model (i.e., a DiffServ
network), the AC can use allocate bandwidth for each DiffServ
traffic class along the outgoing edges of the router. Every Diff-
Serv router in the network can perform the same autonomic
tasks, thereby provisioning bandwidth for the DiffServ classes
throughout the network, in each provisioning interval.

Several techniques have been proposed to estimate traffic
demands in a network. Reference [7] has summarized several
different traffic modelling techniques, including discrete-event
simulation, renewal-process models, markov-modulated mod-
els, fluid models, linear autoregressive models and self-similar
models. Several papers have proposed the use of Kalman filters
to estimate traffic demands [14,15]. Kalman filters are based
on Linear Dynamic Systems with a discretize-time model.
They model a hidden Markov chain built upon linear operators
where measurement perturbations drawn from a Guassian
distribution with zero-mean. Kalman filters and Markov chain
models select an estimate for the next-state based upon the
current estimated state and the current measurements; no long-
term history is modelled. Unfortunately, it is well-known that
real Internet traffic is usually self-similar, with a very high
burstiness. Self-similar traffic is also characterized as having
large variances and significant autocorrelations over long time
horizons [3]. The characteristics of real Internet traffic suggests
that other models which can consider longer time horizons
may be better for modelling Internet traffic.

Our traffic models can be classified as variations of the
Autoregressive Integrated Moving Average (ARIMA) filters.

Fig. 1. The ’Geant’ European backbone network [2].

A general ARIMA model has the form

Xn = a0 +
p�

r=1

arXn−r +
q�

r=1

br�n−r, n > 0 (1)

where the X0, ...,Xp−1 are random variables, the ar and br

are real constants (coefficients), and the �r are error terms,
typically zero-mean IID random-variables which are indepen-
dent of the Xn. In our traffic models, several ARIMA-type
filters are created, each operating on a different time-scale, i.e.,
quarter-hours, hours, days and weeks. Each filter has a weight
which reflects its accuracy in predicting the future traffic
demand. The weights change adaptively as time progresses,
so that the most accurate filter has the largest weight when
forming the next traffic estimate.

To test the estimation algorithms, real inter-city traffic
measurements taken every 15 minutes over a period of 4 month
for the European ’Geant’ backbone network shown in Fig. 1
are used [2]. The traffic estimation algorithms are shown to be
very accurate, provisioning sufficient bandwidth with success
rates typically between 93% - 99%.

In the proposed Future Internet, resources reserved for the
QoS class can be used by the BE class if the QoS traffic
demand does not materialize. Similarly, if unanticipated QoS
traffic demands arrive, then they can be provisioned in real-
time (as is currently done in MPLS or ATM networks). The
AC relieves the load of provisioning all demands in real-time.

Section 2 provides a brief review. Section 3 summarizes
the Future Internet model we assume. Section 4 presents the
proposed estimation algorithms. Section 5 concludes the paper.

II. REVIEW

A. QoS Scheduling

It is well known that a Maximum Weight Matching (MWM)

algorithm can be used to schedule the transmission of pack-
ets through an Input-Queued switch or router and achieve
essentially 100% throughput [4]. However, the MWM algo-
rithm requires O(N3) computation per time-slot, rendering
it intractable for Internet routers. The problem of scheduling
multiple competing traffic flows within a single IQ switch,



to achieve 100% throughput and strict QoS guarantees, is
difficult. For example, researchers at Bell Labs. have shown
that scheduling multiple competing traffic flows within a single
IQ switch to minimize jitter is NP-HARD [18]. Any practical
solution to this QoS scheduling problem can be applied to the
current Internet IP and MPLS networks, which currently use
heuristic Best-Effort schedulers. Recently, a fast polynomial
time solution to the QoS scheduling problem has been pre-
sented (see [16]). The algorithm can be applied to yield the
proposed Future Internet network, with improved resource-
utilization, energy-efficiency and QoS guarantees [16,17].

