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Abstract: Low latency high bandwidth networks are key components in large 
scale computing systems. Existing systems use dynamic algorithms for routing 
and scheduling cell transmissions through switches. Due to stringent time 
requirements, dynamic algorithms have suboptimal performances, which limit 
throughputs to well below peak capacity. It is shown that Guaranteed-Rate 
communications can be supported over switch-based networks with 100% 
throughput and very low delay jitter, provided that each switch has the  
capacity to buffer a small number of cells per flow. An algorithm is used to 
reserve guaranteed bandwidth and buffer space in the switches, resulting  
in the specification of a doubly stochastic traffic rate matrix for each switch. 
Each switch schedules the Guaranteed-Rate traffic for transmission according 
to a resource reservation algorithm based on Recursive Fair Stochastic  
Matrix Decomposition. Very low delay jitters can be achieved among all 
simultaneous flows while simultaneously achieving 100 % throughput in each 
switch. When receive buffers of bounded depth are used to filter residual 
network jitter at the destinations, end-to-end traffic flows can be delivered with 
essentially zero delay jitter. The algorithm is suitable for the switch-based 
networks found in commercial supercomputing systems such as Fat-Trees, and 
for silicon Networks-on-a-Chip. 
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1 Introduction 

Existing supercomputing facilities typically use clusters of computers interconnected 
with high-bandwidth switch-based networks. The NASA Supercomputing  
Facility (NAS) provides data on current system configurations and benchmark  
programs. These systems typically use the Message Passing Interface (MPI) protocol for 
inter-processor communications, supported over switch-based IP networks. References 
NAS, Neworking Resource (2007), Shalf et al. (2005) and Reisen (2006), describe tools 
to monitor IP packet flows in such networks, providing information of traffic  
patterns, utilisation, latency, QoS, jitter and packet loss parameters between  
competing IP flows, as well as end-to-end performance measures. To achieve  
QoS, traffic is typically routed through the network using dynamic IP shortest path 
algorithms, and packets are scheduled for transmission across switches according to a 
dynamic scheduler.  

Fat-Trees (Leiserson, 1985) and other ‘Fully Connected Networks’ (FCNs) are 
popular networks in High Performance Computing systems. Fat-Trees and other  
high-bisection bandwidth FCNs simplify the mapping of parallel applications with 
arbitrary communication topologies onto processors. As of 2004, 94 of the world’s top 
100 supercomputing systems employ FCNs, of which 92 are Fat-Trees (Shalf et al., 
2005) Fat-Trees can offer relatively simple routing: A packet from source A to 
destination B travels an upward path in the tree until it reaches a common ancestor, at 
which point it follows the unique downward path to the destination. However, the use of 
dynamic algorithms for routing and switch scheduling in Fat-Trees significantly limits 
the performance of such networks. According to Karinieni and Nurmi (2003, 2004), 
throughputs vary from 10 to 45% when using dynamic routing and scheduling 
algorithms. Several papers have explored new topologies (Greenberg, 1994; Sethu et al., 
1998) and dynamic and deterministic algorithms for improving communications in  
Fat-Trees (Ding et al., 2006; Gomez et al., 2007; Kumar and Kale, 2004; Lin et al., 2004; 
Matsutani et al., 2007; Stumpen and Krishnamurthy, 2002; Yuan et al., 2007).  
Fat-Trees are also attractive for Network-on-a-Chip applications (Greenberg, 1997; 
Kariniemi and Nurmi, 2003, 2004). In this paper, we present results of a deterministic 
algorithm for scheduling cell transmissions in a switch-based network such as a Fat-Tree, 
which can achieve low-jitter guaranteed-rate communications with 100% throughput. 

The scheduling of packets through an Input Queued (IQ) crossbar switch to meet 
QoS constraints is an important task that switches and routers must perform. There are 
several substantially different approaches to the switch scheduling task. In the ‘Dynamic 
Best-Effort’ packet scheduling method, each switch has dedicated hardware to compute 
bipartite graph matchings between the input ports and output ports. Given a transmission 
line rate of 40 Gbit/sec, the duration of a time-slot required to transmit a fixed sized cell 
of 64 bytes is 12.8 nanosec (nsec). Due to this stringent time constraint, existing  
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best-effort IQ switch schedulers usually have difficulty achieving throughputs above  
80% through one switch, and they generally cannot provide exceptionally high QoS with 
hard delay guarantees.  Schemes where an IQ switch can achieve the performance of an 
ideal output queued switch have been proposed, but they are computationally expensive 
(McKeown et al., 1999). 

An alternative approach to dynamic scheduling is called ‘Guaranteed Rate’ (GR) 
scheduling (Goyal and Vin, 1997). IP traffic can be grouped into two classes, ‘GR’ 
traffic and ‘Best-Effort’ traffic. In each IP router, the GR traffic is specified between the 
Input and Output (IO) ports using a doubly stochastic traffic rate matrix. This matrix can 
be dynamically updated by a RSVP, IntServ or DiffServ algorithm, which reserves 
resources along an end-to-end path of IP routers when a new GR traffic flow is admitted 
into the IP network. Within each IP router, this GR traffic can be independently and 
deterministically scheduled for transmission during the connection setup time, to meet 
rigorous QoS constraints. The remaining best-effort traffic can then use any unused 
switch capacity in each IP router. 

