
Tracking the Behavior of an Ideal Output Queued Switch
Using an Input Queued Switch With Unity Speedup

Amir Gourgy, Ted H. Szymanski
Department of Electrical and Computer Engineering

McMaster University, Hamilton Ontario L8S 4K1, Canada
amir@grads.ece.mcmaster.ca, and teds@mail.ece.mcmaster.ca

Abstract- We address the problem of fair scheduling of
packets in Internet routers with input-queued (IQ) switches. We
present new performance metrics for IQ switches with unity
speedup. Scheduling in IQ switches is formulated as tracking the
behavior of an ideal output-queued (OQ) switch that provides
optimal performance. We introduce several performance metrics
that measure the difference between the ideal performance
provided by an ideal OQ switch and an IQ switch with unity
speedup. A key performance metric is the notion of ‘‘lag”
between an IQ switch and an ideal OQ switch. Using the
proposed metric5 as design criteria, we present a suite of
scheduling policies for IQ switches with unity speedup that
provide better performance than existing scheduling policies in
the literature, with comparable complexity.

1. INTRODUCTION
There is a tremendous demand for Internet core nodes to
provide quality-of-service (QoS) guarantees for multimedia
services, and to provide high switching capacity that makes
use of the virtually unlimited bandwidth of optical fibers. f i e
Internet’s success depends on the deployment of high-speed
switches and routers that meet these two demands.

On the one hand, the demand of QoS guarantees can be
met using output-queued (OQ) switches, which can provide
optimal throughput. In addition, much research effort,
considering algorithms such as the weighted fair queueing
(WFQ) family (e.g., (191) has been devoted to packet
scheduling at output ports to support fair bandwidth sharing
that provides delay bounds for regulated traffic. However, OQ
for an N x N switch requires the switching fabric and memory
to run up to N times faster than the line rate; unfortunately, for
large N or for high-speed data lines, memories with sufficient
bandwidth are not available.

On the other hand, the fabric and the memory of an input-
queued (IQ) switch need only to run as fast as the line rate.
This makes input queueing very appealing for switches with
fast line rates or with a large number of ports. But IQ
switching can suffer from head-of-line (HOL) blocking,
which limits the throughput to just 58.6%, if each input
maintains a single FIFO [I l l . One method that has been
proposed to reduce HOL blocking is to increase the speedup
of a switch. A switch with a speedup of S can remove up to
S packets from each input and deliver up to S packets to

each output within a rime slot, where a time slot is the time
between packet arrivals at an input port.

A theoretical result IS] established that an N x N combined
input-and output-queued (CIOQ) switch with a speedup of
two could exactly emulote an N x N OQ switch for any
traffic pattern of input cells. Emulation occurs at every time
instance if, under identical inputs both systems produce
identical departures. Unfortunately, the complexity of the
scheduling algorithm presented in [SI renders OQ switch
emulation infeasible (see [14], [I51 for a discussion of the
complexity). The speedup requirement translates to a smaller
time available for the execution of the arbitration algorithm. In
a hardware implementation, reduction of the available time by
a factor of two poses a substantial problem, although the
difference does not seem significant asymptotically; it
translates to a requirement of doubling the operating
frequency of the arbiter, which might not be practically
achievable. Furthermore, Minkenberg [I 81 have shown that
exact emulation of an OQ using a CIOQ switch is possible
only if the CIOQ have infinite output buffers.

Most commercial high-performance switches and routers
(e.g., CISCO 1200[2], BBN [21], Lucent Cajun [3] family, or
Avici TSR45000 [I]) use IQ switches. Most of these high-
speed switches are built around a crossbar switch that is
configured using a centralized scheduler designed to provide
high throughput and use a fixed-length cell as a transfer unit.
Fixed-length switching technology is widely accepted for
achieving high switching efficiency such that variable-length
packets are segmented into fixed-length cells at the inputs and
are reassembled at outputs. We assume fixed-length cell
scheduling for the remainder of this paper’.

