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Abstract— We present a novel scheduling algorithm for internet 
routers with input-queued switches based on credit-based fair 
queueing. We present a flow-based iterative credit-based fair 
scheduler (iCBFS), for crossbar switches, that provides fair 
bandwidth distribution among flows at a fine granularity and 
achieves asymptotically 100% throughput, under uniform traffic. 
To reduce the implementation complexity of iCBFS, we present a 
port-based version of iCBFS that is tailored towards high-speed 
hardware implementation.  

Keywords-Input-Queued Switches, Scheduling, quality-of–
service.  

I.  INTRODUCTION 
There is a tremendous demand for Internet core nodes to 

provide quality-of-service (QoS) guarantees for multimedia 
services like VOIP, video-on-demand, and mission-critical 
applications, and to provide high switching capacity that 
makes uses of the virtually unlimited bandwidth of optical 
fibers. The Internet’s success depends on the deployment of 
high-speed switches and routers that meet these two demands. 

On the one hand, the demand of QoS guarantees can 
be met using output-queued (OQ) switches, which can provide 
optimal throughput. In addition, much research effort has been 
devoted to packet scheduling at output ports to support fair 
bandwidth sharing that provides delay bounds for regulated 
traffic (e.g., Weighted Fair Queueing (WFQ) family [10]). 
However, OQ for a NN × switch requires the switching fabric 
and memory to run up to N times faster than the line rate (i.e., 
speedup of N ); unfortunately, for large N or for high-speed 
data lines, memories with sufficient bandwidth are not 
available.  

On the other hand, the fabric and the memory of an 
input-queued (IQ) switch need only run as fast as the line rate. 
This makes input queueing very appealing for switches with 
fast line rates or with a large number of ports. Consequently, 
most high-performance switches and routers (e.g., [7] and 
[11]) use IQ-crossbar switches with unity speedup. These 
high-speed switches are built around a crossbar switch that is 
configured using a centralized scheduler designed to provide 
high throughput and they use a fixed-length cell as a transfer 
unit. Fixed-length switching technology is widely accepted for 
achieving high switching efficiency such that variable-length 
packets are segmented into fixed-length cells at the inputs and 

are reassembled at outputs. We assume fixed-length cell 
scheduling for the remainder of this paper1.  

Although several practical scheduling algorithms 
[13], [7], and [12] (described in next section) have been 
proposed for IQ switches to provide QoS guarantees, these 
algorithms provide bandwidth guarantees over coarse 
granularity (i.e., a frame) and exhibit unfairness over short 
time scales. Specifically, these schemes are fair only over 
timescales longer than a frame size, where the frame size is 
one round-robin of service over all backlogged queues in the 
switch in proportion to their reservations. Over timescales less 
than a frame, these schedulers do not serve flows in proportion 
to their reservations and flows can be served in any arbitrary 
order. Although the aggregate bandwidth received by a flow 
over the entire frame is in proportion to its reservation, within 
a frame time some flows may not get any service until the very 
end of the frame and bandwidth distribution over the frame 
time is nonuniform.  Furthermore, as the switch size increases, 
the number of queues in the switch increases and frame size 
becomes larger; thereby, this unfairness leads to increased 
jitter, which is undesirable for multimedia services like VOIP. 
It is this problem that our proposed scheduler solves. We 
emphasize that this problem can not be solved by using a 
smaller frame size because the frame size is limited by the 
resolution of the minimum allocatable fraction of bandwidth 
per flow; for example, consider a future core router with link 
speeds of 100 Gbps. For a flow to reserve only 10 Mbps, or 
0.01 percent of the link capacity, requires the frame size to be 
at least 10000 time slots. This problem will grow in 
significance as link speeds increase. 

In this paper, we propose a scheduling algorithm for 
IQ switches based on credit-based-fair-queueing [2], called 
iterative credit based fair scheduling (iCBFS). Our simulation 
results show that iCBFS provides fair bandwidth distribution 
among flows bandwidth at a fine granularity, and solves the 
unfairness for timescales smaller than a frame size; thereby 
our algorithm provides better fairness than all existing 
schemes, with comparable hardware complexity. In addition, 
our schemes achieves asymptotically 100% throughput, under 
uniform traffic. 