Several GR switch scheduling algorithms which achieve varying grades of  
QoS have been proposed by Weller and Hajek (1997), Hung et al. (1998), Chen et al. 
(2000), Chang et al. (1999), Parekh and Gallager (1993, 1994), Koksal et al. (2004), 
Keslassy et al. (2005), Kodialam et al. (2003), Mohanty and Bhuyan (2005) and 
Szymanski (2006, 2008, Accepted). An algorithm called BATCH-TSA for scheduling 
non-uniform traffic through a switch was proposed in Weller and Hajek (1997). The 
algorithm uses the edge colouring of bipartite graph to find collision-free schedules.  
For a fully loaded switch (α = 1) with a frame size of S, the access delay was  
bounded by 2(αS −1) , that is, the access delay bound is proportional to the frame  
size. A GR scheme which uses the Slepian-Duguid algorithm is proposed in  
Hung et al. (1998). 

Another approach is based on the Birkhoff-von Neumann (BVN) stochastic matrix 
decomposition algorithm (Chang et al., 1999; Chen et al., 2000). A doubly stochastic  
N × N traffic rate matrix specifies the desired traffic rates between the IO ports.  
The matrix is decomposed into a set of N × N  permutation matrices and weights,  
which must be scheduled to form a transmission schedule for the frame. This  
approach provides rate guarantees for all admissible traffic matrices. The BVN 
decomposition algorithm for an N × N  crossbar switch has complexity O(N 4.5 )  time. 
The delay performance of BVN decomposition can be improved by scheduling the 
permutations to minimise delays, using Generalised Processor Sharing (Chang et al., 
1999; Chen et al., 2000; Parekh and Gallager, 1993, 1994). Nevertheless, according to 
Koksal et al. (2004), the worst-case delay can be very high with BVN decomposition: 
“Therefore, a higher (possibly much higher) rate than the long term average traffic rate  
of a bursty, delay sensitive traffic stream must be allocated in order to satisfy its  
delay requirement”. 

Another approach based on stochastic matrix decomposition was introduced in  
Koksal et al. (2004), which considered the problem of simultaneously minimising the 
service lag amongst multiple competing IP flows, while attempting to maintain high 
throughput. An unquantised traffic rate matrix is first quantised and then decomposed  
and scheduled. With speedup S =1+sN between 1 and 2, the maximum service lag over  
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all IO pairs is bounded by O((N/4)(S/(S−1))). The speedup directly affects the QoS 
provided by the switch. According to Kosal et al. (2004): 

“with a fairly large class of schedulers a maximum service lag of O(N 2 )  is 
unavoidable for input queued switches. To our knowledge, no scheduler which 

overcomes this O(N 2 )  has been developed so far. For many rate matrices, it is 
not always possible to find certain points in time for which the service lag is 
small over all I-O pairs simultaneously.” 

A greedy stochastic matrix decomposition algorithm with the goal to minimise delay 
jitter amongst simultaneous competing IP flows was introduced in Keslassy et al. (2005) 
and Kodialam et al. (2003). The low-jitter GR traffic is constrained to be a relatively  
small fraction of the total traffic. The delay and jitter minimisation problem is first 
formulated as an integer programming problem which is NP-hard. They then formulate  
a greedy low-jitter decomposition with complexity O(N3) time. After the decomposition, 
the permutation matrices and associated weights must be scheduled to minimise  
jitter between all IO pairs. The resulting schedule requires a worst-case speedup  
of O(logN) and achieves throughputs of ≈80%. If the cost of the speedup is considered, 
the algorithm’s throughput drops. However, in practice, the speedup needed is much 
lower than the theoretical bound. However, analytic bounds on the jitter are  
not available. 

Another greedy stochastic matrix decomposition algorithm was proposed in  
Mohanty and Bhuyan (2005). This decomposition algorithm also yields a set of 
permutation matrices and associated weights which must be independently scheduled, as 
in Chen et al. (2000), Chang et al. (1999), Keslassy et al. (2005) and Kodialam  
et al. (2003). The algorithm is relatively quick, but it cannot guarantee 100%  
throughput, short-term fairness or a bounded jitter.  The jitter increases as the size  
of the network N grows. The authors identify an open problem: “to determine the 
minimum speedup required to provide hard guarantees, and whether such guarantees  
are possible at all”. 

Szymanski (2006, 2008, Accepted), introduces a recursive fair stochastic matrix 
decomposition algorithm, wherein a doubly stochastic N × N  traffic rate matrix is 
quantised, and decomposed directly into a sequence of F permutation matrices which 
form a frame transmission schedule in a recursive and relatively fair manner.  
No scheduling of the final permutation matrices is required. At each level of recursion, 
the traffic reservations in one rate matrix are split fairly evenly over two resulting rate 
matrices. The decomposition proceeds until the resulting matrices specify partial or 
complete permutation matrices. The algorithm is unique in that it is deterministic, it 
achieves 100% throughput through an IQ switch, and it achieves a speedup = 1 provided 
that the traffic-rate matrix can be quantised: Each guaranteed traffic rate is an integer 
multiple of a minimum bandwidth allotment, which equals a fraction (1/F) of the 
transmission line rate, where F is a user-defined frame size. In addition, an expression for 
the maximum service lag and delay jitter over all simultaneous IO pairs is achievable 
(Szymanski, 2008, Accepted). The lag is bounded by a small number of ideal cell inter-
departure times. 

The delivery of traffic over any switch-based IP network such as a Fat-Tree network 
with very low delay jitter may be achievable by a GR scheme if certain conditions can be 
met. GR schemes precompute the transmission schedule for each IP router in advance,  
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and packets move through each IP router according to the deterministic pre-computed 
transmission schedule. Therefore, very low jitter delivery may be possible if: 

1 the transmission schedule is fair such that the maximum service lag is bounded 
by a small amount.  

