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Abstract—A multicommodity Minimum-Cost Maximum-Flow
algorithm for routing multiple unicast traffic flows in infras-
tructure wireless mesh networks, represented as commodities
to be routed in an undirected or directed graph, is presented.
The routing-cost per edge can be any metric, i.e, a delay, a
SNR, etc. To minimize resource-usage and transmission power,
the routing-cost is formulated as a Bandwidth-Distance product,
where high-bandwidth backhaul flows are routed over shorter
distance paths. The routing algorithm requires the formulation
of two linear-programming (LP) problems. The first LP performs
constrained multicommodity flow maximization, where the traffic
flowing between any source/destination pair is constrained to a
sub-graph of the original graph to enforce distance constraints.
The second LP performs multicommodity cost minimization,
under the constraint that the aggregate flow is maximized. Both
LPs can be solved in polynomial time. No other multicommodity
unicast routing algorithm can achieve a larger Maximum-flow, or
the same Maximum-flow rate with a lower cost. The algorithm
can also be faster than other known Maximum-Flow algorithms.
Given the physical interference model and an appropriate an-
tenna model, every vector of commodity flow-rates within the
Capacity Region of an infrastructure network can be scheduled
to achieve rigorous throughput and QoS guarantees, using a
recently-proposed scheduling algorithm. The algorithm is tested
in a hexagonal infrastructure wireless mesh network to maximize
backhaul traffic flows.

Keywords - routing, minimum cost, maximum flow,
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Capacity Region, wireless mesh network

I. INTRODUCTION

Infrastructure Multihop Wireless Mesh Networks (WMNs)
[1], consisting of a collection of interconnected wireless
mesh routers, represent a promising technology to deliver
communication services over large geographic areas [2]. The
IEEE 802.11s standard has recently been developed for mesh
networks [3]. The WMN will provide communication infras-
tructure for both stationary end-users (i.e., homes, offices) and
mobile end-users (i.e., smart-phones, tablet computers). The
traffic between a wireless router and the end-users within a
wireless cell is called end-user traffic. The delivery of traffic
between the wireless routers in a multihop manner is called
backhauling, and this traffic is called backhaul traffic.

This paper presents a routing algorithm which can achieve
the Maximum Flow of multiple unicast backhaul traffic flows
through a directed or undirected graph model of a WMN,
while simultaneously minimizing the Routing-Cost, subject to
predetermined cost constraints. The routing cost of an edge
can be any metric, i.e., an edge delay, an SNR, an interference
measure, a financial cost, etc. In this paper, the routing cost
is defined as a Bandwidth-Distance Product, where high-

Fig. 1. Routing in a Multihop Infrastructure WMN.

bandwidth commodities are routed over shorter distance paths
to minimize resource usage (i.e., aggregate edge loads) and
aggregate transmission power.

An infrastructure WMN can be represented as a directed or
undirected graph G(V,E), where V is the set of fixed wireless
routers (|V | = N ), and E is the set of wireless edges. Each
router has multiple wireless transceivers, which can operate
over multiple OFDMA channels. Assume that each wireless
edge can be provisioned at the physical layer to provide a fixed
data-rate λ bits/sec in a scheduling frame (see section 2), as
assumed in [4,5,6]. The set of edges E can also be represented
by a binary matrix E, where E(i, j) = 1 if vertices i and j
can communicate over a wireless edge with rate λ bits/sec.

A path P = (v1, ...., vn) is a set of vertices representing ad-
jacent wireless edges. Let the distance of a path be the number
of wireless edges it traverses. (This definition may include the
physical length of the edges.) Traditional routing algorithms
may be single-path, or multi-path. Traditional single / multiple
path routing algorithms will route each commodity over single
/ multiple paths through the network, selected from the set of
all possible end-to-end paths. It is well known that optimal
single-path or multi-path routing in general is NP-Hard, due
to the complexity of enumerating paths.