B. Review of Traffic Models, Estimation and Provisioning

Leland et al. have shown that real Internet traffic is often
self-similar, exhibiting burstiness over several time-scales,
which makes traffic modelling and provisioning difficult [3].
Gunnar et al have described a Global Crossings backbone IP
network, where traffic flows are provisioned between cities in
each provisioning interval [6]. Barakat et al have presented
a wavelet model to model Internet traffic [8]. Freleigh et al
have reported traffic measurements on a Sprint IP backbone
network [9,10]. Reference [10] reports a technique to estimate
traffic demands and provision end-to-end traffic flows (using
RSVP), to reduce the delay per flow. Reference [13] describes
ARIMA filters used to estimate long term NSF backbone
traffic. References [14,15] present traffic models based on
Kalman filters.

III. THE FUTURE INTERNET NETWORK MODEL

A backbone Internet network as shown in Fig. 1 can be
represented as a directed graph G(V,E), where V is the set
of fixed routers, and E is the set of directed edges. The
proposed Future Internet network supports multiple service
classes, i.e., the usual Best-Effort (BE) class along with a new
Essentially-Perfect QoS class [16,17]. All legacy Best-Effort

Internet applications developed over the last 40 years continue
to run over the proposed Future Internet network, while new
applications can also be written to exploit the new and highly-
efficient QoS class.

The traffic demands in an Internet backbone network can
be characterized by several types of traffic rate matrices. Let
TQoS and TBE ∈ RN×N be global traffic demand matrices.
Element TQoS(i, j) denotes the bandwidth requirement for
QoS traffic between the pair of cities (or source-destination
routers) (i, j). Similarly, element TBE(i, j) denotes the band-
width requirement for Best-Effort traffic between the pair of
cities (or source-destination routers) (i, j).

The routing algorithm Γ can be centralized or distributed;
it can use single-path or multi-path routing. In the Global
Crossing MPLS-TE network described in [6], the routing
is performed by the source routers using a constraint-based
routing algorithm, and RSVP was used to reserve resources for
each Label-Switched-Path (LSP) according to the routing. The
proposed Future Internet can use the same routing methodol-
ogy. Each traffic flow to be routed specifies a QoS bandwidth
requirement. When the flow is routed, RSVP can be used to

reserve the QoS bandwidth in each router along the end-to-end
path for the flow. Each router k will update its local router

traffic rate matrix D
QoS
k in response to the RSVP messages.

Each router can schedule its QoS traffic flows to achieve hard
QoS guarantees, using the algorithms described in [16].

The global traffic demand matrix TQoS will evolve over
time. The ’Autonomic-Controller’ in each router will maintain
the recent history of these matrices on a periodic basis.
Define a provisioning interval as an interval of time in which
traffic demand matrix is measured and recorded, i.e., every 15
minutes. The memory requirements for recording the history
of these matrices is relatively small. Each matrix entry requires
2 bytes to provide a reasonable resolution on the bandwidth
requirement. The history of one 50x50 matrix over 1 year
at 15 minute intervals requires only 175 Mbytes (without
compression), which is negligible compared to the memory
in an iPod music player.

A. Autonomic Support for DiffServ Traffic Classes

The DiffServ model provides 3 basic traffic classes in order
of decreasing priority, the Expedited-Forwarding class, the
Assured-Forwarding class, and the Default (or Best-Effort)
class. Existing Best-Effort DiffServ routers give preferential
treatment to the traffic classes with higher priority, however
they cannot provide any hard QoS guarantees due to their Best-

Effort nature. Currently, each Best-Effort DiffServ router must
be manually programmed to provide bandwidth for a Diff-Serv
traffic class, and each manufacturer (Cisco, Juniper Networks,
Alcatel, etc) has a different methodology to configure their
Diff-Serv routers. As a result, many network operators do
not use Diff-Serv. Many networks currently use a single
Best-Effort traffic class and rely upon the significant over-

provisioning of bandwidth to achieve lower queueing delays
and improved performance [1].

In another application of our traffic models, bandwidth for
DiffServ traffic classes can be estimated and dynamically
provisioned by the AC in each router. The AC can provision
bandwidth on each outgoing link of a router for each DiffServ
traffic class in each provisioning interval, thereby realizing an
Autonomic DiffServ Control Plane.