2 each IP router buffers a sufficient number of cells to compensate for the service 
lag and to keep the transmission pipeline active.  

Furthermore, if each destination also employs a ‘receive buffer’ with sufficient capacity 
to filter out any residual jitter, then essentially zero jitter may be achievable. Under these 
conditions, cells will be transmitted through each IP router along an end-to-end path  
in a deterministic pattern, where the transmission times within each IP router deviate 
from the ideal times only by the imperfections, or the ‘service lead/lag’, of the 
transmission schedule. The scheduling algorithm in Szymanski (2006, 2008, Accepted) 
exhibits relatively small service lags, which suggests that achieving very low delay  
jitter may be feasible. A proof that all simultaneous multimedia traffic flows in general 
packet-switched networks can be delivered with essentially-zero delay jitter, given a 
receive buffer of finite size for each flow, has been submitted (Szymanski, 2008, 
Submitted). 

In this paper, it is shown that low-jitter guaranteed-rate communications can  
be achieved in Fat-Tree networks. Section 2 introduces the GR problem formulation. 
Section 3 introduces the cluster-computing traffic model. Section 4 presents the  
results for scheduling traffic in a Fat-Tree network. Section 5 contains concluding 
remarks. 

2 Prior work 

2.1 The guaranteed rate scheduling problem for input-queued switches 

An N × M  switch has N input and M output ports, for which a traffic rate matrix is 
specified. Each input port j 0 ≤ j < N  has M Virtual Output Queues, one for each output 
port k, 0 ≤ k < M . The GR traffic requirements for an N × N switch can specified in a 
doubly substochastic or stochastic traffic rate matrix Λ : 
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 (1) 

Each element λ j ,k  represents the fraction of the transmission line rate reserved for GR 

traffic between IO pair (j, k). The transmission of cells through the switch is governed by 
the transmission schedule, also called a frame schedule. In an 8 × 8 crossbar switch with 
F=128 time slots per frame, the minimum allotment of bandwidth is 1/F < 1% of the line 
rate, which reserves one time-slot per frame on a recurring basis. Define a new quantised 
traffic rate matrix R where each traffic rate is expressed as an integer number of the 
minimum bandwidth allotment: 
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  (2) 

Several of the following definitions will be useful (see Koksal et al., 2004; Szymanski, 
2006) for similar definitions). 

Definition 1: A ‘Frame schedule’ of length F is a sequence of partial or full permutation 
matrices (or vectors) which define the crossbar switch configurations for F time slots 
within a frame. Given a line rate L, the frame length F is determined by the desired 
minimum allotment of bandwidth = L/F. To set the minimum quota of reservable 
bandwidth to ≤  1 % of L, set F ≥  100, that is F = 128. 

Definition 2: The ‘Ideal Inter-Departure Time’ (IIDT) of cells in a GR flow between IO 
pair (j,k) with quantised rate R(i,j), given a frame of length F, line rate L in bytes/sec  
and fixed sized cells of C bytes, is given by: IIDT =  F/R(i, j) time-slots, each of duration 
(C/L) sec. 

Definition 3: The ‘Received Service’ of a flow with guaranteed rate R(i,j) at time  
slot t within a frame schedule of length F, denoted Sij(t), equals  the number of 
permutation matrices in time slots 1...t, where t ≤F, in which input port i  is matched to 
output port j. 

Definition 4: The ‘Service Lag’ of a flow between IO pair (i,j), at time-slot t within  
a frame schedule of length F, denoted Lij(t), equals the difference between the  
requested service prorated by t/F, and the received service at time-slot t, that is,  
Lij(t) = (t/F)*R(i, j) – Sij(t). 

Example #1: Consider a crossbar switch with F = 1024, operating at 100%  
utilisation for GR traffic, a heavy load. The normalised received service for a 16 × 16 
switch, given 100 randomly generated doubly stochastic traffic rate matrices with  
100% utilisation, is shown in Figure 1(a). Each traffic rate matrix specifies  
256 simultaneous GR flows to be scheduled which saturate the switch, and all  
100 matrices represent 25,600 GR traffic flows. Each flow contains 64 cells on an 
average, so all matrices represent 1.6384 million cells to schedule. The normalised 
service received by each flow is illustrated by a red service line in Figure 1(a). The solid 
blue diagonal represents ideal normalised service, where the actual departure time of cell 
j equals the ideal departure time of j IIDT⋅ . The upper/lower dashed green diagonals 
represent a service lead/lag of 4 IIDTs. The received service is normalised by the ideal 
IDT, such that a cell which departs 2 IIDTs after its ideal departure time has a service lag 
of 2 units. The results in Figure 1(a) indicate that the service lead/lag of the scheduling 
algorithm is small, and suggests that GR traffic can be transported across an IP network 
with very low delay jitter provided each IP router has sufficient buffer space to 
compensate for any service lead/lag it may experience. According to Figure 1(a), the 
service lead/lag is typically less than 4 IIDTs, suggesting that the buffering of 4 cells per 
flow may suffice for most traffic. 