In this paper we consider scheduling policies in an IQ-
crossbar switch with a unity speedup. Given that an IQ switch
requires at least a speedup of two to exactly emulate an OQ
switch [5] , an IQ scheduling policy with a unity speedup can
not exactly emulate the behavior of an OQ switch, under all
possible traffic patterns. Consequently, we formulate
scheduling in an IQ switch as the problem of frocking an ideal
OQ switch. We introduce new performance metrics that
measure the difference between the ideal performance
provided by an OQ switch and an IQ switch. Using these
mebics as design criteria, we present a suite of scheduling
policies for IQ switches with unity speedup that provide better

,, . .

. .

., .

‘ The words pockel and cell are used interchangeably far the remainder of
this paper.

0-7803-8375-3/04/$20.00 Q 2004 IEEE 61

performance than existing scheduling policies in the literature,
with comparable complexity. Although in this paper we
describe the case of tracking an ideal OQ switch implementing
only a FIFO scheduling policy, our results can be easily
extended for other non-FIFO scheduling policies.

This paper is organized as follows. Section I1 formulates
scheduling in an IQ switch with unity speedup as tracking the
behavior of an ideal OQ switch. Section 111 describes the
benefits of tracking the behavior of an ideal OQ switch. In
section IV, we present a suite of scheduling policies for
tracking the behavior of an ideal OQ switch with various
performance and implementation complexities. The
performance of these scheduling policies is evaluated through
simulation for different traffic models and compared to
several known scheduling policies in the literature in section
V. Section VI provides our conclusions.

11. PROBLEM FORMULATION
We consider an N x N ideal OQ switch that implements

scheduling policy noQ and an IQ 'switch with unity speedup

that implements scheduling policy zIQ. Let the average cell

arrival rate at input i for output j be ,Ao. We assume that

incoming traffic is admissible; that is, xzlAg < I , and

< I . The arrival process is identical to both switches.
The goal is to find a scheduling policy rIQthat tracks the

behavior of the ideal OQ switch as close as possible, where
we define what tracking means more precisely after
introducing some definitions.

Given that an IQ switch requires at least a speedup of two to
exactly emulate an OQ switch [5] , an IQ scheduling policy
with a unity speedup can not exactly emulate the behavior of
an OQ switch, under all possible traffic patterns. In general,
arriving cells to the IQ switch implementing R , ~ will depart at

some later time than the ideal OQ switch implementing nOQ.

Consequently, we say that an IQ switch implementing rlQ
lags the behavior of the ideal OQ switch implementing zoQ ,

A. Definition of Term
Here we make precise some of the terminology used

throughout this paper.
Definition 1 Ideal departure time (IDT): The ideal
departure time for a cell c [IDT(c)] is the time slot at which
c will depart from an ideal OQ switch implementing xoQ.
Definition 2 Actual departure time (ADT): The actual
departure time (ADT) for a cell c [ADT(c) 1 is the time slot
at which c departs from the switch under consideration (i.e.,
IQ implementing nIQ)

' When we refer 10 IQ switch with unity speedup, we include designs that
employ combined input output queueing with unity speedup.

Definition 3 Cell Lag (CL): The cell lag for a cell c
[C L (c)] is the difference between the ideal departure time
and the actual depamre time. Precisely,

CL(c) =
ADT(c) - IDT(c),ADT(c) > IDT(c) { 0, otherwise

We assume that every call entering the switch will
eventually depart at some time in the future; that is,
Vc,ADT(c) <CO. To simplify the notation, let X denote the
random variable given by CL(c)

In addition, we defme the cell lag for a cell c given the
current time slot n [CL(c,n)] as the difference between the
ideal d e o m r e time and the current time slot. Preciselv.

n-IDT(c),n> IDT(c)
0, otherwise

cL(c, n) = {
To the best of our knowledgs, we are lbefirsr to defme this

notion of lag between an IQ switch and an OQ switch.
Definition 4 Scheduling Policy Lag Mean (p l log) : The lag

mean for a scheduling policy R [plOg(x)] is defmed as the

expectation or mean of the random variableX; that is,
,U~, (R) is the average lag of all cells departing from a switch

implementing scheduling policy R . plOg(z) = E [X] , The lag

mean represents the additional delay provided by scheduling
policy zlQ than that provided by an ideal OQ switch.

