
Credit-based fair scheduling for Input-Queued
Switches

Amir Gourgy, Honglin Wu, and Ted H. Szymanski
Department of Electrical and Computer Engineering

McMaster University, Hamilton Ontario L8S 4K1, Canada
amir@grads.ece.mcmaster.ca, wuh4@mcmaster.ca, and teds@mail.ece.mcmaster.ca

Abstract— We present a novel scheduling algorithm for internet
routers with input-queued switches based on credit-based fair
queueing. We present a flow-based iterative credit-based fair
scheduler (iCBFS), for crossbar switches, that provides fair
bandwidth distribution among flows at a fine granularity and
achieves asymptotically 100% throughput, under uniform traffic.
To reduce the implementation complexity of iCBFS, we present a
port-based version of iCBFS that is tailored towards high-speed
hardware implementation.

Keywords-Input-Queued Switches, Scheduling, quality-of–
service.

I. INTRODUCTION
There is a tremendous demand for Internet core nodes to

provide quality-of-service (QoS) guarantees for multimedia
services like VOIP, video-on-demand, and mission-critical
applications, and to provide high switching capacity that
makes uses of the virtually unlimited bandwidth of optical
fibers. The Internet’s success depends on the deployment of
high-speed switches and routers that meet these two demands.

On the one hand, the demand of QoS guarantees can
be met using output-queued (OQ) switches, which can provide
optimal throughput. In addition, much research effort has been
devoted to packet scheduling at output ports to support fair
bandwidth sharing that provides delay bounds for regulated
traffic (e.g., Weighted Fair Queueing (WFQ) family [10]).
However, OQ for a NN × switch requires the switching fabric
and memory to run up to N times faster than the line rate (i.e.,
speedup of N); unfortunately, for large N or for high-speed
data lines, memories with sufficient bandwidth are not
available.

On the other hand, the fabric and the memory of an
input-queued (IQ) switch need only run as fast as the line rate.
This makes input queueing very appealing for switches with
fast line rates or with a large number of ports. Consequently,
most high-performance switches and routers (e.g., [7] and
[11]) use IQ-crossbar switches with unity speedup. These
high-speed switches are built around a crossbar switch that is
configured using a centralized scheduler designed to provide
high throughput and they use a fixed-length cell as a transfer
unit. Fixed-length switching technology is widely accepted for
achieving high switching efficiency such that variable-length
packets are segmented into fixed-length cells at the inputs and

are reassembled at outputs. We assume fixed-length cell
scheduling for the remainder of this paper1.

Although several practical scheduling algorithms
[13], [7], and [12] (described in next section) have been
proposed for IQ switches to provide QoS guarantees, these
algorithms provide bandwidth guarantees over coarse
granularity (i.e., a frame) and exhibit unfairness over short
time scales. Specifically, these schemes are fair only over
timescales longer than a frame size, where the frame size is
one round-robin of service over all backlogged queues in the
switch in proportion to their reservations. Over timescales less
than a frame, these schedulers do not serve flows in proportion
to their reservations and flows can be served in any arbitrary
order. Although the aggregate bandwidth received by a flow
over the entire frame is in proportion to its reservation, within
a frame time some flows may not get any service until the very
end of the frame and bandwidth distribution over the frame
time is nonuniform. Furthermore, as the switch size increases,
the number of queues in the switch increases and frame size
becomes larger; thereby, this unfairness leads to increased
jitter, which is undesirable for multimedia services like VOIP.
It is this problem that our proposed scheduler solves. We
emphasize that this problem can not be solved by using a
smaller frame size because the frame size is limited by the
resolution of the minimum allocatable fraction of bandwidth
per flow; for example, consider a future core router with link
speeds of 100 Gbps. For a flow to reserve only 10 Mbps, or
0.01 percent of the link capacity, requires the frame size to be
at least 10000 time slots. This problem will grow in
significance as link speeds increase.

In this paper, we propose a scheduling algorithm for
IQ switches based on credit-based-fair-queueing [2], called
iterative credit based fair scheduling (iCBFS). Our simulation
results show that iCBFS provides fair bandwidth distribution
among flows bandwidth at a fine granularity, and solves the
unfairness for timescales smaller than a frame size; thereby
our algorithm provides better fairness than all existing
schemes, with comparable hardware complexity. In addition,
our schemes achieves asymptotically 100% throughput, under
uniform traffic.