The normalised received service for a 64 × 64 crossbar switch, given 100 randomly 
generated doubly stochastic traffic rate matrices with 100% utilisation, is shown in 
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Figure 1(b). Each traffic rate matrix specifies 4096 simultaneous GR traffic flows to be 
scheduled, which saturate the switch, and all 100 matrices represent 409,600 GR traffic 
flows. Each flow contains 16 cells on an average, so all matrices represent  
6.5536 million cells to schedule. Figure 1(a) and (b) indicate empirically that the service 
lags achieved by the algorithm in Szymanski (2006, 2008, Accepted), are relatively 
small, regardless of the switch size or traffic pattern. 

Figure 1 (a) Service lead/Lag, 16 × 16 switch and (b) service lead/Lag, 64 × 64 switch  
(see online version for colours) 

 

(a) 

 

(b) 
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2.2 Fat-tree networks 

A network with 2D VLSI area A is said to be area universal if it can simulate any other 
network with equivalent area, with at most a polylogarithmic slowdown S, that is, where  
S ≤ O(logn A)  for constant n (Leiserson, 1995). A class of Universal networks called 

Fat-Tree interconnection networks were introduced by Leiserson (1985). Fat-Trees differ 
from conventional trees in that the bisection bandwidth increases at the upper levels of 
the trees. Due to the high bisection bandwidths, Fat-Trees represent a reasonable choice 
for a cluster-based supercomputing systems and silicon Networks-on-a-Chip. 

Leiserson (1985) established that any set of M messages can be delivered by a  
Fat-Tree within d ‘delivery cycles’, provided that the number of messages originating 
and terminating at any processor is bounded and equals λ . Each delivery cycle 
j ≤ d delivers a subset of messages M j , such that the original message set M is 

decomposed into a sequence of message sets M1, M 2 , ..., Md  to be delivered. The 

number of delivery rounds d = O(λ log N ) , where N is the number of processors and  

λ  is the load factor. A delivery round corresponds to a duration of time sufficient to 
allow the transfer of a packet of data between any two nodes in the Fat-Tree. All the 
packets within a message set are delivered in the same delivery cycle, that is the 
destinations of the messages within each set form a partial or full permutation. 
Leiserson’s proof was theoretical and established the existence of an ‘off-lin’ algorithm 
to achieve the bound. There has been considerable research in the community in the 
search for efficient online and offline routing and scheduling algorithms which can 
achieve Leiserson’s theoretical bounds. 

In this paper, we summarise a two-phase offline algorithm consisting of  

1 a ‘global routing phase’  

2 a ‘local switch scheduling phase’, which can deliver a message set M in a 
buffered Fat-Tree using Input Queued switches.  

The scheduling algorithm used in the second phase achieves 100% throughput through 
each IQ switch with unity speedup, and it allows for the pipelined transmission  
of multiple messages (cells) through the packet-switched network simultaneously. 
Furthermore, the transmission schedule is low-jitter, in that the maximum jitter amongst 
all simultaneous competing flows through the Fat-Tree is bounded by a small number of 
‘Ideal Inter-Departure Times’.   

3 The traffic model 

Consider a Fat-Tree based architecture consisting of 4 processor clusters as shown in 
Figure 2(a). Each cluster is interconnected via an 8 × 8 crossbar switch in level 1, 
denoted S(1,j), for 0 ≤  j < 4, which provides 4 channels for local inter-processor 
communications within the cluster, and 4 channels for global communications between 
clusters. Assume that each logical channel is a 10 Gigabit/sec (Gbps) link. Each level-1  
8 × 8 crossbar switch therefore provides an aggregate bandwidth of 80 Gbps for  
inter-processor communications. 
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Each level-1 crossbar switch is also interconnected to a level-2 root crossbar  
switch, which provides the global communication bandwidth between clusters. In  
Figure 2(a), the root switch is a 32 × 32 crossbar switch, with an aggregate bandwidth of 
320 Gbps, where 16 channels are reserved for inter-cluster communications while  
16 channels are available for parallel IO. The bisection of the network in Figure 2(a), is 
16 channels, corresponding to a bisection bandwidth of 160 Gbps. 

The hardware cost of the topology in Figure 2(a), can be reduced, by exploiting the 
fact that processors within one cluster will never communicate amongst themselves 
through the root switch. Therefore, the single 32 × 32 root switch can be replaced by  
4 parallel 8 × 8 crossbar switches, as shown in Figure 2(b), Furthermore, if the channels 
for the external IO are not required, the root can be replaced by four 4 × 4 crossbar 
switches. However, the topology in Figure 2(b), introduces a multiplicity of paths 
between any source and destination, which complicates the global routing phase. 

Figure 2 (a) Fat-Tree, single root switch and (b) fat-Tree, parallel root switches 

 

Reisen (2006) examined the NAS benchmarks and demonstrated that many NAS 
applications exhibit global traffic rate matrices with pronounced diagonals (Reisen, 
2006). For example, in the CG and BT benchmarks on 16 processors, the 4 processors in 
a cluster communicate amongst themselves intensely, while communications between 
clusters is less intense. The traffic rate matrix places most of the communication intensity 
only on the main diagonals and subdiagonals.  

Shalf et al. (2005) also examined communication topologies in a different  
set of supercomputing applications, and also demonstrated that many applications  
have predominantly diagonal matrices. Prior research has identified several  
generic traffic matrices which are known to be hard to schedule through an IQ  
crossbar switch. The ‘Log-Diagonal’ traffic pattern is one such pattern and is shown  
in Equation (3): 
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Let λ  denote the utilisation of a processor, that is the probability it transmits  
(or receives) a message in a time-slot. The matrix is doubly substochastic, given that the 
sum of each row or column = λ ≤1 . In this paper, we assume that the local 
communications within a cluster follow the Log-Diagonal traffic pattern. Furthermore, 
we assume that the global communication between clusters exhibits a log-diagonal trend, 
with bands of intensity as shown in Equation (4). This choice is arbitrary, since  
the algorithm in Szymanski (2006, 2008, Accepted), is applicable to any doubly 
substochastic or stochastic matrix. 