This paper is organized as follows. Section II 
provides a review of related work on scheduling for IQ 

                                                           
1 The words packet and cell are used interchangeably for the remainder of this 
paper. 
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switches.  Section III discusses fairness in IQ schedulers, 
presents our proposed flow-based scheduler (iCBFS), and 
compares its performance to other scheduling schemes. In 
section IV, we propose a port-based version of (iCBFS) that is 
tailored towards efficient high-speed hardware 
implementation. The hardware complexity of the proposed 
scheduler is described in section V. Finally, section VI 
concludes this paper and summarizes our contributions.  

II. BACKGROUND AND RELATED WORK  
IQ switches can suffer from head-of-line (HOL) blocking 

that limits the throughput to just 58.6% if each input maintains 
a single FIFO queue for all packets [6]. In virtual output 
queueing (VOQ) each input maintains a separate FIFO queue 
for each output to eliminate HOL. When VOQ is used in a 
crossbar switch, the scheduling algorithm configures the fabric 
during each packet time and decides which inputs will be 
connected to which outputs. In an NN × switch this requires 
the scheduler to examine the contents of 2N virtual output 
queues and determine a conflict free match M between inputs 
and outputs. This is equivalent to finding a bipartite graph 
matching on a graph with N vertices [7]. Although this 
problem can be optimally solved using a maximum weight 
bipartite graph matching algorithm [7], [8], it requires a 
running time complexity of )log( 3 NNO on a sequential 
model, which makes the optimum algorithm prohibitively 
expensive to implement in hardware. Instead, most practical 
algorithms are based on simple heuristics that aim at 
maximizing the number of connections between inputs and 
outputs during each matching phase.  

Anderson, et al. [1] designed an alternative to the optimal 
algorithm, called parallel iterative matching (PIM). PIM uses 
random selection to solve the contention in inputs and outputs. 
Input packets are first queued in VOQs. PIM uses an iterative 
three stages matching policy: request, grant, and accept stages. 
For simplicity, we call other schemes based on these stages 
as RGAπ . Initially, all inputs and outputs are unmatched, and 
only those inputs and outputs that are not matched at the end 
of one iteration are eligible to participate in the next matching 
iteration. Specifically, PIM iterates the following three steps 
until either a maximal matching is found or a fixed number of 
iterations are performed. A maximal matching is one that adds 
connections incrementally, without removing connections 
made earlier in the matching process.  

1. Request stage: Each unmatched input sends a 
request to every output for which it has a queued 
packet.  

2. Grant stage: If an unmatched output receives 
multiple requests, it grants one by randomly selecting 
one of the requests. Each request has equal 
probability to be granted.  

3. Accept stage: If an input receives multiple grants, it 
accepts one by randomly selecting an output among 
them.  

Although finding a maximal matching using the probabilistic 
matching algorithm may, in the worst case, take N iterations, it 

was shown that under uniform traffic, the algorithm will 
converge to a maximal match in )(log NO iterations [1].  

Mckeown proposed iSLIP [7] as an improvement 
over PIM. Instead of using random selection at both inputs and 
outputs, iSLIP uses rotating round-robin priority arbiters at 
both inputs and outputs. Under uniform Bernoulli i.d.d. traffic 
iSLIP arbiters adapt to a time-division multiplexing scheme, 
providing a perfect match and 100% throughput [7]. Mckeown 
[7] proposed weighted iSLIP (WiSLIP) as a variation of iSLIP 
that can allocate bandwidth nonuniformly to different inputs. 
The bandwidth from input i  to output j  is given by the 
ratio ijijij dnf = , where ijn  is the reservation for the 

ji outputinput −  pair, and ijd is the aggregate reservation for 
output j .  Instead of each arbiter maintaining an ordered 
circular list },...,1{ NS = as in iSLIP, the list is expanded in 
WiSLIP at output j to be the ordered circular list 

},...,1{ jj WS = , where jW = lowest common multiple of all 
the aggregate reservations for output j  at all the input ports 
and input i appears jijij Wdn ×)(  times; that is, the size of the 
circular changes based on the reservation values.  