This paper is organized as follows. Section II
provides a review of related work on scheduling for IQ

1 The words packet and cell are used interchangeably for the remainder of this
paper.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1973

switches. Section III discusses fairness in IQ schedulers,
presents our proposed flow-based scheduler (iCBFS), and
compares its performance to other scheduling schemes. In
section IV, we propose a port-based version of (iCBFS) that is
tailored towards efficient high-speed hardware
implementation. The hardware complexity of the proposed
scheduler is described in section V. Finally, section VI
concludes this paper and summarizes our contributions.

II. BACKGROUND AND RELATED WORK
IQ switches can suffer from head-of-line (HOL) blocking

that limits the throughput to just 58.6% if each input maintains
a single FIFO queue for all packets [6]. In virtual output
queueing (VOQ) each input maintains a separate FIFO queue
for each output to eliminate HOL. When VOQ is used in a
crossbar switch, the scheduling algorithm configures the fabric
during each packet time and decides which inputs will be
connected to which outputs. In an NN × switch this requires
the scheduler to examine the contents of 2N virtual output
queues and determine a conflict free match M between inputs
and outputs. This is equivalent to finding a bipartite graph
matching on a graph with N vertices [7]. Although this
problem can be optimally solved using a maximum weight
bipartite graph matching algorithm [7], [8], it requires a
running time complexity of)log(3 NNO on a sequential
model, which makes the optimum algorithm prohibitively
expensive to implement in hardware. Instead, most practical
algorithms are based on simple heuristics that aim at
maximizing the number of connections between inputs and
outputs during each matching phase.

Anderson, et al. [1] designed an alternative to the optimal
algorithm, called parallel iterative matching (PIM). PIM uses
random selection to solve the contention in inputs and outputs.
Input packets are first queued in VOQs. PIM uses an iterative
three stages matching policy: request, grant, and accept stages.
For simplicity, we call other schemes based on these stages
as RGAπ . Initially, all inputs and outputs are unmatched, and
only those inputs and outputs that are not matched at the end
of one iteration are eligible to participate in the next matching
iteration. Specifically, PIM iterates the following three steps
until either a maximal matching is found or a fixed number of
iterations are performed. A maximal matching is one that adds
connections incrementally, without removing connections
made earlier in the matching process.

1. Request stage: Each unmatched input sends a
request to every output for which it has a queued
packet.

2. Grant stage: If an unmatched output receives
multiple requests, it grants one by randomly selecting
one of the requests. Each request has equal
probability to be granted.

3. Accept stage: If an input receives multiple grants, it
accepts one by randomly selecting an output among
them.

Although finding a maximal matching using the probabilistic
matching algorithm may, in the worst case, take N iterations, it

was shown that under uniform traffic, the algorithm will
converge to a maximal match in)(log NO iterations [1].

Mckeown proposed iSLIP [7] as an improvement
over PIM. Instead of using random selection at both inputs and
outputs, iSLIP uses rotating round-robin priority arbiters at
both inputs and outputs. Under uniform Bernoulli i.d.d. traffic
iSLIP arbiters adapt to a time-division multiplexing scheme,
providing a perfect match and 100% throughput [7]. Mckeown
[7] proposed weighted iSLIP (WiSLIP) as a variation of iSLIP
that can allocate bandwidth nonuniformly to different inputs.
The bandwidth from input i to output j is given by the
ratio ijijij dnf = , where ijn is the reservation for the

ji outputinput − pair, and ijd is the aggregate reservation for
output j . Instead of each arbiter maintaining an ordered
circular list },...,1{ NS = as in iSLIP, the list is expanded in
WiSLIP at output j to be the ordered circular list

},...,1{ jj WS = , where jW = lowest common multiple of all
the aggregate reservations for output j at all the input ports
and input i appears jijij Wdn ×)(times; that is, the size of the
circular changes based on the reservation values.

Stiliadis [12] proposed weighted PIM (WPIM) that
allocates output bandwidth among inputs based on
reservations made during an admission control phase. In
WPIM, the time axis is divided into frames with a fixed
number of slots per frame (e.g., a frame is typically 1000 slots
[12]). The reservation unit is slot/frame. Consequently, WPIM
provides bandwidth guarantee at a coarse granularity of a
frame size.