The local 4 × 4 traffic rate matrix b for a cluster with 4 processors is given by  
Equation (4). Element b(j, k) represents the fraction of local traffic leaving processor j 
which is directed to processor k. The Log-Diagonal matrix in Equation (3) is assumed for 
local communication.  

b =

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (4) 

The global 16 × 16 traffic rate matrix M for the system with 16 processors is given by 
Equation (5), where each matrix Bj ,k  is a 4 × 4 traffic rate matrix that represents the 

relative traffic rates between the sending processors in cluster j and the receiving 
processors in cluster k, and scalar cd  indicates the traffic intensity along each diagonal. 

1 0,0 2 0,1 3 0,2 4 0,3

4 1,0 1 1,1 2 1,2 3 1,3

3 2,0 4 2,1 1 2,2 2 2,3

2 3,0 3 3,1 4 3,2 1 3,3

c B c B c B c B

c B c B c B c B
M

c B c B c B c B

c B c B c B c B

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 

Assuming a frame size of 1024, and coefficients c1 = c2 = c3 = c4 = 1.0 , then the 

quantised 16 × 16 traffic rate matrix G specifying the global traffic is given by  
Equation (6): 

 G =
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73 36 18 146

146 73 36 18

18 146 73 36

36 18 146 73

73 36 18 146

073 36 18 9

9 073 36 18

18 9 073 36

36 18 9 073

036 18 9 5

5 036 18 9

9 5 036 18

18 9 5 036

291 146 73 36

36 291 146 73

73 36 291 146

146 73 36 291

⎡
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⎢
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⎢
⎢
⎢
⎢
⎢
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⎥
⎥
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A plot of the traffic intensity for the global matrix is shown in Figure 4. The plot is 
similar to Reisen’s data for the NAS benchmarks, and Shalf’s data from the Lawrence 
Berkeley National Labs. In the offline global routing phase, the flows specified in G 
must be routed through the switches in the network to ensure that no switch is 
overloaded. This task can be accomplished by the optimising compiler, which maps 
processing tasks onto processors in a manner to minimise global communication 
requirements. The compiler will have knowledge of the traffic rates between processors, 
and can allocate tasks to processors to determine the global traffic rate matrix. Once the 
matrix G is determined, the optimising compiler can allocate traffic flows to routes 
through the network. There are several well-known methods to maximise flows in a 
network. After the global routing phase, the local traffic rate matrices are specified for 
each switch and the traffic can be independently scheduled through each switch. As an 
alternative to the offline methodology, the local traffic rate matrix for each switch can be 
maintained online dynamically by an RSVP or DiffServ algorithm, which uses a dynamic 
shortest-path algorithm (wherein the shortest path has the least queueing delay for the 
desired flow) in conjunction with an online resource reservation mechanism to search for 
and reserve bandwidth along paths in an IP network. 

Referring to the Fat-Tree topology in Figure 2(a), a global routing scheme to ensure 
that the global traffic can be realised and that each switch is not overloaded is  
straight-forward. There exists a unique shortest-distance path between every source and 
destination. Each IP flow traverses the unique upward path from its source, until a 
common ancestor with the destination is reached, at which point it traverses the unique 
downward path. Due to the full bisection bandwidth, all flows can be simultaneously 
supported and no switch can be overloaded. However, the Fat-Tree topology in  
Figure 2(b) introduces multiple upward paths, and the global routing phase must 
eliminate any routing conflicts in the upper level switches. For illustrative purposes, we 
assume a straight-forward rule to achieve a conflict-free routing for the global traffic rate 
matrix in Equation (6), which exploits the fact that the Fat-Tree topology in Figure 2(b) 
is equivalent to a one-sided Clos network, as shown in Figure 3.  

Figure 3 One-Sided 16 × 16 Clos Network 

 

Forwarding Rule: CPU(j) forwards all its global traffic over the single switch  
S(2, (j mod 4)) in level 2, for 0 ≤ j<15. According to this rule, CPU(0) forwards all its 
global traffic over the single link to switch S(2,0), CPU(1) forwards all its global traffic 
over the single link to switch S(2,1), etc. 
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According to this rule, every switch in level 2 receives 477 units of traffic on each 
link from the switches in level 1. Furthermore, according to this rule, the traffic arriving 
at every switch in level 2 is evenly distributed amongst the 4 switches that it spans in 
level 1. By tracing all the flows through the Fat-Tree network in Figure 3 according to 
the above forwarding rule, a traffic rate matrix can be specified for each crossbar switch 
in levels 1 and 2. In this example, due to the symmetry of the global traffic rate matrix in 
Equation (6), all of the crossbars in levels 1 and 2 share the same local traffic rate 
matrices M1 and M2, respectively:  

M1=

291 146 73 36

36 291 146 73

73 36 291 146

146 73 36 291

477 0 0 0

0 477 0 0

0 0 477 0

0 0 0 477

255 127 63 32

32 255 127 63

63 32 255 127

127 63 32 255

000 0 0 0

0 000 0 0

0 0 000 0

0 0 0 000

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

, M 2 =

0 273 136 68

68 0 273 136

136 68 0 273

273 136 68 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (7) 

There are a few variations to consider.  