Stiliadis [12] proposed weighted PIM (WPIM) that 
allocates output bandwidth among inputs based on 
reservations made during an admission control phase. In 
WPIM, the time axis is divided into frames with a fixed 
number of slots per frame (e.g., a frame is typically 1000 slots 
[12]). The reservation unit is slot/frame. Consequently, WPIM 
provides bandwidth guarantee at a coarse granularity of a 
frame size.  

Ni and Bhuyan [3] proposed a fair scheduling 
algorithm for input-queued switches called iFS, which is based 
on virtual time. In iFS, each output link maintains a fair 
queueing engine, which assigns a virtual time to every 
incoming packet based on bandwidth reservation of the 
packet’s flow. The incoming packet is then queued in an input 
buffer first-in-first-out on a per flow basis. The algorithm then 
executes a maximal matching scheme based on virtual time, 
where only the grant and accept stages are executed.  

On the one hand, by using virtual-time stamps for 
every incoming packet, iFS [3] can honour bandwidth 
reservations at a very fine granularity better than most existing 
schemes; on the other hand, the cost of this algorithm is the 
increased complexity in implementing N virtual-time based 
fair queueing engines. A major problem with virtual-time-
based approaches is the time stamp overflow. Because time 
stamp is an increasing function of the time that depends on a 
common virtual clock,   which in turns reflects the value of the 
time tag of previously served packets, the virtual clock cannot 
be reinitialized to zero until the system is completely empty 
and all sessions are idle, which although statistically finite can 
be extremely long, given that most real-communication traffic 
exhibits self-similar patterns. This may easily cause an 
overflow in time tag unless special hardware algorithms are 
used [3]. Floating-point units are usually used in computing 
the virtual-time stamp. In addition, virtual-time-based 
approaches require that packets be sorted according to their 
time tags by the fair queueing engine. In iFS, every incoming 
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packet needs to be assigned a virtual time-stamp and inserted 
into a sorted list. Therefore, for practical implementation of 
iFS, a very high-speed fair queueing hardware engine needs to 
be designed to compute virtual time-stamps, perform sorting, 
and be able to process up to N packets during each time slot. 
These requirements are expensive to implement in hardware.  

To overcome the complexity of using a virtual-time-
based fair-queuing engine at each output, and assigning a 
virtual time-stamp to each incoming packet, Zhang and 
Bhuyan [13] proposed iDRR, a RGAπ scheduling scheme 
based on deficit round-robin. In iDRR, each input and output 
maintain a circular list such that inputs and outputs are 
matched in round-robin based on a quota value assigned by 
deficit-round-robin engines, in proportion to their reservations. 
Each matched input-output pair may transfer packets until it 
uses its available quota or there are no more packets to 
transfer.  

III. A FLOW-BASED FAIR SCHEDULING 
ALGORITHM 

First, a definition of fairness in input-queued switch 
scheduling is presented. Second, we describe the architecture 
of our proposed flow-based iterative credit-based fair 
scheduler (iCBFS). Third, we present iCBFS algorithm in 
detail. Fourth, we evaluate the performance of iCBFS using 
various traffic models, and compare its fairness to WiSLIP, 
WPIM, and iDRR. 