Fig. 1 will illustrate several problems with traditional mul-
tipath routing algroithms. Fig. 1 shows a hexagonal WMN
with 49 wireless cells, where each cell has a wireless router.
Assume each router has a fixed location on a plane. Consider
a backhaul traffic flow from nodes 8 to 35. There are a
combinatorially-large number of paths between these routers,
varying in distance. There is one minimum distance path
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P = (8, 15, 22, 28, 35), also denoted P(8,15,22,28,35), which
traverses 4 wireless edges. Many paths with distance = 5
are contained within the convex hull shown by the paths
P(8,9,16,23,29,35), and P(8,14,21,27,34,35). Many paths with dis-
tance = 8 are contained within the convex hull shown by paths
P(8,2,3,10,17,24,30,36,35), and P(8,7,13,20,26,33,39,40,35). A path
of distance 14 is also shown (dashed lines). To date there are
no known algorithms to route multiple unicast commodities
which achieve the Maximum Flow in a graph, while simulta-
neously achieving the Minimum-Cost. The set of all achievable
flow rate vectors defines a polytope in N×(N−1)-dimensional
space, and the convex hull of the polytope defines the Capacity

Region of the network [4,5,6].
A multicommodity routing algorithm which minimizes con-

gestion in a graph, defined as the maximum aggregate load
on any edge, was presented in [7]. The routing algorithm
routes commodities over all possible edges, rather than sets
of end-to-end paths. The routing algorithm was formulated
as a linear-program (LP) which could be solved in poly-
nomial time. More recently, [8] reports similar polynomial-
time multi-commodity maximum-flow LPs. These algorithms
[7,8] conform to the well known Minimum-Cut Maximum-

Flow theorem, which states that the maximum achievable flow
between any source/destination pair (s,d) is upper bounded by
the capacity of the minimum number of edges whose removal
results in no flow between (s,d). We call the algorithms in [7,8]
the traditional Multicommodity Maximum-Flow LPs, which
overcome the NP-Hardness of traditional multipath routing
algorithms.

However, these traditional LPs share 3 significant problems:
(1) They do not minimize cost, i.e., in a Maximum-Flow a
commodity is equally likely to flow over longer or shorter
paths. (2) A maximum-flow routing for commodities may
contain cycles, as cost is not minimized. (3) The LPs can be
intractable even for relatively small networks. Referring to Fig.
1, there are 49 wireless routers, and ≤ N × (N − 1) ≈ 2400
distinct commodity flows to be routed. There are ≈ 158 undi-
rected edges or 296 directed edges (viewing each undirected
edge as two directed edges). These prior Multicommodity Max-

Flow LPs require the specification of a flow-rate variable for
every edge and commodity pair, i.e., the network in Fig. 1 may
require ≥ 700,000 flow-rate-variables to be solved, leading to
excessively large and untractable LPs.

We present a routing algorithm to achieve the Maximum

Flow of multiple unicast commodities while simultaneously
achieving the Minimum-Cost, subject to constraints on the
maximum cost of any commodity. For every commodity, a
subgraph containing a set of candidate edges is specified. The
removal of undesirable edges results in the specification of
a sub-graph Gc ∈ G for each commodity c ∈ C, which
constrains the maximum allowable cost for every commodity.
A first LP to maximize the aggregate traffic flow, subject
to the constraint that every commodity is routed over its
subgraph, is formulated. An efficient algorithm to find useful
subgraphs is presented. We also propose an iterative solution
algorithm called Successive Relaxation, where the subgraphs

initially contain minimum-distance paths, and where selective
subgraphs are expanded to include longer-distance paths when
appropriate. The first LP will find the Maximum-Flows subject
to routing cost constraints, which are recorded.

Any network can be viewed as having a finite amount of
resources, expressed as a Bandwidth-Distance Product (or BD-

Product). A second Minimum-Cost LP is formulated, where
the maximum-flow rate of each commodity is fixed from
the Maximum-Flow LP. The second LP will minimize the
routing-cost of the Maximum-Flow. The cost of an edge can
be any metric, a delay, a SNR, a financial cost, etc. How-
ever, to minimize resource-utilization and maximize energy-
efficiency in our WMN model (see section 2), in this paper the
routing-cost is formulated as a Bandwidth-Distance product.
The second LP achieves the true Minimum-Cost Maximum-

Flow, and removes any directed cycles. The second LP will
minimize the average edge utilization, transmission power, and
interference due to unnecessary transmissions. The proposed
Minimum-Cost Maximum-Flow routing algorithm is tractable
and efficient. No other routing algorithm can achieve a larger
Maximum-Flow, and no other routing algorithm can achieve
the same Maximum-Flow with a lower (linear) cost.

The paper is organized as follows. Section II presents our
methodology for provisioning traffic in WMNs, and reviews
multipath routing in WMNs. Section III presents the Minimum-

Cost Maximum-Flow routing algorithm. Section IV presents
experimental results. Section V concludes the paper.