1 When the Fat-Tree topology in Figure 2(b) is used with an arbitrary global 
traffic rate matrix, a maximum flow algorithm can be used in the global routing 
phase to determine a routing for every flow which ensures that no switch is 
overloaded.  

2 Many applications may generate a non-saturated (i.e. doubly substochastic) 
global traffic rate matrix, that is, some applications may require only 50% of the 
network capacity, that is λ = 0.5 in Equation (3). It is desirable to  
‘over-provision’ the traffic rates allocated for inter-processor communications in 
such cases, by converting the doubly substochastic traffic rate matrix into a 
doubly stochastic traffic rate matrix, by setting λ =1 in Equation (3).  

3 Reserved bandwidth which is unused by a flow may be used by other flows.  

4 A parallel algorithm may have several steps each requiring a different global 
traffic rate matrix. Parallel tasks often synchronise their execution using barrier 
synchronisation primitives in MPI; the optimising compiler can revise the 
matrix G and revise the switch schedules during such synchronisation points. 

4 End-to-end jitter analysis 

Assume a computing cluster with 16 processors (CPUs) interconnected with a 2-level 
radix-4 Fat-Tree network, as shown in Figure 2(b). The representative global traffic 
pattern is based upon NAS benchmarks as shown in Equation (6). Each processor is 
allocated a low-jitter GR flow to every other processor, with a bandwidth determined by 
the global stochastic traffic rate matrix G , resulting in 256 GR flows to be routed  
and scheduled. Many flows will pass through the root of the Fat-Tree. All switches in the 
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Fat-Tree must be scheduled to support the traffic specified by the 256 simultaneous 
guaranteed-rate traffic flows. 

The following assumptions are also made: 

1 the links between switches are 10 Gbps fibres 

2 all IP packets have fixed size of 64 bytes, which correspond to the IP router  
cell size 

3 a frame size of F=1024 is selected at each IP router.  

Assumption (2) is made to simplify the presentation, and to reduce the delay  
associated with disassembling and reassembling variable size IP packets in routers.  
The frame size determines the minimum increment of GR bandwidth which equals  
10 Mbps, that is each time-slot reservation in frame reserves 10 Mbps of guaranteed 
bandwidth.  

Given the global traffic rate matrix in Equation (6), every processor is both 
transmitting and receiving at essentially 100% capacity. This assumption represents a 
heavy load for GR traffic, not likely to be seen in a real IP network. Given this  
worst-case load, the IP routers should find it more challenging to schedule the traffic to 
meet QoS guarantees.  The global matrix in Equation (6) allows for self-directed traffic, 
that is processor 0 may transmit to processor 0 through the level 1 switch. We allow  
self-directed traffic for 2 reasons:  

1 It is part of the Log-Diagonal traffic pattern, which is known to  
be hard to schedule. 

2 Reisen’s data for the NAS benchmark indicates self-directed  
traffic exists. 

The scheduling algorithm in Szymanski (2006, 2008, Accepted) was used to schedule the 
traffic in each switch of the Fat-Tree. The service lead/lag for the switches in levels 1 and 
2 are shown in Figure 4(a) and (b), respectively. We observe that the service lead/lag is 
very low, typically less than 4 IIDTs, for all traffic flows across the network. This result 
is consistent with the results shown earlier in Figure 1(a) and (b) for randomly generated 
matrices and is consistent with the theory established in Szymanski (2006, 2008, 
Accepted). 

A flow which reserves j time-slots per frame belongs to class j. The observed IDTs 
for all classes of traffic flows in the Fat-Tree are given in Table 1(a) and (b). We  
observe that:  

1 the average IDT for cells in a flow equals the ideal IDT  

2 the standard deviation of the IDT for every flow is very small, approximately 
one-half of an ideal IDT.   

Consider the flows with rate 127 time-slots per frame. The IIDT equals 1024/127 = 8.062 
time-slots. The standard deviation in the observed IDTs is 4.22 time-slots, indicating that 
most cells depart within 4.22 time-slots of their ideal departure times. 
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Figure 4 (a) Service lead/lag, 8 × 8 switch, level 1 and (b) Service lead/lag, 4 × 4 switch,  
level 2 (see online version for colours) 

 

(a) 

 
(b) 
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Table 1 Observed IDT and service lead/lag, for switches in levels 1 and 2, with F = 1024 

Flow
Class 

IIDT 
in time-
slots 

Observed 
IDT  
time-slots 

SD  
timeslots 

MinIDT 
timeslots 
(IIDT) 

Max IDT 
time-slots 
(IIDT) 

Min Norm. 
Lead 
(IIDT) 

Max 
Norm. 
Lag 
(IIDT) 

Fat-Tree, Level 1 Observed IDT and Service Lead/Lag, N=8, F=1024 

32 32.000 32.000 8.19 9 (0.281) 64 (2.00) –1.16 0.969 

36 28.444 28.444 12.90 7 (0.246) 64 (2.25) –2.8 0.02 

63 16.254 16.254 5.39 1 (0.0615) 34 (2.09) –1.73 0.845 

73 14.027 14.027 6.02 4 (0.285) 39 (2.78) –1.36 1.55 

127 8.063 8.063 4.22 2 (0.248) 22 (2.73) –1.81 1.70 

146 7.014 7.014 3.15 2 (0.285) 20 (2.85) –3.59 0.949 

255 4.016 4.016 1.69 1 (0.249) 10 (2.49) –2.72 0.731 

291 3.519 3.519 1.34 1 (0.284) 8 (2.27) –3.27 1.39 

477 2.147 2.147 0.604 1 (0.466) 6 (2.79) –1.92 1.3 

Fat-Tree, Level 2 Observed IDT and Service Lead/Lag, N = 4, F = 1024. 