A. Definition of fair scheduling 
We assume a work-conserving input-queued switch, and 

use a definition of fairness similar to [9] and [13]. 
Let ),( jiflowk denote the kth flow from input i to output j with 
bandwidth reservation kS , and ],( 21 ttWk  be the amount 
of ),( jiflowk  traffic served in the interval ],( 21 tt . Two flows 

),( 11 jiflowM  and ),( 22 jiflowN  are in contention if 
21 ii = or 21 jj = ; that is, in an input-queued switch, there are 

essentially two shared resources: the crossbar, where flows at 
each input contend (input contention); and the bandwidth of 
each outgoing link, where flows destined to the same output 
link contend (output contention). For any two backlogged 
flows ),( 11 jiflowM  and ),( 22 jiflowN that are in contention, a 
scheduling scheme is ideally fair in ],( 21 tt  if  

N

N

M

M

S
ttW

S
ttW ],(],( 2121 =  

That is, contending flows are served in proportion to their 
reservations. This definition of fairness, of course, holds only 
in an idealized fluid flow network. When the network is more 
realistic and serves the traffic flows by a nonnegligible 
quantum of variable size (packet by packet), the definition of 
fairness can be written as 

B
S

ttW
S

ttW

N

N

M

M ≤− ],(],( 2121  

where B is a bound that gives a measure of fairness, also 
called fairness index. The smaller the fairness index, the fairer 
is the scheduling algorithm. 

B. Architecture of iCBFS Switch 
The basic architecture of iCBFS is shown in Figure 1; for 

each output link we maintain a credit-based fair queueing 
(CBFQ) arbiter and a separate queue is used for each flow at 
input ports. The scheduling algorithm is based on a 

RGAπ policy. 
 

Input1 
Arbiter

Input 1 

CBFQ1
Arbiter

Output 1 

Input2 
Arbiter

Input 2 

Input N 

InputN
Arbiter

CBFQ2

Arbiter

Output 2 

CBFQN

Arbiter

Output N 

 
Figure 1.  Architecture of a flow-based credit-based fair queueing switch. 

The basic idea of iCBFS is to assign each flow a 
counter that gets incremented in proportion to the flow’s 
reservation such that when the counter reaches a certain 
threshold value, its corresponding flow is flagged as a 
candidate, and is allowed to transmit a packet across the 
switch; subsequently, the counter is decremented after 
transmission. These counters are maintained by the CBFQ 
arbiters and are used to fairly resolve output contention as 
described in the next section. 

In addition to the counters used by CBFQ arbiters, 
each input arbiter tracks the aggregate reservation from its port 
to all outputs, and uses a set of counters to track the aggregate 
number of packets transmitted to each output. These input 
arbiters’ counters are used to fairly resolve input contention as 
described in the next section. All counters can be updated 
independently in parallel, which suits efficient hardware 
implementation.  

Let the average packet arrival rate at input i for 
output j be ijλ . The incoming traffic is called admissible if 

11 <∑ =
N
i ijλ , and 11 <∑ =

N
j ijλ . We assume that flows’ 

reservations are admissible.  

C. Description of iCBFS Algorithm  
In an NN × switch, for each ),( jiflowk going from input i  

to output j , the input arbiter i uses a separate queue jkq , and 
the  CBFQj arbiter maintains a counter jkK and a bandwidth 
share jkS . Let },...,,{ 21 jJjjj qqqQ = be the set of queues for 
flows J,...,1 that are destined to output j , with bandwidth 
shares jJjj SSS ≥≥ ...21 .  Initially, all counters are set to zero. 
Each  CBFQ j engine updates the counters as follows: 

1jjkjkjk SSKK += ; that is, the backlogged queue with the 
largest share, at each CBFQ engine, is chosen as the reference 
queue to calculate a pro-rated share of bandwidth each 
backlogged queue should receive. jkK  is the accumulated 
credit for kflow destined to output j . Each ),( jiflowk  
with 1≥jkK  and 0>jkq is marked as candidate and can be 
used during the iterative matching phase as described next.  

In addition to the counters used by CBFQ arbiters, each 
input arbiter i  uses a set of N counters 
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},...,,{ 21 iNiii CCCC = such that ijC indicates the current 
available quota of the ji outputinput − pair. The quota is the 
number of reserved slots per frame for each 

ji outputinput − pair. Let ijR represent aggregate reserved 
bandwidth from iinput  to joutput . Each input arbiter i then 
assigns a quota to the counter values },...,,{ 21 iNii CCC  such 
that ijC indicates the current available quota of the 

ji outputinput − pair. These quotas can be either statically or 
dynamically reconfigured. In the static approach, a fixed 
minimum quota value ( minq ) is assigned to the minimum 
possible aggregate reservation minR . Subsequently, each 
aggregate reservation ijC is assigned a quota minmin RRq ij . 
In the dynamic approach, the value of minq can be dynamically 
calculated based on the current flow with minimum 
reservation and the quotas of all other flows are calculated 
accordingly.   