IV. TRAFFIC ESTIMATION

The following notation is used to identify QoS traffic
demands. Let T (i, j)t denote the QoS traffic demand between
SD pair (i,j) at time t, where t represents a multiple of 15
minutes, starting from time 0, i.e., T (i, j)3 denotes the traffic
demand between SD pair (i,j) at time 45 minutes relative to
time=0.

Let T̄ (i, j)t denote the low-pass filtered QoS traffic demand
between SD pair (i,j) at time t. Let T̂ (i, j)t denote the
estimated QoS traffic demand between SD pair (i,j) at time t,
i.e., the estimated bandwidth. Let Ṫ (i, j)t denote the amount
of QoS traffic provisioned between SD pair (i,j) at time t, i.e.,
the provisioning bandwidth.

Fig. 2 illustrates real measured traffic over the Geant Eu-
ropean backbone network (http://sndlib.zib.de/home.action). In



Fig. 2. Geant backbone traffic viewed at 3 different time-scales.

Fig. 2, the traffic intensity for the most intense 3 flows leaving
one particular node are plotted on 3 different time scales, 12
weeks, 4 weeks, and 1 day. The traffic ’looks similar’ over
several time scales, with relatively bursty behavior on all time
scales, suggesting some self-similarity characteristics.

The autocorrelation functions of all traffic leaving a node
over a 2-week period are shown in Fig. 3, for 3 different
nodes. There are significant long-term correlations in the
traffic demands. For example, the traffic demands in each 15-
minute interval are heavily correlated with previous 15-minute
intervals, and with the demands in the same interval in the
previous hours, days and weeks.

Define a window function v = w(ts, tf , s) which operates
on the vector [T (i, j)t] for t = 1 : ∞ and returns a vector v.
The parameter ts denotes a start time, tf denotes an end-time.
The vector v consists of the sequence of elements of T (i, j)t

for t = 1 :∞. where v(1) = the value of T(i,j) at the smallest
time t ≥ ts, where v(k) = the value of T(i,j) at the largest t
time t ≤ tf , and where successive elements of v are separated
by time= s (the ’stride’) in the vector T (i, j)t for t = 1 :∞.

A. Traffic Estimation over a 15-Minute Time-Horizon

This estimation algorithm computes a single estimate for
the next traffic demand value, based upon the current traffic
demand value, the difference of the filtered traffic values at
time t, and the variance of the traffic demands over a short
time window. This model is based upon an Autoregressive

Integrated Moving Average (ARIMA) filter, where the next

Fig. 3. Autocorrelations for several traffic flows leaving one node.

state is a function of the current state and an estimated step
based on the difference of the filtered traffic demands.

A short-term difference over the last 15 minute interval is
computed as follows, based on the low-pass filtered traffic
demands:

∆q = T̄ (i, j)t − T̄ (i, j)t−1 (2)

An estimate for the traffic at time t + 1 is given by

T̂ (i, j)t+1
q = T (i, j)t + ∆q (3)

which can be rewritten in the form of Eq. (1), making explicit
the low-pass filtering:

T̂ (i, j)t+1
q = T (i, j)t+

3�

τ=0

z1(τ)T (i, j)t−
4�

τ=1

z1(τ)T (i, j)t−1

(4)
for the low-pass filter parameters z1. (Several types of low
pass filters can be used. We used a simple moving-average
filter, with four equal weights.)

A node can use this estimate to provision QoS bandwidth
between cities in a backbone network, in anticipation of the
demand in the next time interval. A variance σ2

q over a short-
term window (i.e., 2 hours in the same day) can be computed
as follows:

σ
2
q = V ar(w(t− 8, t, 1) (5)

The amount of bandwidth to provision between a pair of cities
can include a constant kq times the standard deviation. The last
term determines how much ’excess bandwidth’ is included
in the estimated traffic demand to provision between cities,
to accommodate for transients in the demand, where kq is a
constant. The provisioning bandwidth estimate is given by:

Ṫ (i, j)t+1 = T (i, j)t + ∆q + kqσq (6)

The results are shown in Fig. 4. The real traffic demands
are shown in blue, while the estimated traffic demands are
shown in red, for three (s,d) pairs. The curves are essentially
super-imposed, indicating that the estimate is very accurate.