Definition 5 Scheduling Policy Maximum Lag (mawl,):

The maximum lag for a scheduling policy R [maxlog(rr) J is

defined as Vc,max,,(n) = mot(X)

Definition 6 Scheduling Polilcy Lag Variance (-LE): The

lag variance for scheduling policy n [o&(z)] represents the
variance in the lag between the switch implementing
scheduling policy R and the ideal OQ switch; that is,
&(n) = E [(X - , U ~ ~ ,) *] . Note that, #T&(R) reflects the
additional jitter provided by the scheduling policy R than that
provided by an ideal OQ switch.

Although other metrics c m be similarly defined, we
consider the previous metrics sufficient to characterize the
tracking criteria of an ideal OQ switch. The goal of a
scheduling policy zlQ can be characterized by any of the
tracking metrics defmed previously or a combination of them.

Remark Although an IQ switch with unity speedup lags the
behavior of an ideal OQ switch, for efficiency purposes a cell
may occasionally depart from an IQ switch earlier than an
ideal OQ switch; for example, consider a 2 x 2 switch at a
specific time slot such that the two mosf lagging cells for its
outputs (e.g., outputs 1, and 2) reside a1 the same input port
(e.g., input 1). Because the scheduling policy can transfer at
most one cell from each input port (e.g., input I), another cell
with a future ideal departure time might .be selected from the
other input port (e.g., input 2) to be transferred across the
switch for efficiency purpose:;. Howevix, in general an IQ

62

switch lags an OQ switch and
strictly lagging.

can be designed to be

Ill. MOTIVATION
In an ideal OQ switch arriving packets are

immediately available at the outgoing link. Consequently, the
only shared resource in an OQ switch is the outgoing link of
the switch and packets contend for access to the outgoing link
(output contention). In an IQ switch packets are queued at the
input port of the switch and they must fust contend for access
to the switch fabric (input contention), before contending for
the outgoing link; that is, in an IQ switch, there are two shared
resources: the switch fabric and the outgoing link.

All present IQ scheduling policies resolve input and
output contention using heuristics such as using a round-robin
scheme at both the input and output to solve the contention
fairly, or using the packet’s age (i.e., time in the switch) to
resolve contention. All these schemes can be seen as an
approximation to the ideal case of an OQ switch, where all the
outgoing links are independent and packets are served
independently in each outgoing link; that is, by tracking the
behavior of an ideal OQ switch and minimizing the lag, we
automatically resolve input and output contention in a fair
manner and eliminate any starvation problem of inputs that
other scheduling policies have to carefully handle.

We emphasize that significant research effort (e.g.,
[7], [19], [ZO]) has been done in developing scheduling
policies for ideal servers that provide bounded latency, jitter,
and end-to-end delay for traffic flows. Unfortunately, the real
Internet does not consist only of ideal servers, but rather of
heterogeneous servers (i.e., non ideal IQ and CIOQ servers,
and ideal OQ servers). By tracking the behavior of an ideal
server, we approximate its behavior as close as possible and
attempt to bound the performance difference between the ideal
server and an IQ switch.

IV. TRACKING SCHEDULING POLICIES

We consider the case of zOg =FIFO. The architecture of

our IQ switch is shown in Figure 1.