Initially, all inputs and outputs are unmatched. Then in 
each iteration:  
1. Request: Each unmatched input sends a request to every 
output for which it has a queued packet.  
2. Grant: If an unmatched output receives any requests 
choose any candidate flow that belongs to an unmatched input 
and send a grant to this flow at its corresponding input. Note 
that counters are updated if there are no candidate flows for 
any of the requests. 
3. Accept: If an unmatched input receives any grants choose 
the flow with the largest quota for its ijC counter. Note that 
selecting the flow with the largest quota resolves input 
contention in fair and simple manner.  

In each time slot, for every selected flow, the switch 
transfers a packet of its head-of-line (HOL) queue. The input 
arbiter decrements the quota by 1 and the output arbiter 
decrements the flow’s counter value by 1.  The previous 
algorithm executes until either no more matches can be made 
or for a fixed number of iterations.  

To circumvent flows from overusing or underusing their 
reservations, we require all quotas and counters be 
reinitialized after some period of time. For simplicity, we 
assumed a fixed frame size (e.g., 1000 slots) after which all 
the counters are initialized.  

D. Simulation Results 
First, the switch is set such that different flows have 

different reservations and the throughput per flow is measured 
to evaluate the fairness of the scheduler. Second, the switch 
setting is such that all flows have equal reservations and the 
performance is measured for a 1616× switch under uniform 
Bernoulli i.d.d. traffic. The number of iterations was fixed to 
4. The performance of iCBFS is compared to WiSLIP, iDRR, 
and WPIM.  
 
D1. QoS Traffic Model 

To illustrate the fairness of iCBFS in bandwidth 
allocation, a 44× switch was simulated such that each input 
has four flows, each going to a different output with a different 
bandwidth reservation. Let ),( jifk represent flow k  from 

input port i  to output port j . In the simulated 
switch, )0,0(1f , )0,1(2f , )0,2(3f , )0,3(4f have reserved 10, 20, 
30, and 40 percent of the bandwidth, respectively, but they 
always maintain the same actual arrival rate. Other flows have 
a load of 5 percent each. This traffic model has been used in 
[9] and [12]. We used equivalent switch settings for iCBFS, 
iDRR, and WPIM with equivalent frame size of 1000 slots.  
Figure 2 shows the throughput per flow using iCBFS, 
WiSLIP, iDRR, and WPIM after 750 time slots. The value of 
750 represents 75 percent of the frame size and was chosen to 
illustrate the short-term unfairness problem present in other 
schemes and the superiority of iCBFS in solving this problem. 

 
(a) Throughput per flow using iCBFS 

 
(b) Throughput per flow using iDRR 

 
(c) Throughput per flow using WiSLIP       

 
(d) Throughput per flow using WPIM. 

Figure 2.  Plot of throughput per flow for iCBFS, iDRR, WiSLIP, and WPIM 
at 75 percent of the frame size 
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iCBFS vs. iDRR 
Both iCBFS and iDRR were simulated with 

50min =q slots and %5min =r  with static counter initialization 
after 1000 slots. Although iDRR [13] avoids the complexity of 
the virtual-time approach used in iFS, it does that at the 
expense of other performance metrics such as delay and 
fairness.  iDRR possesses all the deficiencies inherent in 
deficit-round-robin service, namely that is fair only over time 
scales longer than frame, and it has unbounded delay (the 
delay depends on local switch settings that can be arbitrarily 
large; see [5] p. 3). As shown in Figure 2(b), at the rightmost 
point of the graph, )0,0(1f , )0,1(2f , )0,2(3f , 
and )0,3(4f receive 13, 26, 40, and 20 percent of the 
bandwidth, respectively.  Specifically, )0,3(4f  receives only 
half of its reserved bandwidth share leading to a large delay 
and jitter.  In contrast, iCBFS is able to precisely allocate the 
bandwidth among the flows in proportion to their reservation.  

