Chapter6 Solution

1. The largest alias terms are those $\omega_1 = \omega_s/2$

$$|F(\omega)|^{2} = \frac{1}{w^{2} + a^{2}}; \qquad \omega_{-3_{dB}} = a \qquad (1)$$
$$\frac{a^{2}}{\omega_{1}^{2} + a^{2}} = \frac{1}{10}; \qquad \omega_{1} = 3a = \qquad (2)$$

According to equation (1) and equation (2) we get $\frac{\omega_s}{\omega_{-3dB}} = 6$

2. (a) The minimum value of the sampling frequency

 $\omega = 2 * \{ \text{maximum frequency component in } f(t) \} = 2 * 3\omega_0 = 6\omega_0$

The minimum band-width of the low pass filter is 0 to $3\omega_0$

(b) PAM waveform obtained by sampling f(t) at $5\omega_0$

$$f_{PAM} = [f(t)p(t)]_{\omega=5\omega_0}$$

= $[4\cos\omega_0 t + 2\cos 2\omega_0 + 2\cos 3\omega_0 t][\frac{2}{T}(\frac{1}{2} + \cos 5\omega_0 t + \cos 10\omega_0 t +)]$
= $\frac{1}{T}(4\cos\omega_0 t + 2\cos 2\omega_0 t + 2\cos 3\omega_0 t)$
+ $\frac{2}{T}(4\cos\omega_0 t \cos 5\omega_0 t + 2\cos 2\omega_0 t \cos 5\omega_0 t + 2\cos 3\omega_0 t \cos 5\omega_0 t)$
+ $\frac{2}{T}(4\cos\omega_0 t \cos 10\omega_0 t + 2\cos 2\omega_0 t \cos 10\omega_0 t + 2\cos 3\omega_0 t \cos 10\omega_0 t) +$

and expressing product terms in the form

$$\cos x \cos y = 1/2[\cos(x+y) + \cos(x-y)]$$

We have

$$f_{PAM} = \frac{f(t)}{T} + \frac{2}{T} [2(\cos 6\omega_0 t + \cos 4\omega_0 t) + (\cos 7\omega_0 t + \cos 3\omega_0 t) + (\cos 8\omega_0 t + \cos 2\omega_0 t) + 2(\cos 11\omega_0 t + \cos 9\omega_0 t) + (\cos 12\omega_0 t + \cos 8\omega_0 t) + (\cos 13\omega_0 t + \cos 7\omega_0 t) + \dots]$$

Now since the low pass filter will pass components of $\omega < 3\omega_0$, the output waveform is

$$f_0(t) = \frac{1}{T} [f(t) + 2(\cos 3\omega_0 t + \cos 2\omega_0 t)] \\ = \frac{1}{T} [4\cos \omega_0 t + 4\cos 2\omega_0 t + 4\cos 3\omega_0 t]$$

3. (a)

$$T = (2f_m)^{-1};$$

$$T_x = T/2;$$

$$B_x \ge (2T_x)^{-1} = 2f_m$$

$$\Rightarrow f_m \le B/2 = 5 \text{kHz}$$

- (b) 4. (a) (8kHz)(25) = 200kHz
 - (b) $T_x = (200kHz)^{-1} = 5\mu \text{sec}$
 - (c)

 $B_x \ge (2T_x)^{-1} = 100 \text{kHz}$ $B_{DSB} = 2(100 \text{kHz}) = 200 \text{kHz}$

5. Minimum sampling rate is larger of:

[2(3) or 2(5/2)] = 6 kHz

Minimum commutator clock rate is:

$$4(6 \text{kHz}) = 24 \text{kHz}$$

 $T_x \ge (2B_x)^{-1} = (40 \text{kHz})^{-1}$

Therefore max commutator clock rate is 40kHz

6. For the period $0 < t < \tau$ the output voltage in channel 1

$$v_{o1} = v(1 - e^{-t/RC})$$

= vat $t = \tau$, since $\tau \gg RC$

For the guard time period $\tau < t < \tau + \tau_G$

$$v_{o1} = v e^{-(t-\tau)/RC}$$
$$= v e^{-\tau_G/RC} t = \tau + \tau_G$$

The output extending from v_{o1} overlapping into channel 2,

$$v_{o2} = (v e^{-\tau_G/RC}) e^{-(t-\tau-\tau_G)/RC}$$

Figure 2:

and the time integral of this voltage

$$I_{12} = \int_{\tau+\tau_G}^{2(\tau+\tau_G)} v_{o2} dt$$

= $(ve^{-\tau_G/RC}) * -RC \left[e^{-(t-\tau-\tau_G)/RC} \right]_{\tau+\tau_G}^{2(\tau+\tau_G)}$
= $RCve^{-\tau_G/RC} [1 - e^{-(\tau+\tau_G)/RC}]$
 $\simeq RCve^{-\tau_G/RC}$ when $\tau + \tau_G \gg RC$

The cross talk factor

$$K_{12} = \frac{I_{12}}{I_2} = \frac{RCve^{-\tau_G/RC}}{V\tau} = \frac{RC}{\tau}e^{-\tau_G/RC}$$

since the desired signal area $I_2 = V\tau$

on introducing the channel bandwidth by substituting for $RC = 1/\omega_c$,

$$k_{12} = \frac{1}{\omega_c \tau} e^{-\tau_G \omega_c}$$

For the 24 channel system sampled at 8kHz (i.e sampling period $125\mu s$) the time slot for each channel is

$$\tau + \tau_G = 125/24 = 5.21 \mu s$$

and as $\tau = 4\mu s \ \tau_G = 1.21\mu s$

If the cross talk is to $70dB(10^7)$ down, then k_{12} which is a voltage ratio is set at $\sqrt{10^{-7}} = 3.162 * 10^{-4}$

Equation (1) provides the link relating k_{12} to bandwidth.

Rewriting (1) in the form

$$\left[\frac{k_{12}\tau}{\tau_G}\right]x = e^{-x}$$

Where

$$k_{12}\tau/\tau_G = 3.162 * 10^{-4} * 4/1.21 = 1.045 * 10^{-3}$$

 $x = \tau_G \omega_c$

and solving (2) graphically we have x = 5.2 So

$$\omega_c = 5.2/1.21 * 10^{-6} = 4.30 \text{ Mrad/s}$$

and the channel bandwidth $f_c=684 \rm kHz$