I”

tput N I“

*I
Fig. I . Logical slruclure of an input-queued switch

We use virtual output queueing (VOQ) at each input port of
the switch and a crossbar as the switching fabric. For
zoe =FIFO, arriving cells at the IQ switch can be
immediately assigned an IDT using a simple parallel prefix

circuit [lo] (i.e., a ranker); Let N j be the number of cells in
the ideal OQ switch destined to output j . The IQ switch uses
N rankers such that each ranker calculates the number of cells

present in the ideal OQ switch; specifically, each ranker j uses
a variable Nj such that at the begiMing of each time slot

NI =[0, otherwise
Note that the subtraction of one in the previous equation
accounts for one (celVtime slot) departure in the ideal OQ
switch. For every new cell c arriving at time slot n destined
to output j , ranker j assigns IDT(c) = n+ N, and updates

N j = N j + I . For an N x Nswitch, we use the following
notational conventions:
i aninput, I < i < N
j
VOQ(i, j) is the VOQ at input i and buffers cells destined for
output j . HOL(i, j) is the head-of-line cell at VOQ(i, j) .

First, we present a scheduling policy called mmimum
weighted lag (MWL) that is simple to describe, but has a high
implementation cost. It serves as solid base for developing
other practical scheduling policies that approximate its
performance. Second, we present a scheduling policy that
iteratively minimizes the maximum lag at a lower cost than
MWL. Third, we present a maximal weighted lag scheduling
policy that is readily implemented in hardware and provides
excellent performance. Simulation results for all tracking
scheduling policies are presented in section V.

N j - l , N , > O

an output, 1 < j 5 N

A. Marimum Weighted Lag Scheduling Policy
Maximum weighted lag (MWL) is based on the

implementation of a mmimum bipartite weight-matching
algorithm (MWM)[4]. A maximum weight matching on a
bipartite graph with weighted edges is defined as a set of
edges between input and output nodes with the maximum total
weight among all possible sets satisfying the constraint that
any input node is matched to at most one output node.

At every time slot n , we associate a weight W(i, j) to every
VOQ(i, j) such that W(i , j) = CL(HOL(i, j) , n) ; that is,
W(i, j) is maximum lag of an HOL packet in VOQ(i, j). The
maximum weighted lag scheduling policy finds a matching
M that maximizes z W (i , j)and can be found by solving an

equivalent network flow problem [4]. The best
implementation of a MWM has running time complexity
O(N’ log(N)) on a sequential model [4]. We use a traditional
implementation of a maximum bipartite graph matching.
However, our contribution is in judiciously using the cell lag
values as the edge weights. Previous work on MWM
considered only the weight equaling to either some function of
the occupancy of the VOQs (i.e., number of packets’ in each
VOQ) or the waiting time of the cell at the head of line of
each VOQ (e.g., [13], [17], [ZZ], [24], [25], and [26]).
Consequently, these algorithms .do not necessarily track the
behavior of an ideal OQ switch and cells’ departure time may

(i.,)EM

63

arbitrarily deviate from the ideal case if the arrival traffic is
bursty. In addition, using the occupancy of the VOQs as the
edge weight can lead to starvation ofcertain inputs [17].

Because MWL computes the matching with the
maximum possible total weight during every time slot, it aims
at minimizing the lag mean (ptog). This does not necessarily
imply that the maximum lag is minimized. Although this
algorithm is too complex to implement in practice, it serves as
a reference model for which other approximation algorithms
are developed.

E. Iferalive Min Max-Lag Scheduling Policy
This scheduling policy iteratively minimizes the maximum

lag (iMML.) by performing a matching between an input port
for the cell with maximum lag amongst all cells in the switch
and its corresponding output port until no more matches can
be performed.

iMML can be implemented using a request-accept paradigm
using an arbiter at each input and output port such that in each
iteration, each unmatched input sends a request to the output
corresponding to its most lagging packet. Each output arbiter
then examines its requests and sends a grant to the input
arbiter with the most lagging packet. The input and output
arbiter are considered matched. However, an output arbiter
may break a match if it receives a more lagging request than
its current matched input arbiter in the future. This
"backtracking" procedure requires N 2 iterations in the worst
case on a sequential model. The running time complexity of
iMML is O(N2 IogNjon a sequential model. This scheduling
policy is equivalent to stable-marriage matching [9], where the
preference of each input port is the lag of its VOQs. (We
name it iterative ntin niax-lug because it is more descriptive).
The best known parallel algorithm for the stable marriage
problem is due to Feder et al. [SI and has a running time
complexity O(& log3 n) and uses n4 processors on a
Concurrent Read Concurrent Write (CRCW) PRAM model.