II. QOS PROVISIONING IN INFRASTRUCTURE WMNS

Our methodology to provision Minimum-Cost Maximum-

Flows in a wireless mesh network with Near-Perfect through-
put and QoS guarantees is summarized in Fig. 2. Assume
that every wireless edge can be provisioned to achieve an
acceptable Signal to Interference and Noise Ratio (SINR),
data-rate (DR) and Packet Error Rate (PER), over a TDMA
scheduling frame, as assumed in [4,5,6]. A TDMA scheduling
frame consists of F time-slots, each sufficient to transmit a
packet between neighboring nodes. The SINR, DR and PER
are periodically recomputed, as required. At the Physical layer,
several technologies can be used to achieve the acceptable
SINR, DR and PER, including Time-Division Multiplexing

(TDM), Orthogonal Frequency Division Multiplexing (OFDM)
and Space-Division Multiplexing (SDM) technologies.

Each wireless router has a fixed location (i.e., tower), and
may use Multiple-Input Multiple-Output (MIMO) antennas to
enable high-bandwidth communications with its neighboring
routers. A MIMO transmitting antenna can be programmed
to minimize interference to unintended receivers [11,12]. A
MIMO receiving antenna can be programmed to ’null-out’
interference from unintended transmitters [11,12]. As observed
by Gupta and Kumar [5], given directional antenna the wire-
less edges behave more like traditional interference-free edges
used in wired networks.

Let R denote the set of real numbers, and Z denote the set
of integers. A global Traffic Demand Matrix D ∈ RN×N is
specified for the WMN, where each element D(i, j) specifies



Fig. 2. QoS Provisioning in a Multihop Infrastructure WMN.

the required backhaul traffic rate between a pair of wireless
routers (i, j). The matrix D ∈ RN×N is routed using the
proposed Minimum-Cost Maximum-Flow routing algorithm.
After the routing an Edge Traffic Rate Matrix R ∈ ZN×N is
defined, where R(i, j) specifies the required backhaul traffic
rate between a pair of routers (i, j). The matrix R is mathe-
matically decomposed using the recently-proposed scheduling
algorithms in [9,10] to yield a TDMA schedule. The TDMA
schedule consists of a specification of F sets of Active Wireless

Edges, each denoted as a binary matrix Ai ∈ (0, 1)N×N valid
for time-slot i in the TDMA scheduling frame. The scheduling
algorithm must satisfy

�F
i=1 Ai = R. To achieve Near-Perfect

throughput and QoS guarantees, the scheduling algorithm must
also satisfy (αR − K) ≤

��αF�
i=1 Ai ≤ (αR + K), for any

fraction 0 ≤ α ≤ 1 and small constant K [9]. Each set
of active edges Ai forms a conflict-free ’Matching’ to be
realized in one time-slot. The edges in each matching Ai

are colored, i.e., assigned to orthogonal OFDMA channels,
by a Channel-Assignment algorithm CA. Once colored, each
matching Ai yields several sets of active edges, one set for
each color in each time-slot. In Fig. 2, we assume each Ai for
time-slot i is colored into 3 sets denoted by binary matrices
Ri, Gi, Bi ∈ (0, 1)N×N . The coloring algorithm must satisfy
(Ri +Gi +Bi) = Ai for 1 ≤ i ≤ F . The channel-assignment
minimizes the joint interference between active edges, and
considers estimated channel gain matrices ∼ Hi,j ∈ RN×N

between routers (i,j). The MIMO antenna beamforming pa-
rameters and powers are then computed, using the channel
gain matrices Hi,j between routers. This methodology ensures
that given a traffic demand matrix within the Capacity Region

of the network, every backhaul traffic flow can be scheduled
to receive mathematically-provable Near-Perfect throughput
and QoS guarantees, given that the wireless edges meet the
acceptable SINR, DR and PER requirements [9,10].