Ni and Bhuyan [3] proposed a fair scheduling
algorithm for input-queued switches called iFS, which is based
on virtual time. In iFS, each output link maintains a fair
queueing engine, which assigns a virtual time to every
incoming packet based on bandwidth reservation of the
packet’s flow. The incoming packet is then queued in an input
buffer first-in-first-out on a per flow basis. The algorithm then
executes a maximal matching scheme based on virtual time,
where only the grant and accept stages are executed.

On the one hand, by using virtual-time stamps for
every incoming packet, iFS [3] can honour bandwidth
reservations at a very fine granularity better than most existing
schemes; on the other hand, the cost of this algorithm is the
increased complexity in implementing N virtual-time based
fair queueing engines. A major problem with virtual-time-
based approaches is the time stamp overflow. Because time
stamp is an increasing function of the time that depends on a
common virtual clock, which in turns reflects the value of the
time tag of previously served packets, the virtual clock cannot
be reinitialized to zero until the system is completely empty
and all sessions are idle, which although statistically finite can
be extremely long, given that most real-communication traffic
exhibits self-similar patterns. This may easily cause an
overflow in time tag unless special hardware algorithms are
used [3]. Floating-point units are usually used in computing
the virtual-time stamp. In addition, virtual-time-based
approaches require that packets be sorted according to their
time tags by the fair queueing engine. In iFS, every incoming

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1974

packet needs to be assigned a virtual time-stamp and inserted
into a sorted list. Therefore, for practical implementation of
iFS, a very high-speed fair queueing hardware engine needs to
be designed to compute virtual time-stamps, perform sorting,
and be able to process up to N packets during each time slot.
These requirements are expensive to implement in hardware.

To overcome the complexity of using a virtual-time-
based fair-queuing engine at each output, and assigning a
virtual time-stamp to each incoming packet, Zhang and
Bhuyan [13] proposed iDRR, a RGAπ scheduling scheme
based on deficit round-robin. In iDRR, each input and output
maintain a circular list such that inputs and outputs are
matched in round-robin based on a quota value assigned by
deficit-round-robin engines, in proportion to their reservations.
Each matched input-output pair may transfer packets until it
uses its available quota or there are no more packets to
transfer.

III. A FLOW-BASED FAIR SCHEDULING
ALGORITHM

First, a definition of fairness in input-queued switch
scheduling is presented. Second, we describe the architecture
of our proposed flow-based iterative credit-based fair
scheduler (iCBFS). Third, we present iCBFS algorithm in
detail. Fourth, we evaluate the performance of iCBFS using
various traffic models, and compare its fairness to WiSLIP,
WPIM, and iDRR.

A. Definition of fair scheduling
We assume a work-conserving input-queued switch, and

use a definition of fairness similar to [9] and [13].
Let),(jiflowk denote the kth flow from input i to output j with
bandwidth reservation kS , and],(21 ttWk be the amount
of),(jiflowk traffic served in the interval],(21 tt . Two flows

),(11 jiflowM and),(22 jiflowN are in contention if
21 ii = or 21 jj = ; that is, in an input-queued switch, there are

essentially two shared resources: the crossbar, where flows at
each input contend (input contention); and the bandwidth of
each outgoing link, where flows destined to the same output
link contend (output contention). For any two backlogged
flows),(11 jiflowM and),(22 jiflowN that are in contention, a
scheduling scheme is ideally fair in],(21 tt if

N

N

M

M

S
ttW

S
ttW],(],(2121 =

That is, contending flows are served in proportion to their
reservations. This definition of fairness, of course, holds only
in an idealized fluid flow network. When the network is more
realistic and serves the traffic flows by a nonnegligible
quantum of variable size (packet by packet), the definition of
fairness can be written as

B
S

ttW
S

ttW

N

N

M

M ≤−],(],(2121

where B is a bound that gives a measure of fairness, also
called fairness index. The smaller the fairness index, the fairer
is the scheduling algorithm.

B. Architecture of iCBFS Switch
The basic architecture of iCBFS is shown in Figure 1; for

each output link we maintain a credit-based fair queueing
(CBFQ) arbiter and a separate queue is used for each flow at
input ports. The scheduling algorithm is based on a

RGAπ policy.