MWL and iMML can be seen as tracking the behavior of an
ideal OQ switch with different tracking criteria. The former
tracking policy's objective is to minimize the lag mean and the
latter's objective is to minimize the maximum lag. The two
scheduling policies are related such that total weight of a
stable marriage is at least half the total weight of a maximum-
weighted matching [121. Consequently, depending on the
tracking criterion we aim to optimize, we can use either MWL
or iMML.

C. Iterative Maximal Lag Scheduling Policy
Because iMML can break matches performed in

previous iterations of the algorithm, it generally requires a
large number of iterations to form a stable matching. In
addition, this breaking of matchings made earlier in the
matching process is also difficult to implement in practice.
Consequently, we explore using a simpler greedy scheme
based on muximal matching. A maximal matching is one that
adds connections incrementally, without removing
connections made earlier in the matching process. Iterative
maximal lag (iML) is essentially a greedy version of iMML

without backtracking. Initially all input and output arbiters are
unmatched, then in each iteration:
1. Request: Each unmatched input sends a request to every
unmatched output for which it has a queuod cell.
2. Grant: If an unmatched output receives any requests, it
chooses the request with the most lagging cell and sends a
grant to this input.
3. Accept: If an' unmatched input receives any grants, it
chooses the grant for its most lagging cell and sends an accept
signal to this output. The input and output arbiter are
considered matched.

The algorithm executes until either no more matches can be
made or a fixed number of iterations are performed. On a
CRCW model, the algorithm requires O (N) iterations such
that each iteration is O(N) computations. This algorithm is
readily implemented in hardware.

v. SIMULATION RESULTS

The performance of MWL, iMML, and iML are
evaluated for a 16x16 switch under uniform and bursty traffic
models. We compare the behavior of our scheduling policies
the following scheduling policies: BLIP [16], and iDRR [23].
Our choice of these scheduling policies is a balance between
the extensively studied algorithms with excellent performance,
commercially implemented (i.e., BLIP) and recent published
results in the literature (i.e., iDRR). These schemes are based
on a hybrid of maximal matching and weighted round robin
priority schemes, with complexity comparable to iML.
Consequently, these scheduling policies take up to N iterations
in the worst case on a CRCW model. For comparison
purposes, all maximal matching based scheduling policies
were executed until a maximal match was found.

The proposed tracking criteri.a (i.e., pto>! , max,og, utag) 2 are
evaluated in addition to the average cell delay for each traffic
model.

A. Uniform Traflic Model
As shown in Fig. 2., all OUI' proposed scheduling policies

achieve 100 percent throughput under i.i.d. Bernoulli traffic.

2ot
Fig. 2 Average Cell Delay of SLIP, iDRR, MWL, iMML, and iML under
uniform traffic

64

Fig. 3 Average Lag of ISLIP, iDRR, MWL, IMML, and IML undcr uniform
traffic

In Fig. 3, MWL achieves the least lag mean compared to other
scheduling policies (albeit at a significantly higher
implementation cost), followed by iMML and iML with
virtually identical performance. Finally, iSLlP and iDRR have
the highest lag mean. The same trend occurs for the maximum
lag as shown in Figure 4.

Oflsrsd laad psi inpm pod (c8Wrlol)

Fig. 4 Maximum Lag of SLIP, IDRR, MWL, iMML, and iML under uniform
traffic.

Fig. 5 Lag variance of SLIP, iDRR, MWL, iMML, and iML under uniform
IP3ffiC.

As shown in Fig. 5, the lag variance of the proposed
scheduling policies is almost an order of magnitude better than
both SLIP and IDRR.