68 15.059 15.059 6.73 4 (0.266) 32 (2.12) –1.81 1.18 

136 7.529 7.529 2.79 4 (0.531) 12 (1.59) –1.55 0.297 

273 3.751 3.751 1.18 2 (0.533) 8 (2.13) –2.87 0.613 

The minimum observed IDT was 2 time-slots, corresponding to 0.248 IIDT, and the 
maximum observed IDT was 22 time-slots, corresponding to 2.73 IIDT. The minimum 
service lead was 1.81 IIDT, and the maximum service lag was 1.7 IDT. (By convention, 
the service lead is negative). 

A computer program which simulated the movement of packets along all 256  
end-to-end path through the Fat-Tree was generated. The simulator gathers detailed 
statistics on delay and jitter and has over 20,000 lines of code. Each switch reserves 
guaranteed bandwidth according to the traffic rate matrices presented earlier. Each switch 
is an IQ crossbar with unity speedup. The packet movement over all 256 simultaneous 
flows was simulated from the source CPU, through the switches of the Fat-Tree, arriving 
at a Receive-Buffer associated with each destination CPU. Each switch had an IQ 
associated with each input port, which could buffer multiple cells. We assume that each 
of the 256 distinct flows has its own receive buffer at the relevant destination CPU.  
The ‘time-of-flight’ delay over the fibers is not reported, as it is a fixed value.  

Each time-slot has a duration of ≈51.2 nsec, and a frame with F = 1024 time-slots has 
a duration of ≈52.4 µsec.  For simplicity, we assume that cells are generated at every 
source CPU at the rate of one cell every IIDT interval. This assumption lets us isolate the 
jitter introduced by the switch schedules. Each IP router transmitted cells through the 
switch according to its precomputed frame transmission schedule.  

Figure 5(a) illustrates the Inter-Arrival Time (IAT) Probability Density Function 
(PDF) for a typical 1-hop path, for flow(0,2) from CPU(0) to CPU(2), and Figure 5(b) 
illustrates the queue occupancies along this path. According to Equation (6), the traffic 
rate for flow(0,2) along this path is 73 cells per frame, or 730 Mbps, with an  
IIDT = 14.03 time-slots. Cells arrive at the receive buffer at an average rate of 1 cell 
every IIDT interval, with a relatively small jitter: The minimum and maximum IATs are 



   

 

   

   
 

   

   

 

   

    Low jitter guaranteed-rate communications 155    
 

    
 
 

   

   
 

   

   

 

   

       
 

0.15 IIDT and 1.75 IDT respectively. Figure 5(b) illustrates the PDF for the number of 
cells belonging to flow (0, 2) queued in the level-1 switch S(1, 0). The input queue of the 
switch buffers between 1 and 2 cells for flow(0, 2). With this queue occupancy, the 
queue length remained stable, the data transmission followed a deterministic pattern and 
the delay jitter observed at the receive buffer was relatively small, ≤ 2 IIDT. Using 
Little’s Law, the average delay along this end-to-end path for flow(0, 2) ≈ 0.98 µsec. 
This average delay corresponds to 19.6 time-slots, indicating that every cell waits slightly 
more than one IIDT in the queue in the level-1 switch. This result is consistent with 
Table 1 and Figures 1 and 2, which indicate that most cells will receive service within  
4 IIDTs on average. 

Figure 5 (a) IAT PDF, 1-hop path and (b) Queue occupancy, 1-hop path (see online  
version for colours) 

 
(a) 

 
(b) 

Figure 6(a) illustrates the IAT PDF for a typical 3-hop path for flow(0,8), from CPU(0) 
to CPU(8), and Figure 6(b) illustrates the queue occupancies along this path for 
flow(0,8). According to Equation (6), the traffic rate for flow(0,8) along this path is also 
73 cells per frame, or 730 Mbps, with an IIDT = 14.03 time-slots. Cells arrive at the level 
2 switch S(2,0) at an average rate of 1 cell every IIDT interval, with a minimum and 
maximum IAT of 0.1 IDT and 4 IIDT, respectively. Figure 6(b) illustrates the PDF for 
the number of cells from flow (0,8) queued in switches S(1,0), S(2,0) and S(1,2). The 
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input queues these 3 switches buffer at an average of 1.2, 1.4 and 1.6 cells, respectively 
for this flow. With these queue occupancies, the delay jitter of cells arriving at the 
receive buffer for flow(0,8) was relatively small, ≤ 1 IIDT. The queue lengths remained 
stable, and the data transmission followed a deterministic pattern. 