iCBFS vs. WiSLIP 
As shown in Figure 2(c) at the rightmost point of the 

graph, WiSLIP does not precisely allocate bandwidth among 
flows in proportion to their reservations; )0,0(1f receives 15 
percent of the bandwidth instead of its reserved 10 percent. 
Consequently, both )0,1(2f , )0,2(3f  receive only 18% and 
27% instead of 20% and 30%, respectively. In contrast, iCBFS 
is able to precisely allocate the bandwidth among the flows in 
proportion to their reservation. We identify the unfairness in 
iSLIP and its variant WiSLIP as caused by the simple 
operation of the rotating round-robin priority arbiters—the 
output arbiters do not track precisely how much bandwidth 
each input port uses. Specifically, iSLIP and all its variants [7] 
use simple rotating round-robin priority arbiters at each output 
arbiter with a pointer ig to the current highest priority input of 
the round-robin schedule. This pointer ig is only incremented 
(modulo N ) if, and only if, the grant signal is accepted in the 
first iteration of the algorithm. For all subsequent iterations, 
the pointer is not updated even if a granted input is accepted. 
Although this scheme elegantly eliminates starvation in both 
iSLIP and its variants, it leads to impreciseness in tracking the 
bandwidth allocated to each input port (see [7] for a detailed 
explanation regarding the pointer update and the starvation 
problem).  In addition, as the switch size increases the number 
of elements at each output arbiter’s circular list increases and 
these elements can be positioned in any order. Consequently, 
the time required to serve all elements in the list will increase 
and the short-term unfairness will manifest itself clearly. 

iCBFS vs. WPIM 
Although WPIM is fair over a time scale larger than 

the frame size (typically 1000 slots [12]), it is unfair over 
shorter time scales. As shown in Figure 2 (d) at the rightmost 
point of the graph, )0,0(1f , )0,1(2f , )0,2(3f , 
and )0,3(4f receive 13, 26, 28, and 32 percent of the 
bandwidth, respectively.  This unfairness is caused by the 
uniform random selection used at the output arbiters. In 

essence, all flows with available credit are treated equally until 
their credit is used up. Consequently, flows with higher 
bandwidth reservations than others receive their differential 
bandwidth share only at the end of a frame, whereas iCBFS 
distributes this differential bandwidth share uniformly over the 
entire time scale. 

When all flows use their reserved credits, WPIM 
reduces to PIM and all unreserved bandwidth is distributed 
equally among all inputs [12], whereas iCBFS distributes 
unreserved bandwidth among all inputs in proportion to their 
reservations.  

In summary, iCBFS provides fair bandwidth among 
flows in proportion to their reservations. iCBFS provides 
significantly better fairness than WiSLIP, WPIM, and iDRR 
over time scales less than a frame size. We emphasize the as 
the switch size increases, the frame size required to serve all 
the input ports increases proportionally and the short-term 
unfairness problem manifests itself clearly in increased jitter. 
The simple case of a 44× switch was only used to simplify 
the presentation. In addition, as the link speed increases the 
frame size would also increase.  
 
D2. Uniform Traffic 

In addition to providing fair bandwidth among flows 
in proportion to their reservations, we evaluated the 
performance of iCBFS when all flows have equal reservations. 
Figure 3. shows the average delay of iCBFS compared to other 
scheduling schemes under uniform i.d.d. Bernoulli traffic. 
Similar to other scheduling schemes, iCBFS is capable of 
achieving asymptotically 100% throughput under uniform 
traffic. Under uniform traffic, all schedulers behave similarly. 
However, this traffic model is not realistic for internet routers. 

 
Figure 3.  Performance of iCBFS, iSLIP, WPIM, and Output queueing under 

uniform traffic.  

