Performance of a 12 GHz Monolithic Microwave Distributed Oscillator in $1.2 \mathrm{~V} 0.18 \mu \mathrm{~m}$ CMOS with a New Simple Design Technique for Frequency Changing

Kalyan Bhattacharyya and Ted H. Szymanski
Dept. of Electrical \& Computer Engineering, McMaster University, Hamilton, ON, Canada L8S 4K1

Abstract

A monolithic distributed oscillator (DO) is designed and fabricated using an n-FET-based Traveling Wave Amplifier (TWA) [1], but with coplanar waveguides (CPW) and a proposed coplanar structure called a 'folded CPW'. Experimental measurements are reported for the first time using a standard $0.18 \mu \mathrm{~m}$ CMOS technology, with a bias of 1.8 V . The oscillator operates at 12.0 GHz with 5.77 dbm gain as shown in Fig. 2 and will be called as OSC-1. The measured phase noise is $-115 \mathrm{dBc} / \mathrm{Hz}$ at 1 MHz offset. The signal power in the harmonics is very low, -34 dBm in the 2 nd harmonic. The frequency of oscillation can be increased for this oscillator by 170 MHz by varying the dc bias. The reported power includes a 2.6 dB loss associated with the measurement system.

The 'folded CPW' of Fig. 3 is proposed, fabricated and measured with a probing system and vector network analyzer with S-G (signal-ground) probes for signalground pads, rather than the G-S-G probes used for measurements as in [2], [3]. The measured loss $\mathrm{S}_{21}(\mathrm{~dB})$ versus frequency of the coplanar test structure of Fig. 3 is shown in Fig. 4 before pad de-embedding, with 1.259 dB loss at 10 GHz . Measurements of 'folded CPW' is deembedded for the pads with the previously measured sparameter data of ground-signal-ground pads, which won't be very different as the substrate is similarly grounded. This test structure exhibits 0.8 dB loss at 10 GHz after pad de-embedding. For previously characterized coplanar waveguides reported in [2], [3], the measured loss was $0.64 \mathrm{~dB} / \mathrm{mm}$ at 10 GHz for straight design. The CPW in [2], [3] did not have a 180 degree bend. The proposed 'folded CPW' would have only $0.67 \mathrm{~dB} / \mathrm{mm}$ loss at 10 GHz if bends were removed [2], [3]. By adopting two 45 degree bends in the test structure, the extra loss is only 0.13 dB . From the loss point of view, two 45 degree bends are preferable to arbitrary angle bends such as 30 or 60 degrees, which give more reflection losses. All angle bends necessarily incur losses and may need non-standard fabrication process. The measured spectrum of the input and output reflections $\mathrm{S}_{11}(\mathrm{~dB})$ and $\mathrm{S}_{22}(\mathrm{~dB})$ before pad deembedding are $\mathrm{S}_{11}=-24.6 \mathrm{~dB}$ and $\mathrm{S}_{22}=-24 \mathrm{~dB}$ at 12 GHz .

The amplitude of the DO of Fig. 1 (without C_{c}) has fallen significantly at the lower bias of 1.2 V . A design modification is proposed by incorporating C_{c} in the feedback path (Fig. 1), similar to [4], to overcome this drop of amplitude and simulated results are reported. This design is simulated in ADS Harmonic Balance simulator with TSMC n-FET model of $0.18 \mu \mathrm{~m}$ technology. The DO of Fig. 1 is now has the capacitor C_{c} for ac coupling while retaining the independent control of dc voltage in gate and drain lines. By increasing the drain voltage by 0.2 V from 1.8 V while keeping gate voltage constant at 1.2 V , the
frequency is increased by 60 MHz with a 1 dBm increase in output power. By decreasing the gate voltage by 0.2 V while keeping the drain voltage constant at 1.8 V , the frequency is increased by 60 MHz with a 1.3 dBm decrease in output power. We observe that this incorporation of C_{c} results in a high oscillation frequency with VCO-like operation.