Several metrics can be used to evaluate the performance of
the traffic estimate. The goal is to provision QoS bandwidth



between a pair of cities to satisfy the demand in the next
provisioning interval. The ’mean-satisfied-BW’ α is defined
as the mean value of the lower of the provisioning bandwidth
estimate and the real bandwidth,

α = (1/t)
t�

τ=0

min(T̂ (i, j)τ
, T (i, j)τ ) (7)

The ’success-rate’ β of the provisioning bandwidth Ṫ (i, j) is
defined as the mean satisfied bandwidth divided by the mean
bandwidth demand,

β = (1/t)
t�

τ=0

min(T̂ (i, j)τ
, T (i, j)τ )/T (i, j)τ (8)

The ’mean-excess-bandwidth’ γ is defined as the mean value
of the provisioning bandwidth minus the mean value of the
real bandwidth:

γ = (1/t)

�
t�

τ=1

Ṫ (i, j)τ −
t�

τ=1

T (i, j)τ

�
(9)

The ’mean-error’ E is defined as the sum of the absolute
values of the differences between the bandwidth estimates and
the real bandwidth

E =
t�

τ=0

���T̂ (i, j)τ − T (i, j)τ
��� (10)

The ’mean-squared-error’ Ē2 is defined as

Ē
2 = (1/t)

t�

τ=1

�
T̂ (i, j)t − T (i, j)t

�2
(11)

The results of this model, called the ARIMA(Q) model,
are reported in Tables 1 and II. By changing the ARIMA-
based filter coefficients and filter sizes, several variations of
this model can be achieved.

B. Traffic Estimation Exploiting Hourly History

The traffic demands exhibit significant auto-correlations
over hours, which the previous model does not exploit or cap-
ture. In this algorithm, two traffic estimates can be computed.
To model a longer time horizon, the previous model can be
extended to use multiple measurements of the change in traffic
demands in the previous hour(s). The final traffic estimate can
use a weighted average of both traffic estimates. The weights
can change dynamically, based upon which estimate is more
accurate.

A weighted-moving-average of the differences in traffic
intensities over a window (the last hour) can be computed
using a new filter zh as follows:

∆h =
3�

τ=0

zh(τ)(T̄ (i, j)t−τ − T̄ (i, j)t−τ−1) (12)

for a weighting filter vector zh. The second estimate of the
traffic demand at time t+1 in the current day can be computed
using:

T̂ (i, j)t+1
h = T (i, j)t + ∆h (13)

Fig. 4. Traffic estimates for Largest Traffic flows leaving a node, real (blue)
and estimated (red).

The final traffic estimate can be computed using a weighted
average of both estimates, using the existing weights:

T̂ (i, j)t+1 = w
t
q · T̂ (i, j)t+1

q + w
t
h · T̂ (i, j)t+1

h (14)

To provision QoS bandwidth between a pair of cities, a
standard deviation term can be added to the estimated traffic
demand to yield the provisioning bandwidth:

σ
2
h = V ar(w(t− 4t, 1)) (15)

Ṫ (i, j)t+1 = T̂ (i, j)t+1 + w
t
qkqσq + w

t
hkhσh (16)

where kh and kq are constants which determine the amount
of excess bandwidth provisioned.

The real traffic demand will be measured after the time
advances, and after estimate has been made. The weights can
then be adjusted based upon the accuracy of the individual
estimates: We compute the error terms as the absolute values
of the differences between each estimate and the real traffic
demand as follows:

�q =
���T̂ (i, j)t+1

q − T (i, j)t+1
��� (17)

�h =
���T̂ (i, j)t+1

h − T (i, j)t+1
��� (18)

The error terms can then used to update the weights to be used
in the next measurement estimate:

w
t+1
q = �h/(�q + �h) (19)



w
t+1
h = �q/(�q + �h) (20)

The weights add more emphasis to the better estimate, and the
sum of weights is unity. (Other weight functions can also be
used.)