Input1
Arbiter

Input 1

CBFQ1
Arbiter

Output 1

Input2
Arbiter

Input 2

Input N

InputN
Arbiter

CBFQ2

Arbiter

Output 2

CBFQN

Arbiter

Output N

Figure 1. Architecture of a flow-based credit-based fair queueing switch.

The basic idea of iCBFS is to assign each flow a
counter that gets incremented in proportion to the flow’s
reservation such that when the counter reaches a certain
threshold value, its corresponding flow is flagged as a
candidate, and is allowed to transmit a packet across the
switch; subsequently, the counter is decremented after
transmission. These counters are maintained by the CBFQ
arbiters and are used to fairly resolve output contention as
described in the next section.

In addition to the counters used by CBFQ arbiters,
each input arbiter tracks the aggregate reservation from its port
to all outputs, and uses a set of counters to track the aggregate
number of packets transmitted to each output. These input
arbiters’ counters are used to fairly resolve input contention as
described in the next section. All counters can be updated
independently in parallel, which suits efficient hardware
implementation.

Let the average packet arrival rate at input i for
output j be ijλ . The incoming traffic is called admissible if

11 <∑ =
N
i ijλ , and 11 <∑ =

N
j ijλ . We assume that flows’

reservations are admissible.

C. Description of iCBFS Algorithm
In an NN × switch, for each),(jiflowk going from input i

to output j , the input arbiter i uses a separate queue jkq , and
the CBFQj arbiter maintains a counter jkK and a bandwidth
share jkS . Let },...,,{ 21 jJjjj qqqQ = be the set of queues for
flows J,...,1 that are destined to output j , with bandwidth
shares jJjj SSS ≥≥ ...21 . Initially, all counters are set to zero.
Each CBFQ j engine updates the counters as follows:

1jjkjkjk SSKK += ; that is, the backlogged queue with the
largest share, at each CBFQ engine, is chosen as the reference
queue to calculate a pro-rated share of bandwidth each
backlogged queue should receive. jkK is the accumulated
credit for kflow destined to output j . Each),(jiflowk
with 1≥jkK and 0>jkq is marked as candidate and can be
used during the iterative matching phase as described next.

In addition to the counters used by CBFQ arbiters, each
input arbiter i uses a set of N counters

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1975

},...,,{ 21 iNiii CCCC = such that ijC indicates the current
available quota of the ji outputinput − pair. The quota is the
number of reserved slots per frame for each

ji outputinput − pair. Let ijR represent aggregate reserved
bandwidth from iinput to joutput . Each input arbiter i then
assigns a quota to the counter values },...,,{ 21 iNii CCC such
that ijC indicates the current available quota of the

ji outputinput − pair. These quotas can be either statically or
dynamically reconfigured. In the static approach, a fixed
minimum quota value (minq) is assigned to the minimum
possible aggregate reservation minR . Subsequently, each
aggregate reservation ijC is assigned a quota minmin RRq ij .
In the dynamic approach, the value of minq can be dynamically
calculated based on the current flow with minimum
reservation and the quotas of all other flows are calculated
accordingly.

Initially, all inputs and outputs are unmatched. Then in
each iteration:
1. Request: Each unmatched input sends a request to every
output for which it has a queued packet.
2. Grant: If an unmatched output receives any requests
choose any candidate flow that belongs to an unmatched input
and send a grant to this flow at its corresponding input. Note
that counters are updated if there are no candidate flows for
any of the requests.
3. Accept: If an unmatched input receives any grants choose
the flow with the largest quota for its ijC counter. Note that
selecting the flow with the largest quota resolves input
contention in fair and simple manner.

In each time slot, for every selected flow, the switch
transfers a packet of its head-of-line (HOL) queue. The input
arbiter decrements the quota by 1 and the output arbiter
decrements the flow’s counter value by 1. The previous
algorithm executes until either no more matches can be made
or for a fixed number of iterations.

To circumvent flows from overusing or underusing their
reservations, we require all quotas and counters be
reinitialized after some period of time. For simplicity, we
assumed a fixed frame size (e.g., 1000 slots) after which all
the counters are initialized.

D. Simulation Results
First, the switch is set such that different flows have

different reservations and the throughput per flow is measured
to evaluate the fairness of the scheduler. Second, the switch
setting is such that all flows have equal reservations and the
performance is measured for a 1616× switch under uniform
Bernoulli i.d.d. traffic. The number of iterations was fixed to
4. The performance of iCBFS is compared to WiSLIP, iDRR,
and WPIM.