A. Traditional Multipath Routing in WMNs

One classical multipath maximum-flow routing problem
formulation is a Integer programming optimization problem.
Let C denote a set of commodities, and c ∈ C denote one
commodity. For unicast networks, each commodity c has a
source and destination (sc and dc), and a requested traffic rate
W c which can flow over multiple paths. Let P c be a set of
enumerated candidate paths associated with a commodity c,
and let P c(j) ∈ P c denote the j-th path in P c. Let each
commodity flow c ∈ C have a vector of binary decision
variables Bc, and let Bc(j) ∈ Bc denote the j-th decision
variable. The decision variable is asserted if any fraction of
the commodity c is routed over the corresponding path. A
multicommodity maximum-flow optimization problem can be
stated as follows:

maximize
�

c∈C,p∈P c

xc(p) (1)

xc(p) ≥ 0 ∀c ∈ C, ∀p ∈ P c (1.1)
xc(e) ≤ Z(e) ∀c ∈ C, ∀e ∈ p, ∀p ∈ P c (1.2)�

c∈C
xc(e) ≤ Z(e) ∀e ∈ p, p ∈ P c (1.3)

Bc(p) ∈ 0, 1 ∀c ∈ C, ∀p ∈ P c (1.4)�
p∈P c Bc(p) · xc(p) ≤ W c ∀c ∈ C (1.5)�

p∈P c Bc(p) ≤ K ∀c ∈ C, ∀p ∈ P c (1.6)

Constraints 1.1-1.3 enforce edge capacity constraints. Con-
straint 1.5 ensures that the requested flow rate for commodity
c, i.e., W c, is not exceeded. Integer constraint 1.6 asserts
that one commodity flows over at most K paths. There are
combinatorially-many end-to-end paths to be considered for
each flow (in set P c ), and the problem of jointly selecting K
optimal paths for each traffic flow is NP-Hard in the general
case. Nevertheless, the algorithm can be effective in practice,
often yielding solutions within a few percent of the optimal
maximum-flow [9].

III. THE MINIMUM-COST MAXIMUM-FLOW ALGORITHM

This section will present the Minimum-Cost Maximum-Flow

routing algorithm. To motivate our algorithm, some properties
of maximum-flows are first summarized. Referring to Fig. 1,
assume all edges have unity distance (1 meter) and the capacity
of each edge is Z bits/sec. A minimum-cost routing of the
commodity between (8,35) is over the minimum-distance path
P(8,15,22,28,35) with a distance of 4. The BD-Product of the
flow is 4Z bit-meters/sec. A Maximum-Flow between (8,35)
supports 6 paths as shown in bold in Fig. 1, each with capacity
Z bits/sec. There are several other maximum-flows with larger
costs. A non-unique Minimum-Cost Maximum-Flow is shown
in bold lines. Notice that there is a significant cost of achieving
any Maximum-Flow. In Fig. 1, the 2 flows of distance 5
each consume a BD-Product of 5Z bit-meters/sec, and the
2 flows of distance 8 each consume a BD-Product of 8Z
bit-meters/sec. Therefore, the Minimum-Cost Maximum-Flow

routing between (8,35) achieves a bandwidth of 6Z bits/sec,
and consumes 42Z bit-meters/sec of resources. Observe that
the maximum-flow removes considerable resources from the



network that other commodities could use. In practice, it
is desirable to constrain the maximum distance that any
commodity may flow.

Define the BD-Expansion of a commodity flow between a
vertex pair (s,d) in a graph G(V,E) as the ratio of the achieved
BD-Product per unit rate given a routing, over the Minimum

BD-Product per unit rate for the commodity (when all other
commodities are unrouted). The BD-Expansion illustrates the
effectiveness of a given topology G(V,E) and routing algorithm
to realize a particular commodity flow(s). An expansion close
to unity indicates the network and routing algorithm are well-
suited the handle the commodity flow. A larger BD-Expansion

indicates the network and routing algorithm consume exces-
sive resources to achieve the maximum flow. The Max-Flow

in Fig. 1 has a BD-Expansion of 1.75.

A. Determining Feasible Edge Sets

Assume that each commodity is constrained to flow over a
set of feasible edges. An efficient algorithm to determine a fea-
sible edge set for each commodity is specified. Assume a pla-
nar graph G(V,E), as shown in Fig. 1. The algorithm is shown
in Fig. 2. Given an traffic demand matrix D ∈ RN×N , there
are up to N(N−1) commodities to be routed. The objective is
to compute a vertex-induced subgraph Gc(V c, Ec) ∈ G(V,E)
for each commodity, with distance constraints.