IV. A PORT-BASED FAIR SCHEDULING 
ALGORITHM 

There is a trade-off in the design of high-speed switches 
between fairness among flows and simplicity of hardware 
design required for high-speed implementation. On the one 
hand, flow-based-scheduling guarantees fairness among flows 
by isolating non-conforming flows and provides bandwidth 
guarantee to individual flows; on the other hand, it makes 
hardware design relatively complex, and does not scale well as 
the number of flows grows. Port-based scheduling [12] allows 
simple hardware implementation at the cost of a coarse 
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granularity of bandwidth guarantee. Rather than tracking 
individual flows at each input port, a port-based scheduler 
tracks the aggregate bandwidth reservation at each input port. 
Consequently, the complexity of a port-based scheduler is 
proportional to the switch size instead of the number of flows, 
which can be significantly larger. Thus, port-based scheduling 
can reduce the complexity of the scheduler considerably.  

We propose to divide scheduling into two layers: CBFQ per 
virtual queue at the input side (labelled ),( jiVCBFQ for packets 
at input port i  destined to output j ), and a port-based 
scheduler, jPCBFQ , at each output port j . ),( jiVCBFQ  can be 
implemented in software using DRAM, and jPCBFQ  can be 
easily implemented in hardware. Intuitively, using this 
hierarchical scheduling scheme, the complexity of the original 

jCBFQ engine at each output j is distributed among all the 
input ports and the jPCBFQ only deals at the abstraction of 
port-based scheduling; thus simplifying the design 
considerably.  

The jPCBFQ , at each output port j , maintains a 
counter ijK and a bandwidth share ijS  for the aggregate 
bandwidth reservation from input i  to output j . Similar to 
iCBFS, each input i arbiter uses a set of counters ijC to track 
the aggregate quota for each ji outputinput −  pair. A 

ijVOQ becomes candidate if 1≥ijK . The port-based of iCBFS, 
called iPCBFS would execute the request, grant, and accept 
stages as described in the previous section.  

Note that the simulation results for iPCBFS are identical to 
the simulation results for iCBFS described section III.D. 

V. HARDWARE COMPLEXITY 
We assume a CRCW PRAM model such that all executed 

operations are )1(O  time, and estimate the complexity of 
iCBFS for an NN × switch. In the iCBFS algorithm, each 
time an output arbiter selects a flow to send a grant signal or 
an input arbiter selects an output to send the accept signal the 
computations performed are )(NO .  

The priority sort of the flows to select the flow with 
the largest share at each output arbiter changes only at the 
burst level timescale. That is, each flow’s share is allocated 
upon the admission of a new flow and does not change during 
its lifetime. Consequently, the sorting consists only of 
extracting the pre-ordered list of active flows from a static list. 
Note that iDRR also maintains a pre-ordered list of active 
flows such that the flow with the smallest reservation is 
always used in calculating the quota for other flows.  
During the grant stage of iCBFS, the counter values do not 
need to be sorted according to their values. Consequently, we 
only need to compare each counter’s value to 1. We point that 
all the counters’ update and comparison operations can be 
implemented using integers.  

In iCBFS, each output arbiter needs to maintain a counter 
for each flow, whereas in iPCBFS the number of counters is 
fixed and equals N . Similar to all algorithms based on RGAπ  
policy, both iCBFS, and iPCBFS may require up to N  

iterations in the worst case and an average of 
)(log NO iterations for uniform traffic.   

VI. CONCLUSION 
We proposed iCBFS, a flow-based fair scheduling 

algorithm for internet routers with input-queued switches. We 
showed through simulation that iCBFS can fairly allocate 
bandwidth in proportion to flows’ reservations and provide 
considerably better fairness over short-time scales compared 
to all other schemes; thereby, iCBFS reduces the jitter and 
delay for multimedia services like VOIP and video-on-
demand. In addition, the algorithm achieves 100% throughput 
for uniform traffic.  To simplify the implementation 
complexity of iCBFS, we proposed a port-based version of 
iCBFS, iPCBFS, which is simpler to implement in hardware.  
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