D1. QoS Traffic Model

To illustrate the fairness of iCBFS in bandwidth
allocation, a 44× switch was simulated such that each input
has four flows, each going to a different output with a different
bandwidth reservation. Let),(jifk represent flow k from

input port i to output port j . In the simulated
switch,)0,0(1f ,)0,1(2f ,)0,2(3f ,)0,3(4f have reserved 10, 20,
30, and 40 percent of the bandwidth, respectively, but they
always maintain the same actual arrival rate. Other flows have
a load of 5 percent each. This traffic model has been used in
[9] and [12]. We used equivalent switch settings for iCBFS,
iDRR, and WPIM with equivalent frame size of 1000 slots.
Figure 2 shows the throughput per flow using iCBFS,
WiSLIP, iDRR, and WPIM after 750 time slots. The value of
750 represents 75 percent of the frame size and was chosen to
illustrate the short-term unfairness problem present in other
schemes and the superiority of iCBFS in solving this problem.

(a) Throughput per flow using iCBFS

(b) Throughput per flow using iDRR

(c) Throughput per flow using WiSLIP

(d) Throughput per flow using WPIM.

Figure 2. Plot of throughput per flow for iCBFS, iDRR, WiSLIP, and WPIM
at 75 percent of the frame size

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1976

iCBFS vs. iDRR
Both iCBFS and iDRR were simulated with

50min =q slots and %5min =r with static counter initialization
after 1000 slots. Although iDRR [13] avoids the complexity of
the virtual-time approach used in iFS, it does that at the
expense of other performance metrics such as delay and
fairness. iDRR possesses all the deficiencies inherent in
deficit-round-robin service, namely that is fair only over time
scales longer than frame, and it has unbounded delay (the
delay depends on local switch settings that can be arbitrarily
large; see [5] p. 3). As shown in Figure 2(b), at the rightmost
point of the graph,)0,0(1f ,)0,1(2f ,)0,2(3f ,
and)0,3(4f receive 13, 26, 40, and 20 percent of the
bandwidth, respectively. Specifically,)0,3(4f receives only
half of its reserved bandwidth share leading to a large delay
and jitter. In contrast, iCBFS is able to precisely allocate the
bandwidth among the flows in proportion to their reservation.

iCBFS vs. WiSLIP
As shown in Figure 2(c) at the rightmost point of the

graph, WiSLIP does not precisely allocate bandwidth among
flows in proportion to their reservations;)0,0(1f receives 15
percent of the bandwidth instead of its reserved 10 percent.
Consequently, both)0,1(2f ,)0,2(3f receive only 18% and
27% instead of 20% and 30%, respectively. In contrast, iCBFS
is able to precisely allocate the bandwidth among the flows in
proportion to their reservation. We identify the unfairness in
iSLIP and its variant WiSLIP as caused by the simple
operation of the rotating round-robin priority arbiters—the
output arbiters do not track precisely how much bandwidth
each input port uses. Specifically, iSLIP and all its variants [7]
use simple rotating round-robin priority arbiters at each output
arbiter with a pointer ig to the current highest priority input of
the round-robin schedule. This pointer ig is only incremented
(modulo N) if, and only if, the grant signal is accepted in the
first iteration of the algorithm. For all subsequent iterations,
the pointer is not updated even if a granted input is accepted.
Although this scheme elegantly eliminates starvation in both
iSLIP and its variants, it leads to impreciseness in tracking the
bandwidth allocated to each input port (see [7] for a detailed
explanation regarding the pointer update and the starvation
problem). In addition, as the switch size increases the number
of elements at each output arbiter’s circular list increases and
these elements can be positioned in any order. Consequently,
the time required to serve all elements in the list will increase
and the short-term unfairness will manifest itself clearly.

iCBFS vs. WPIM
Although WPIM is fair over a time scale larger than

the frame size (typically 1000 slots [12]), it is unfair over
shorter time scales. As shown in Figure 2 (d) at the rightmost
point of the graph,)0,0(1f ,)0,1(2f ,)0,2(3f ,
and)0,3(4f receive 13, 26, 28, and 32 percent of the
bandwidth, respectively. This unfairness is caused by the
uniform random selection used at the output arbiters. In

essence, all flows with available credit are treated equally until
their credit is used up. Consequently, flows with higher
bandwidth reservations than others receive their differential
bandwidth share only at the end of a frame, whereas iCBFS
distributes this differential bandwidth share uniformly over the
entire time scale.