The results of this model, before weighting with the model
ARIMA(Q), are reported in Tables 1 and II in the row
labelled ARIMA(H). Results are shown for various values
of the parameters k, which determine the amount of ’excess
bandwidth’ added into each provisioning-bandwidth estimate.

C. Traffic Estimation Exploiting Daily History

In this filter, 3 traffic estimates can be computed. The first
2 estimates can be computed using the equations presented
above for the previous quarter-hour and previous hour. A
third traffic estimate can also be computed, using a weighted-
average of the differences in traffic intensities in the same
hour interval in the previous day(s). A day represents 96
quarterly hour measurements. The final traffic estimate can be
a weighted average of all three traffic estimates. The weights
can change dynamically, based upon which estimate is more
accurate.

A weighted-moving-average of the measured differences in
the same hour interval of the previous day(s) can be computed
using a new filter zd as follows:

∆d =
3�

τ=0

zd(τ)(T̄ (i, j)t−96−τ+1 − T̄ (i, j)t−96−τ ) (21)

A third estimate of the traffic demand at time t + 1 in the
current day can be computed using:

T̂ (i, j)t+1
d = T (i, j)t + ∆d (22)

(We can also use more quarter-hour measurements from each
day in the model.) The final traffic estimate is computed using
a weighted average of all three estimates, using the existing
weights:

T̂ (i, j)t+1 = w
t
q · T̂ (i, j)t+1

q +w
t
h · T̂ (i, j)t+1

h +w
t
d · T̂ (i, j)t+1

d
(23)

A standard-deviation term based on the short-term variance
for the same interval in the previous days can be computed:

σ
2
d = V ar(w(t− 96− 3, t− 96, 1)) (24)

The provisioning bandwidth is given by:

Ṫ (i, j)t+1 = T̂ (i, j)t+1 +w
t
qkqσq +w

t
hkhσh +w

t
dkdσd (25)

where kd, kh and kq are constants which determine the amount
of excess bandwidth provisioned.

The real traffic demand will be measured after the time
advances, and after estimate has been made. The weights can
then be adjusted based upon the accuracy of the individual
estimates: We compute the error terms between each estimate
and the real traffic demand as follows, letting the symbol θ ∈
(q, d, h):

�θ =
���T̂ (i, j)t+1

θ − T (i, j)t
��� (26)

The error terms can then used to update the weights to be used
in the next measurement estimate:

w
t+1
θ = (1/�θ)/(1/�q + 1/�h + 1/�d) (27)

(Other weight functions can also be used.) The weights add
more emphasis to the better estimate, and the sum of weights
is unity.

The results of this model, before weighting with the models
ARIMA(Q) and ARIMA(H), are reported in Tables 1 and II
in the row labelled ARIMA(D).

D. Traffic Estimation Exploiting Weekly History

The previous model can be extended to include more past
history. Each week represents 96*7 = 672 measurements. A
weighted-moving-average of the measured differences over the
same hour interval in the last week can be computed using a
new filter zw as follows:

∆w =
3�

τ=0

zw(τ)
�
T̄ (i, j)t−672−τ+1 − T̄ (i, j)t−672−τ

�
(28)

Another estimate of the traffic demand at time t + 1 in the
current day can be computed using:

T̂ (i, j)t+1
w = T (i, j)t + ∆w (29)

The final traffic estimate can be computed using a weighted
average of all 4 estimates, using the existing weights:

T̂ (i, j)t+1 = w
t
q · T̂ (i, j)t+1

q + w
t
h · T̂ (i, j)t+1

h

+w
t
d · T̂ (i, j)t+1

d + w
t
w · T̂ (i, j)t+1

w

A standard-deviation term based on the short-term variance
for the same interval in the previous week can be computed:

σ
2
w = V ar(w(t− 672− 3, t− 672, 1)) (30)

The provisioning bandwidth estimate is given by

Ṫ (i, j)t+1 = T̂ (i, j)t+1 + w
t
qkqσq + w

t
hkhσh +

w
t
dkdσd + w

t
wkw

where kw, kd, kh and kq are constants which determine the
amount of excess bandwidth provisioned.