Figure 6 (a) IAT PDF, 3-hop path and 6 (b) Queue occupancy, 3-hop path (see online version  
for colours) 

 

(a) 

 

(b) 

The simulation for all 256 simultaneous flows was repeated when each receive buffer 
acted as a ‘playback buffer’ in a video application. The objective of the playback buffer 
is to deliver cells to the end-user with very low (essentially zero) delay jitter, so cells are 
constrained to depart with an IDT = 1 IIDT, when they are available. For flow (0,8), cells 
where released from the receive buffer to the destination application at a constant rate of 
one cell every IIDT interval, with the first cell being released 4 IIDT after its arrival time 
at the receive buffer. The inter-departure time observed at the receive buffer is shown in 
Figure 7(a), and the queue occupancy PDF at the receive buffer is shown in Figure 7(b). 
The receive buffer has an average occupancy of 3.8 cells, and a maximum occupancy of 
4 cells. Figure 7(a) shows that all cells are delivered at their ideal times, and that the 
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delay jitter is precisely zero. Our simulations indicate that all 256 simultaneous traffic 
flows can be delivered  with precisely zero delay jitter, using relatively small playback 
buffers. We have simulated many longer end-to-end paths of routers, with different GR 
traffic matrices and computed frame schedules, and observed similar results. The number 
of cells queued at each router needed to provide very low jitter is typically ≤ 4–8 cells 
per flow, from our simulations. A proof that all network-introduced delay jitter can be 
removed over all simultaneous traffic flows, using playback buffers of bounded size, is 
presented in Szymanski (2008, Submitted). 

Figure 7 (a) IDT PDF, destination, 3-hop path and (b) queue occupancy, destination  
(see online version for colours) 

 

(a) 

 

(b) 

4.1 Extensions  

The proposed scheduling methodology is applicable to all switch-based networks, 
including Fully Connected Networks, meshes, tori, hypercubes, multistage networks and 
Clos networks. Once the traffic is routed through the network in the global routing phase 
such that no switch is overloaded, the switches can be scheduled to transmit low-jitter 
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guaranteed rate traffic using the algorithm presented in Szymanski (2006, 2008, 
Accepted). In a HPC environment, the optimising compiler maps tasks onto processors, 
and will be able to compute a global traffic rate matrix for the application. The traffic 
rate matrix allows for the specification of point-to-point communications, as well as 
point-to-multipoint broadcasting, and multi-point-to-point gatherings.  

According to Shalf et al. (2005), the largest parallel supercomputing systems today 
consist of up to 64 K processors. A cluster-based supercomputer with 64 K processors 
can be interconnected using a 2-stage radix-256 Fat-Tree, and the methodology presented 
herein can be used to realise low-jitter Guaranteed-Rate communications. This topology 
would require 256 switches of size 512 × 512 in the first level and 256 switches of size 
256 × 256 in the second level. Switches with these sizes are readily available today: 
Myrinet has released a 1024-port switch with 10 Gbps links in 2007. This system could 
offer 100 % network throughput with low delay and jitter. 

5 Computational complexity 

In a general IP network where traffic flows change dynamically, the GR traffic matrix for 
each switch can be incrementally updated online by an RSVP, IntServ or DiffServ 
algorithm, when a new GR flow is added or removed from the network, or if its rate 
changes substantially. The update involves changing one entry in the rate matrix, after 
which a new frame schedule can be computed. In the current offline application, the 
optimising compiler will allocate tasks to processors to determine the global traffic rate 
matrix, determine a routing for the traffic flows through the network, and then 
precompute the frame transmission schedule for every switch. The scheduling algorithm 
in Szymanski (2006, 2008, Accepted), has a similar recursive structure as the  
well-known FFT algorithm. The FFT must perform several complex floating point 
multiply/add operations per node. The algorithm in Szymanski (2006, 2008, Accepted), 
performs several integer reads/writes per node. The time complexity of a serial 
implementation of the algorithm is estimated to be 1/5th that of the serial FFT algorithm, 
and we hypothesise that it may run potentially five times faster when compiled in C. An 
FFT of 8 K elements requires ≈1 millisec on a typical dual-core laptop using a single 
processor, and we estimate the stochastic matrix decomposition for N = 8, F = 1024 will 
require ≈200 µsec on a single processor. The execution time can be reduced by using a 
smaller frame size, that is, F=128, which will allocate link bandwidth with a resolution 
of ≈1%. We estimate that the stochastic matrix decomposition for a larger 16 × 16 switch 
with F = 128 will require ≈100 µsec. A multiple processor or dedicated parallel hardware 
implementation should run much faster, and our graduate students will embark in these 
directions. In any case, the time to compute the frame schedules is very small and is 
potentially negligible relative to the time an optimising compiler typically requires, 
which can be as high as several minutes or hours depending on the program complexity. 

6 Conclusions 

It has been shown that traffic flows can be delivered over a Fat-Tree network with 
guaranteed rate and delay and with very low delay jitter, provided that each IP router has 
the capacity to buffer a small number of cells per flow. Each IP router schedules the GR 
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traffic for transmission according to a scheduling algorithm based upon a Recursive Fair 
Stochastic Matrix Decomposition (Szymanski, 2006, 2008, Accepted). Simulations 
indicate that the number of cells queued in each router necessary to provide very low 
jitter delivery can be relatively small, typically about 2–4 cells per flow. (Theoretical 
bounds have been established (Szymanski, 2008, Submitted). The algorithm can be used 
to achieve essentially 100% throughput for the interconnection networks of High 
Performance Computing (HPC) systems. When receive buffers of modest depth are used 
to filter out residual network jitter, cells can be delivered along all simultaneous  
end-to-end flows with essentially zero delay jitter. This configuration may be attractive 
for silicon Network-on-a-Chip architectures and in Field Programmable Gate Array 
(FPGA) systems, where deterministic low-latency zero-jitter data pipelines can be 
configured in hardware. Additional results indicate that very low-jitter guaranteed rate 
communications can also be achieved under different traffic models (Szymanski and 
Gilbert, 2007; Szymanski, 2008 Submitted). 
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