65

B. Bursty Trafic Model
Real network traffic is self-similar and highly correlated

such that cells tend to arrive in bursts [6] . The performance of
the tracking scheduling policies was evaluated under a bursty
traffic model such that each input port is connected to a burst
source that generates trafic-cells are generated using a 2-state
Markov process that alternates between busy and idle states.
The process remains in the busy and idle states for a
geometrically distributed number of cell times. Wken the
server is in the busy state, cells arrive at the beginning of
every cell time and all with the same set of destinations. This
traffic model was also used in [16]. A burst size of 16 was
used.

Although iMML, iML provide comparable delay to ISLIP,
and iDRR as shown in Fig. 6, iMML and iML provide smaller
lag mean, lag variance, and maximum lag as shown in Figures
7, 8, 9, respectively. Note that MWL always provides the best
performance at high traffic loads, albeit at a higher
implementation cost.

Omred lord per input pon (CelWrlol)

Fig. 6 Average Cell Delay of BLIP, iDRR, MWL. iMML, and iML under
buaty
traffic

Mlersd load per input pod [celhlol)

Fig. 7 Average Lag of SLIP, iDRR, MWL, IMML, and iML under bursty
traffic

dl " " " ' " I
0 5 0 . 5 0 6 065 0 7 015 0.8 0~85 0.9 0 % I

mend ,mad per ioput I O " (..I"ddI

Fig. 8 Lag variance of BLIP, IDRR, MWL, iMML, and iML under busty
traffic.

- ORR

-t- MML

B m c

Fig. 9 Maximum Lag of SLIP, iDRR, MWL, iMML, and iML under bursty
trarlie.

VI. CONCLUSION
IQ switches are commercially used in most Internet routers

due to their capability of operating at high line speeds with
lower memory bandwidth requirement than OQ switches. In
this paper, we addressed the issue of fair scheduling in
Internet routers with IQ switches. We formulated switch
scheduling in an IQ switch with unity speedup as tracking the
behavior of an ideal OQ switch. By tracking the behavior of
an ideal OQ switch, an IQ switch resolves input and output
contention fairly, eliminates any starvation of inputs, and
approximates the ideal behavior of an OQ switch as close as
possible. We introduced several metrics that quantify the
difference between the ideal behavior of an OQ and an IQ

,switch. Using those metrics as design criteria we proposed a
suite of scheduling policies with varying design criteria and
implementation complexities. Finally, we showed through
simulation that our proposed scheduling policies provide
superior performance compared to the best proposed
scheduling policies in the literature.

REFERENCES

[I) ' [I] Avici Systems, Inc., Billercia, MA. [Online]. Available:

121 Cisco 12000 Series-Internet Routen [Online]. Available:
hltp:/lwww.avici.com

http:llwww.cisco.com

[3] Lucent Technologies, Inc., Ilolmdel, hIJ. [Online]. Available:
http:llwww.lucent.cod

[4] Ravindra K. Ahuja, Thomas L. Magnanti , James B. 0 t h Network
Flows: Theory, Algorithms, and Applieationi. Prentice Hall; I edition
(February 18, 1993)
S-T. Chuang et al., " Matching Output Queueing with a Combined Input
Output Queued Switch", IEEE 3. Select. Areas Commun., vol. 17, no. 6,
pp 1030- 1039.
Mark E. Crovella and Azsr Best;ivros, "Self4imilarity in World Wide
Web Trafftc: Evidence and Possible Causes", IEEEIACM Transactions
on Networking, 5(6):835-846, December 1995'.

[7] R. L. Cruz, "A calculus for nehvork delay, Part II: Network analysis,"
IEEETrans. Inform Theory,vol. 37, pp. 132-141, 1991.

[a] T. Feder, N. Megiddo, and S. Plorkin. '"A sublinear parallel algorithm for
stable matching." Fifth ACIVI-SIAM Symposium on Discrete
Algorithms, p. 632-637 (1994).

[9] D. Gale and L. S. Shaplcy, "College admisionr and the stability of
marriage," Amer. Math. Monthly, vol. 69, pp. 9-15, 1962.