For every node in G, the algorithm initially computes a
minimum distance path to every other node using Dijkstra’s
algorithm. The complexity of Dijkstra’s algorithm is O(|E|+
|V |log|V |). For every commodity c to be routed between a
source/destination pair (s,d), the algorithm initializes a set
of candidate nodes and and a set of candidate edges to be
NULL. The algorithm then visits all intermediate nodes in the
set V. Let M(s, v) denote the length of a minimum-distance
path between (s, d). If M(s, v) + M(v, d) ≤ M(s, d) plus
a distance-threshold DT , then the node v is included in a
set of feasible vertices V c for the commodity. The set of
feasible edges Ec consists of the edges in the vertex-induced
subgraph V c, i.e., the set of edges in E whose endpoints
are in V c, subject to distance constraints. The computation
of the subgraph for each commodity has complexity O(|V |),
assuming matrix M is precomputed. Referring to figure 1, for
the commodity flow between (8,35), all edges contained within
the convex hull of distance 5 are found using this algorithm
with threshold DT = 1. Once a subgraph Gc is computed
for every commodity c ∈ C, the Minimum-Routing-Cost

Maximum-Flow LP can be formulated.

B. The Maximum-Flow LP

The constrained Maximum-Flow of a single commodity c
over a source/destination pair (sc, dc) is found by Eq. 2:

Maximize: r∗ (2)
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!Fig. 3. Algorithm 1 : Finding feasible subgraphs for commodities.

Subject to:
0 ≤ rc(e) ∀e ∈ Ec (2.1)

rc(e) ≤ Z(e) ∀e ∈ Ec (2.2)
rc
in(v) = rc

out(v) ∀v ∈ V c − (sc, dc) (2.3)
rc
in(sc) = 0 (2.4)

rc
out(dc) = 0 (2.5)

rc
out(sc) ≤ W c (2.6)

r∗ = rc
in(dc)

Let rc(e) denote the flow rate of commodity c over
edge e. Let rc

in(v) and rc
out(v) denote the sum of flows

into and out-of vertex v due to commodity c, respectively.
This LP constrains the flow of every commodity c to edges
in the subgraph Gc(V c, Ec). The Constrained Multicom-

modity Maximum-Flow LP (LP #1) is given by Eq. 3:

Maximize: r∗ (3)

Subject to:
0 ≤ rc(e) ∀c ∈ C,∀e ∈ Ec (3.1)

rc(e) ≤ Z(e) ∀c ∈ C,∀e ∈ Ec (3.2)�
c∈C rc(e) ≤ Z(e) ∀c ∈ C,∀e ∈ E (3.3)
rc
in(v) = rc

out(v) ∀c ∈ C,∀v ∈ V c − (sc, dc) (3.4)
rc
in(sc) = 0 ∀c ∈ C (3.5)

rc
out(dc) = 0 ∀c ∈ C (3.6)

rc
out(sc) ≤ W c ∀c ∈ C (3.7)

r∗ =
�

c∈C

rc
in(dc)

Constraint 3.3 enforces edge capacity constraints. Flow-
balance constraints 3.4-3.7 are restricted to the subgraph Gc

for each commodity c. The LP is solved and the maximum-
flows are determined. (Due to space limitations, only the LPs
for the directed graphs are presented.)

In the proposed Successive Relaxation Algorithm if the de-
sired flow rate of a commodity c cannot be achieved, then the



sub-graph Gc(V c, Ec) must be expanded. The subgraph Gc

can also be processed to determine which other commodities,
called interfering commodities, flow over saturated edges in
Gc. The subgraphs for those interfering commodities can also
be expanded, thereby relieving the congestion in Gc.

C. The Minimum-Cost LP

To obtain the minimum-achievable routing-cost, a second
LP (LP #2) is formulated in Eq. 4. Let Γc denote the flow-
rate achieved by commodity c in the Maximum-Flow LP.

Minimize: y∗ (4)

Subject to:

rc
out(sc) = Γc ∀c ∈ C (4.1)�

c∈C rc(e)) ≤ Z(e) ∀c ∈ C,∀e ∈ E (4.2)
rc
in(v) = rc

out(v) ∀c ∈ C,∀v ∈ V � (4.3)
rc
in(sc) = 0 ∀c ∈ C (4.4)

rc
out(dc) = 0 ∀c ∈ C (4.5)

y∗ =
�

c∈C

�

e∈E

xc
e ×M(e)

where V � = V − (sc, dc). Constraint 4.1 requires that every
commodity flow-rate is fixed as determined by LP #1. The
remaining constraints are similar to those in the preceding
LP. The objective function is to minimize is the sum of all
fractional commodity flow-rates over each edge e times the
distance of the edge M(e). However, any linear cost function
can be used.