The real traffic demand will be measured after the time
advances, and after estimate has been made. The weights can
then be adjusted based upon the accuracy of the individual
estimates: The error terms between each estimate and the real
traffic demand are given as follows, letting the symbol θ ∈
(q, h, d, w):

�θ =
���T̂ (i, j)t+1

θ − T (i, j)t+1
��� (31)

The error terms are then used to update the weights to be used
in the next measurement estimate.

w
t+1
θ = (1/�θ)/(1/�q + 1/�h + 1/�d + 1/�w) (32)

The weights add more emphasis to the better estimate, and the
sum of weights is unity.

The results of this model, before weighting with the models
ARIMA(Q), ARIMA(H) and ARIMA(D) models, are reported
in Tables 1 and II in the row labelled ARIMA(W).



TABLE I
TABLE 1. SATISFIED-BW FOR 5 TRAFFIC MODELS

Traffic Model K=0 K=1 K=2
ARIMA(Q) 92.9% 97.1% 98.4%
ARIMA(H) 92.9% 97.1% 98.4%
ARIMA(D) 93.3% 97.2% 98.4%
ARIMA(W) 92.9% 97.1% 98.9%
ARIMA(Q,H,W,D) 94.0% 97.7% 98.9%

TABLE II
TABLE 2. EXCESS-BW FOR 5 TRAFFIC MODELS

Traffic Model K=0 K=1 K=2
ARIMA(Q) 7.6% 20.0% 35.8%
ARIMA(H) 7.6% 20.0% 35.8%
ARIMA(D) 7.1% 20.1% 35.8%
ARIMA(W) 7.6% 20.0% 35.8%
ARIMA(Q,H,W,D) 6.1% 16.8% 30.0%

E. Results of Traffic Estimation

The results for the 4 traffic models are shown in Tables
I and II. The results are based on the most intense traffic
flows leaving each node, in a 3 week window. All 4 mod-
els, ARIMA(Q), ARIMA(H), ARIMA(D) and ARIMA(W),
achieve very high ’mean-satisfied-bandwidths’, between 93%
and 99%. The row labelled ARIMA(Q,H,D,W) reports the
results when all 4 estimates are weighted and combined, as
described earlier. This model achieves the best performance.

Table II illustrates the ’mean-excess-bandwidth’ for each
model, for various values of K. There is no penalty associated
with this figure, since in the proposed Future Internet network,
bandwidth that is reserved but not used by the QoS class
can be used by the Best-Effort traffic. The row labelled
ARIMA(Q,H,D,W) reports the results when all 4 estimates
are weighted and combined, as described earlier. This model
achieves the best performance, minimizing the amount of
excess-bandwidth.

V. CONCLUSIONS
Adaptive traffic estimation algorithms for an Autonomic

Future Internet which can achieve can achieve Essentially

Perfect link-utilizations and end-to-end QoS guarantees, along
with significantly improved energy-efficiencies, have been
proposed. The traffic estimation algorithms are based on
several ARIMA-style filters operating in parallel, each es-
timating traffic using a certain time-scale, i.e., the quarter-
hour, hour, day and week. An Autonomic Controller in each
router can use the traffic estimates to provision bandwidth
for QoS-enabled traffic flows between cities in the Future

Internet backbone network, in anticipation of their arrival.
An Autonomic Controller in each router can also use the
traffic estimates to provision bandwidth for the Differentiated-

Services traffic classes in each router in the existing Best-Effort

Internet in anticipation of their arrival, thereby realizing an
Autonomic DiffServ Control Plane. To test the algorithms, real
traffic measurements taken every 15 minutes over a period of
4 months for a European backbone network are used. The
traffic models are shown to be very accurate, provisioning

sufficient bandwidth between pairs of cities with typically 93%
..99% success rates. The models can be extended in many
ways. Statistically, the traffic demands on weekends (Saturday,
Sunday) and holidays differ from weekdays, which the models
could consider. Our models currently use moving-averages
computed over a one-hour window in the previous day or
previous week. The models can be extended to use moving-
averages computed over several hours, over several days or
several weeks.
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