[IO] C.P. Kruskal, R. Rudolph, and M. Snir. The: Power of Parallel Prefix.
IEEE Trans. an Comp., C-34(10), October 19115.

[I l l M. Karol, M. Hluchyj, and S. Mc,rgan, "Input versus output queueing on
a spacedivision switch," IEEE Tzans. Commun., vol. 35, pp. 1347-1356,
Dec. 1987.

[I21 A. Karn, K.-Y. Siu, R. A. B q r , and E. Swanson. "A cell switching
WDM broadcast LAN with bandwidth guluantee and fair access," J.
Lighlwave Technol., vol. 16, pp. 2265-2280, Dec. 1998.

[I31 I . Keslassy and N. McKeown, "A.nalysis of Scheduling Algorithms That
Provide 100% Throughput in Input-Queued Switches," Prac. of the 39th
Annual Allenon Conference on Communication, Contml, and
Computing, Monticello, Illinois, October 2001

1141 P. Krishna, N. Patel, A. Charny, and R. Simcoe, "On the speedup
required for work-conserving crcesbar switches," IEEE 1. Select. Areas
Commun.,vol. 17, pp. 1057-1066,, June 1999.

[IS] B. Magill, C. Rohrs, R. Stevenson, "Output-Queued Switch Emulation
by Fabrics With Limited Memory", in IEEE Joumal on Selected Areas in
Communications, pp.606-615, May. 2003.

[I61 N. McKeown, "The BLIP scheduling alprithm for inputqueued

[SI

161

switches," IEEEiACM Trans. Nctworking, vol. 7, no. 2, pp. 188 -201,
April 1999.

[I71 N. McKeown, A. Mekkiltikul. V. Ananlharam, and J. Walrand,
"Achieving 100% throughput in an input-queued switch", IEEE Trans.

1181 C. Minkenberg, '"Work-conseNingness of CICQ packet switches with
limited output buffers," lEEE C.~mmun. Letters, vol. 6, pp. 452 -454,
Oct. 2002.

1191 A. Parekh and R.G. Gallager, "A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The Single-
Node Case," IEEEIACM Trans. Networking, vol. 1, no. 3, pp. 344.357,
June 1993.

[201 A. Parekh and R. Gallager. "A generalized prroessar sharing approach to
flow conk01 in integrated services networks: the multiple node case,"
ACM IIEEE Trans. Networking, vol. 2, pp. 1:17-150, April 1994.

[211 C. Panridge et al., '"A 50-CiWs IP router," IEEEIACM Trans.
Networking, vol. 6, no. 3, pp. 237-248, lune 1998.

[22] J. G. Dai and B. Prabhakar, "Thc throughput ofdata switches with and
Without spcpdup," in IEEE INFOCOM, Tel Aviv, Israel, Mar. 2000, pp.
556-564.

[23] Xi80 Zhang, and Laxmi N. Bhuyan, Deficit Round Robin Scheduling
for InputQueued Switches," IEEE J. Selected Areas in Camm., vol. 21,
no. 4, pp. 584 -594, May 2003.

[241 Leonardi E., Mellia M., Neri I?., Ajmone Marsan M., ."Bounds on
Average Delays and Queue Siia Averages and Variances in Input-
Queued Cell-Based Switches", IEEE INFCXOM 2001, Alaska, April
2001, pp.lO95-lI03.

[25] Leonardi E., et al., "On the stability of InputQueued Switches with
Speed-Up ", ACM IIEEE Trans. Networking ,vol. 9, pp. 104-1 18, Feb.
2001.W.-K. Chen, Linear Nehvorkr mdSysfems (Book style). Belmont,
CA: Wadsworth, 1993, pp. 123-135.

[26l E. Leonardi et al.. "Bounds on delays and queue lengths in inputqueued
cell swiichcs", JACM, vol. 50, pp. 520-550, July 2003.

COmmun., vol. 47 no. 8, pp. 1260 -1267, Aug. 1999.

66

http://hltp:/lwww.avici.com
http:llwww.cisco.com
http:llwww.lucent.cod