When all flows use their reserved credits, WPIM
reduces to PIM and all unreserved bandwidth is distributed
equally among all inputs [12], whereas iCBFS distributes
unreserved bandwidth among all inputs in proportion to their
reservations.

In summary, iCBFS provides fair bandwidth among
flows in proportion to their reservations. iCBFS provides
significantly better fairness than WiSLIP, WPIM, and iDRR
over time scales less than a frame size. We emphasize the as
the switch size increases, the frame size required to serve all
the input ports increases proportionally and the short-term
unfairness problem manifests itself clearly in increased jitter.
The simple case of a 44× switch was only used to simplify
the presentation. In addition, as the link speed increases the
frame size would also increase.

D2. Uniform Traffic

In addition to providing fair bandwidth among flows
in proportion to their reservations, we evaluated the
performance of iCBFS when all flows have equal reservations.
Figure 3. shows the average delay of iCBFS compared to other
scheduling schemes under uniform i.d.d. Bernoulli traffic.
Similar to other scheduling schemes, iCBFS is capable of
achieving asymptotically 100% throughput under uniform
traffic. Under uniform traffic, all schedulers behave similarly.
However, this traffic model is not realistic for internet routers.

Figure 3. Performance of iCBFS, iSLIP, WPIM, and Output queueing under

uniform traffic.

IV. A PORT-BASED FAIR SCHEDULING
ALGORITHM

There is a trade-off in the design of high-speed switches
between fairness among flows and simplicity of hardware
design required for high-speed implementation. On the one
hand, flow-based-scheduling guarantees fairness among flows
by isolating non-conforming flows and provides bandwidth
guarantee to individual flows; on the other hand, it makes
hardware design relatively complex, and does not scale well as
the number of flows grows. Port-based scheduling [12] allows
simple hardware implementation at the cost of a coarse

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1977

granularity of bandwidth guarantee. Rather than tracking
individual flows at each input port, a port-based scheduler
tracks the aggregate bandwidth reservation at each input port.
Consequently, the complexity of a port-based scheduler is
proportional to the switch size instead of the number of flows,
which can be significantly larger. Thus, port-based scheduling
can reduce the complexity of the scheduler considerably.

We propose to divide scheduling into two layers: CBFQ per
virtual queue at the input side (labelled),(jiVCBFQ for packets
at input port i destined to output j), and a port-based
scheduler, jPCBFQ , at each output port j .),(jiVCBFQ can be
implemented in software using DRAM, and jPCBFQ can be
easily implemented in hardware. Intuitively, using this
hierarchical scheduling scheme, the complexity of the original

jCBFQ engine at each output j is distributed among all the
input ports and the jPCBFQ only deals at the abstraction of
port-based scheduling; thus simplifying the design
considerably.

The jPCBFQ , at each output port j , maintains a
counter ijK and a bandwidth share ijS for the aggregate
bandwidth reservation from input i to output j . Similar to
iCBFS, each input i arbiter uses a set of counters ijC to track
the aggregate quota for each ji outputinput − pair. A

ijVOQ becomes candidate if 1≥ijK . The port-based of iCBFS,
called iPCBFS would execute the request, grant, and accept
stages as described in the previous section.

Note that the simulation results for iPCBFS are identical to
the simulation results for iCBFS described section III.D.

V. HARDWARE COMPLEXITY
We assume a CRCW PRAM model such that all executed

operations are)1(O time, and estimate the complexity of
iCBFS for an NN × switch. In the iCBFS algorithm, each
time an output arbiter selects a flow to send a grant signal or
an input arbiter selects an output to send the accept signal the
computations performed are)(NO .

The priority sort of the flows to select the flow with
the largest share at each output arbiter changes only at the
burst level timescale. That is, each flow’s share is allocated
upon the admission of a new flow and does not change during
its lifetime. Consequently, the sorting consists only of
extracting the pre-ordered list of active flows from a static list.
Note that iDRR also maintains a pre-ordered list of active
flows such that the flow with the smallest reservation is
always used in calculating the quota for other flows.
During the grant stage of iCBFS, the counter values do not
need to be sorted according to their values. Consequently, we
only need to compare each counter’s value to 1. We point that
all the counters’ update and comparison operations can be
implemented using integers.