D. Properties

Property 1: By setting the distance-threshold DT for every
unicast commodity equal to the maximum distance ∆ in G, LP
#1 finds the maximum achievable aggregate flow of all com-
modities, subject to capacity constraints. LP# 1 finds a routing
which adheres to the well-know Minimum-Cut Maximum-Flow

theorem for each commodity, and no other routing algorithm
can achieve a larger Maximum-Flow.

Proof: By setting the threshold to the maximum distance
in G, then the subgraph associated with every commodity is
the full graph G(V,E), and there are no additional constraints
associated with any commodity. The LP #1 reduces to the
Maximum-Flow LP in [7,8], which also adheres to the well-
know Minimum-Cut Maximum-Flow theorem for each com-
modity.

Property 2: By solving LP #2, given the solution vector
{Γc} of LP #1 for which the distance-threshold DT for every
commodity equals to the maximum distance in G, the routing-
cost of the Maximum-Flow is minimized. No other routing
algorithm can achieve a Maximum-Flow for multiple unicast
commodities with a lower linear cost.

Proof: By contradiction. If it is not true, then either
the solution to LP #1 did not yield a maximum-flow, or the
solution to LP #2 did not yield a minimum-cost.

Theorem 1: Given a traffic demand matrix D, a minimum-
distance matrix M and a topology G where the edge capacities
are Z bits/sec and edges have normalized (unit) distance, a
necessary condition for the D to lie within the Capacity Region

of G is that the bandwidth-distance product of D must not
exceed the bandwidth-distance product of G, i.e.,

N�

s=1

N�

d=1

D(s, d)M(s, d) ≤ |E|Z (5)

where |E| is the number of edges.
Proof: By contradiction. Suppose a matrix D which

violates Eq. 5 can be routed. Consider routing commodities
iteratively along minimum-distance paths, decrementing the
capacities of all traversed edges appropriately after each com-
modity is routed. At some point, the remaining Bandwidth-
Distance capacity on the RHS will be exhausted before all the
commodities have been routed. The routing of any remaining
commodity along a minimum-distance path will result in an
edge capacity violation.

Theorem 1 yields a necessary condition for any requested
traffic demand matrix to lie within the Capacity Region of a
network. It yields a simple test to determine if a requested
traffic demand matrix can be realized by any Multicommodity

Maximum-Flow routing algorithm.
Theorem 2: Consider a random uniform traffic demand

matrix D, and a planar mesh topology G(V,E) , where (i) the
|V | = N routers are uniformly distributed over the square of
dimension

√
N ×

√
N , (ii) the node degree is bounded, (iii)

the edge capacities are Z bits/sec, and (iv) the edges have unit
normalized length. Then the expected throughput per node is
upper bounded by:

O
�
Z|E|/(N

√
N )

�
(6)

Proof: By contradiction. The BD-Product of G is given
by the numerator of Eq. 6, where the number of edges |E| is
O(N). The expected aggregate distance demanded by N nodes
is given by O(N

√
N), i.e., each of the N nodes demands a

distance of O(
√

N). If Eq. 6 is not true, then a routing for the
random uniform traffic matrix D exists where the bandwidth-
distance product used exceeds the bandwidth-distance capacity
available, which contradicts theorem 1.

Result 1: By Theorem 2, the expected throughput per node
in a hexagonal WMN as shown in Fig. 1 is upper bounded by
O(Z/

√
N). Result 1 is consistent with the asymptotic upper

bound established by Gupta and Kumar in [5], and illustrates
the usefulness of the Bandwidth-Distance-Product metric.

IV. EXPERIMENTAL RESULTS
This section summarizes the results of the LPs for a 36-

node hexagonal mesh, using the topology shown in Fig. 1.
Table 1 illustrates the results of the traditional Multicommodity

Max-Flow LP [8], and of our Constrained Maximum-Flow LP
#1 with distance constraints relaxed, on a 36-node hexagonal
mesh. Let the capacity of every edge = 4 Mbits/sec, and the
length be 1 meter. The Bandwidth-Distance product of the



TABLE I
MAXIMUM-FLOW LP, DISTANCE THRESHOLD =∞

Traffic BD(M) BD(R) |x| α β ExT Flow
M1 237 652.8 12,240 2,592 314 6.40 71
M2 223 657.1 12,240 2,592 314 5.72 69
M3 209 634.9 12,240 2,592 314 5.38 69
M4 217 642.1 12,240 2,592 314 5.67 71
100 Ms 231.3 617.6 12,240 2,592 314 5.57 69.9

TABLE II
MAXIMUM-FLOW LP, DISTANCE THRESHOLD = 0.

Traffic BD(M) BD(R) |x| α β ExT Flow
M1 237 237 507 444 302 0.18 71
M2 223 223 463 415 302 0.14 69
M3 209 209 409 381 299 0.18 69
M4 217 217 421 391 293 0.10 71
100 Ms 231.3 231.3 545.5 460.4 314 0.130 69.9

network is 170 edges (1 meter) * 4 Mb/sec= 680 Megabit-
meters/second (Mbm/s). From theorem 2, a necessary condi-
tion for a traffic pattern to be achievable is that its BD-product

must not exceed 680 Mbm/s.
Each traffic pattern consist of 2 random permutations, where

every node transmits to 2 nodes each with rate = 1 Mb/sec.
Rows 1-4 each represent the results of routing one traffic
pattern. The last row represents the results of routing 100 ran-
domly selected traffic patterns. Let |x|, α, and β denote the size
of the vector solution x, the number of equality constraints,
and the number of inequality constraints (using summations)
in the LP, respectively. Let ExT and Flow denotes the execution
time and aggregate flow rate, respectively. According to Table
1, all traffic patterns are achievable, i.e., they lie within the
Capacity Region of the WMN. The average Minimum BD-

Product of a traffic pattern is 231.3 Mbm/s, which is below
the network capacity of 680 Mbm/s. The network consumes
most of its resources to route each permutation. The average
BD-product is 617.6 Mbm/s, representing a BD-Expansion of
2.67. The average edge utilization is 90.8%, a very high load.

According to Table 1, the size of the LP problem remains
fixed as expected. The problem was solved in a 4-core 2.8
GHz workstation with 16 Gigabytes of main memory. The
average execution time per problem is 5.57 seconds. The LP

was intractable for a hexagonal mesh with 64 nodes.

Table 2 illustrates the results of the Constrained Maximum-

Flow algorithm, when the distance threshold = 0, i.e., every
commodity is constrained to follow a minimum distance path.
The average number of flow-variables to be solved is reduced
to 545.5 (versus 12,240 for the LPs in [7,8]). The average
number of equality constraints is reduced to 460.6 (vs. 2,592).
The average number of inequality constraints is 305.6 (vs.
314). The average execution time to find a Minimum-Cost

Maximum-Flow using unconstrained LP #1 followed by LP
# 2 is ≈ 12.1 seconds. The average execution time using the
Constrained Maximum-Flow LP is 0.13 seconds, representing
a speedup of a factor of ≈ 90. Perhaps the most surprising
result is the quality of the solution. The BD-Product of each

traffic pattern was 231.3 Mbm/s, compared to 617.6 Mbm/s,
i.e., all traffic patterns were routed along minimum-distance
paths. The average edge load was 34%, much lower than
90.8% for the algorithm in [8]. The proposed algorithm has
been tested on several network topologies and traffic patterns,
and the results are consistent. The proposed Constrained

Maximum-Flow LPs result in considerably better resource
utilizations.

V. CONCLUSIONS
A polynomial-time constrained unicast multicommodity

Minimum-Cost Maximum-Flow routing algorithm for general
directed or undirected graphs has been presented. No other
unicast multicommodity routing algorithm can achieve a larger
Maximum-Flow, or the same Maximum-Flow with a lower (lin-
ear) cost. By constraining the problem size, the routing algo-
rithm can be considerably faster than other known Maximum-

Flow algorithms, and can achieve considerably better resource
utilizations. The algorithm has been tested on several wireless
mesh topologies, and often achieves speedups between factors
of 50...100. By relaxing distance constraints, the algorithm can
find all Maximum-Flow routings within the Capacity Region

of a network, addressing a problem identified in [4,5,6]. The
true power of the algorithm is illustrated when computing
Maximum-Flow routings for larger mesh networks, which
can be intractable with the conventional Multicommodity

Maximum-Flow LPs in [7,8]. The proposed routing algorithm
removes undesirable edges from consideration, resulting in
significantly smaller LPs to solve, with significantly faster
solutions.
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