An optimized four stage DO design using n-FET cascode in gain cells is proposed, similar to that we reported first in [3] with five stages and will be mentioned as OSC-2 shown in Fig. 5. The measured results of the five stage oscillator of Fig. 1 (without C_{c}) is compared with simulated results of this four stage DO having C_{c} incorporated from the beginning. This OSC-2 uses n-FET of $50 \mu \mathrm{~m}$ width in n-FET cascode cells. ADS simulations indicate a frequency increase of 230 MHz from a fundamental of 12.67 GHz with less than 2 dBm change in output power (from a base power of 3 dBm) by increasing the drain voltage by 0.2 V from 1.8 V while keeping gate voltage constant at 1.2 V . However, the ADS simulator underestimates the loss of the CPWs, so that fabricated oscillators will exhibit somewhat lower frequencies than simulations.

We now propose a new simple design technique to change the oscillation frequency. Previous TWAs have used inductive elements of values L between gain stages and $\mathrm{L} / 2$ at the beginning and end-ports. This trend has been valid for 20 years, since it was first reported in [3].

Values of Inductive Termination	OSC-2	Values of Inductive (GHz)	Termination
Freq:			
(GHz)			

We explore the use of L values from $\mathrm{L} / 2$ to $3 \mathrm{~L} / 2$ (maximum) for using before or after the gain stages in drain and gate transmission lines (please see Fig. 5) formed by coplanar waveguides [3]. For changing the $\mathrm{L}_{\mathrm{D} 1 / 2}$ and $\mathrm{L}_{\mathrm{G} 1 / 2}$ up to $3 \mathrm{~L} / 2$ from $\mathrm{L} / 2$ in steps of $\mathrm{L} / 2$, the simulated results are reported in the table above for the OSC-2 (otherwise the values are $\mathrm{L} / 2$). The table above showing 2.12 GHz frequency variation in same design for
the optimized four stage n-FET cascode cell oscillator (Fig. 5).

Fig. 1. Schematic of the distributed oscillator with coupling capacitor C_{c} incorporated in simulation after measurements.

Fig. 2. Measured power spectrum of the Osc-1 with marker showing that the fundamental is at $12.00 \mathrm{GHz},+5.77 \mathrm{dBm}$ (after adding the loss of 2.6 dB).

Fig. 3. Layout of the coplanar test structure (top view) used in the bend path of the gate line.

Fig. 4. Measured loss $\mathrm{S}_{21}(\mathrm{~dB})$ versus frequency of the coplanar test structure of Fig. 3.
The measured phase noise of the DO of Fig. 1 (without C_{c}) is compared with previously published work on silicon distributed oscillators [1], [4] showing (Fig. 6) this work
has the best phase noise figure. The normalized carrier-tonoise ratio (which is also Figure of Merit) has been calculated according to [6] is $176.25 \mathrm{dBc} / \mathrm{Hz}$.

Fig. 5. Distributed oscillator with cascode cells.

Fig. 6 Comparison of measured phase noise figures.

REFERENCES

[1] B. Kleveland, "CMOS interconnects beyond 10 GHz ," $P h D$ thesis, Stanford University, August 2000.
[2] Kalyan Bhattacharyya and M. Jamal Deen, "Microwave CMOS traveling wave amplifiers - performance and temperature effects," IEEE Microwave and Wireless Components Letters, vol. 14, No. 1, pp. 16-18, January 2004.
[3] Kalyan Bhattacharyya and Ted Szymanski, "1.2V CMOS 110 GHz Traveling Wave Amplifiers Using Coplanar Waveguides as On-Chip Inductors," IEEE Radio and Wireless Conference (RAWCON), Atlanta, Georgia, USA, pp. 219-222, September 1922, 2004.
[4] H. Wu and A. Hajimiri, "Silicon-Based Voltage-Controlled Oscillators," IEEE Journal of Solid-State Circuits, vol. 36, No. 3, pp. 493-502, March 2001.
[5] James.B.Beyer et al, "MESFET distributed amplifier design guidelines," IEEE Transactions on Microwave Theory and Technique, vol. MTT-32, No 3, pp 268-275, March 1984.
[6] A. Leelasantitham and B. Srisuchinwong, "A low-power, high-frequency, all-NMOS all-current-mirror sinusoidal quadrature oscillator,"Microelectronics Journal, Vol. 35, Issue. 9, September 2004.