In iCBFS, each output arbiter needs to maintain a counter
for each flow, whereas in iPCBFS the number of counters is
fixed and equals N . Similar to all algorithms based on RGAπ
policy, both iCBFS, and iPCBFS may require up to N

iterations in the worst case and an average of
)(log NO iterations for uniform traffic.

VI. CONCLUSION
We proposed iCBFS, a flow-based fair scheduling

algorithm for internet routers with input-queued switches. We
showed through simulation that iCBFS can fairly allocate
bandwidth in proportion to flows’ reservations and provide
considerably better fairness over short-time scales compared
to all other schemes; thereby, iCBFS reduces the jitter and
delay for multimedia services like VOIP and video-on-
demand. In addition, the algorithm achieves 100% throughput
for uniform traffic. To simplify the implementation
complexity of iCBFS, we proposed a port-based version of
iCBFS, iPCBFS, which is simpler to implement in hardware.

REFERENCES
[1] T.E. Anderson, S.S. Owicki, J.B. Saxe, and C.P. Thacker, "High Speed

Switch Scheduling for Local Area Networks," ACM Trans. Computer
Systerms, vol. 11, no. 4, pp. 319-352, Nov. 1993.

[2] B.Bensaou, D.H.K.Tsang, King Tung Chan, “Credit-based fair queueing
(CBFQ): a simple service-scheduling algorithm for packet-switched
networks,” IEEE/ACM Trans. Networking, vol. 9, no. 5, pp. 591 –604,
October 2001.

[3] H. J. Chao, Y. R. Jenq, X. Guo, and C. H. Lam, ``Design of Packet Fair
Queuing Schedulers Using a RAM-based Searching Engine,'' in IEEE J.
Select. Areas Commun., pp. 1105-1126, June 1999.

[4] H. J. Chao and N. Uzun, "A VLSI Sequencer chip for ATM traffic
shaper and queue manager," IEEE J. Solid-State Circuits, vol. 27, no. 11,
pp. 1634-1643, Nov. 1992.

[5] P. Goyal, H. Vin, and H. Cheng, "Start-time fair queueing: A scheduling
algorithm for integrated services packet-switching networks," in Proc.
SIGCOMM, 1995, pp. 157-168.

[6] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing on
a space-division switch,” IEEE Trans. Commun., vol. 35, pp. 1347–
1356, Dec. 1987.

[7] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188 -201,
April 1999.

[8] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand,
“Achieving 100% throughput in an input-queued switch”, IEEE Trans.
Commun., vol. 47 no. 8, pp. 1260 -1267, Aug. 1999.

[9] Ni Nan, L.N Bhuyan, “Fair scheduling in Internet routers,” IEEE Trans.
Computers, vol. 51, no. 6, pp. 686 –701, June 2002.

[10] A. Parekh and R.G. Gallager, "A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The Single-
Node Case," IEEE/ACM Trans. Networking, vol. 1, no. 3, pp. 344-357,
June 1993.

[11] C. Partridge, P. P. Carvey, E. Burgess, I. Castineyra, T. Clarke, L.
Graham, M. Hathaway, P. Herman, A. King, S. Kohalmi, T. Ma, J.
McCallen, T. Mendez, W. C. Milliken, R. Pettyjohn, J. Rokosz, J.
Seeger, M. Sollins, S. Storch, B. Tober, G. D. Troxel, D. Waitzman, and
S. Winterble, “A 50-Gb/s IP router,” IEEE/ACM Trans. Networking,
vol. 6, pp. 237–248, June 1998.

[12] D. Stiliadis and A. Varma, “Providing Bandwidth Guarantees in an
Input-Buffered Crossbar Switch,” Proc. IEEE INFOCOM '95, pp. 960-
968, Apr. 1995.

[13] Xiao Zhang, and Laxmi N. Bhuyan, “ Deficit Round Robin Scheduling
for Input-Queued Switches,” IEEE J. Selected Areas in Comm., vol. 21,
no. 4 , pp. 584 –594, May 2003.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1978

	footer1:

