Chapter6 Solution

1. The largest alias terms are those $\omega_{1}=\omega_{s} / 2$

$$
\begin{align*}
|F(\omega)|^{2} & =\frac{1}{w^{2}+a^{2}} ; & & \omega_{-3_{d B}}=a \tag{1}\\
\frac{a^{2}}{\omega_{1}^{2}+a^{2}} & =\frac{1}{10} ; & & \omega_{1}=3 a= \tag{2}
\end{align*}
$$

According to equation (1) and equation (2) we get $\frac{\omega_{s}}{\omega_{-3 d B}}=6$
2. (a) The minimum value of the sampling frequency

$$
\omega=2 *\{\text { maximum frequency component in } \mathrm{f}(\mathrm{t})\}=2 * 3 \omega_{0}=6 \omega_{0}
$$

The minimum band-width of the low pass filter is 0 to $3 \omega_{0}$
(b) PAM waveform obtained by sampling $\mathrm{f}(\mathrm{t})$ at $5 \omega_{0}$

$$
\begin{aligned}
f_{P A M} & =[f(t) p(t)]_{\omega=5 \omega_{0}} \\
& =\left[4 \cos \omega_{0} t+2 \cos 2 \omega_{0}+2 \cos 3 \omega_{0} t\right]\left[\frac{2}{T}\left(\frac{1}{2}+\cos 5 \omega_{0} t+\cos 10 \omega_{0} t+\ldots .\right)\right] \\
& =\frac{1}{T}\left(4 \cos \omega_{0} t+2 \cos 2 \omega_{0} t+2 \cos 3 \omega_{0} t\right) \\
& +\frac{2}{T}\left(4 \cos \omega_{0} t \cos 5 \omega_{0} t+2 \cos 2 \omega_{0} t \cos 5 \omega_{0} t+2 \cos 3 \omega_{0} t \cos 5 \omega_{0} t\right) \\
& +\frac{2}{T}\left(4 \cos \omega_{0} t \cos 10 \omega_{0} t+2 \cos 2 \omega_{0} t \cos 10 \omega_{0} t+2 \cos 3 \omega_{0} t \cos 10 \omega_{0} t\right)+\ldots \ldots
\end{aligned}
$$

and expressing product terms in the form

$$
\cos x \cos y=1 / 2[\cos (x+y)+\cos (x-y)]
$$

We have

$$
\begin{aligned}
f_{P A M} & =\frac{f(t)}{T}+\frac{2}{T}\left[2\left(\cos 6 \omega_{0} t+\cos 4 \omega_{0} t\right)+\left(\cos 7 \omega_{0} t+\cos 3 \omega_{0} t\right)\right. \\
& +\left(\cos 8 \omega_{0} t+\cos 2 \omega_{0} t\right)+2\left(\cos 11 \omega_{0} t+\cos 9 \omega_{0} t\right)+\left(\cos 12 \omega_{0} t+\cos 8 \omega_{0} t\right) \\
& \left.+\left(\cos 13 \omega_{0} t+\cos 7 \omega_{0} t\right)+\ldots .\right]
\end{aligned}
$$

Now since the low pass filter will pass components of $\omega<3 \omega_{0}$, the output waveform is

$$
\begin{aligned}
f_{0}(t) & =\frac{1}{T}\left[f(t)+2\left(\cos 3 \omega_{0} t+\cos 2 \omega_{0} t\right)\right] \\
& =\frac{1}{T}\left[4 \cos \omega_{0} t+4 \cos 2 \omega_{0} t+4 \cos 3 \omega_{0} t\right]
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
& T=\left(2 f_{m}\right)^{-1} \\
& T_{x}=T / 2 \\
& B_{x} \geq\left(2 T_{x}\right)^{-1}=2 f_{m} \\
& \Rightarrow f_{m} \leq B / 2=5 \mathrm{kHz}
\end{aligned}
$$

Figure 1:
(b)
4. (a)

$$
(8 \mathrm{kHz})(25)=200 \mathrm{kHz}
$$

(b)

$$
T_{x}=(200 k H z)^{-1}=5 \mu \mathrm{sec}
$$

(c)

$$
\begin{aligned}
B_{x} & \geq\left(2 T_{x}\right)^{-1}=100 \mathrm{kHz} \\
B_{D S B} & =2(100 \mathrm{kHz})=200 \mathrm{kHz}
\end{aligned}
$$

5. Minimum sampling rate is larger of:

$$
[2(3) \operatorname{or} 2(5 / 2)]=6 \mathrm{kHz}
$$

Minimum commutator clock rate is:

$$
\begin{gathered}
4(6 \mathrm{kHz})=24 \mathrm{kHz} \\
T_{x} \geq\left(2 B_{x}\right)^{-1}=(40 \mathrm{kHz})^{-1}
\end{gathered}
$$

Therefore max commutator clock rate is 40 kHz
6. For the period $0<t<\tau$ the output voltage in channel 1

$$
\begin{aligned}
v_{o 1} & =v\left(1-e^{-t / R C}\right) \\
& =v \text { at } t=\tau, \text { since } \tau \gg R C
\end{aligned}
$$

For the guard time period $\tau<t<\tau+\tau_{G}$

$$
\begin{aligned}
v_{o 1} & =v e^{-(t-\tau) / R C} \\
& =v e^{-\tau_{G} / R C} t=\tau+\tau_{G}
\end{aligned}
$$

The output extending from $v_{o 1}$ overlapping into channel 2 ,

$$
v_{o 2}=\left(v e^{-\tau_{G} / R C}\right) e^{-\left(t-\tau-\tau_{G}\right) / R C}
$$

Figure 2:
and the time integral of this voltage

$$
\begin{aligned}
I_{12} & =\int_{\tau+\tau_{G}}^{2\left(\tau+\tau_{G}\right)} v_{o 2} d t \\
& =\left(v e^{-\tau_{G} / R C}\right) *-R C\left[e^{-\left(t-\tau-\tau_{G}\right) / R C}\right]_{\left.\tau+\tau_{G}\right)}^{2\left(\tau+\tau_{G}\right)} \\
& =R C v e^{-\tau_{G} / R C}\left[1-e^{-\left(\tau+\tau_{G}\right) / R C}\right] \\
& \simeq R C v e^{-\tau_{G} / R C} \text { when } \tau+\tau_{G} \gg R C
\end{aligned}
$$

The cross talk factor

$$
K_{12}=\frac{I_{12}}{I_{2}}=\frac{R C v e^{-\tau_{G} / R C}}{V \tau}=\frac{R C}{\tau} e^{-\tau_{G} / R C}
$$

since the desired signal area $I_{2}=V \tau$ on introducing the channel bandwidth by substituting for $R C=1 / \omega_{c}$,

$$
k_{12}=\frac{1}{\omega_{c} \tau} e^{-\tau_{G} \omega_{c}}
$$

For the 24 channel system sampled at 8 kHz (i.e sampling period $125 \mu \mathrm{~s}$)the time slot for each channel is

$$
\tau+\tau_{G}=125 / 24=5.21 \mu s
$$

and as $\tau=4 \mu s \tau_{G}=1.21 \mu s$
If the cross talk is to $70 d B\left(10^{7}\right)$ down, then k_{12} which is a voltage ratio is set at $\sqrt{10^{-7}}=3.162 * 10^{-4}$
Equation (1) provides the link relating k_{12} to bandwidth.
Rewriting (1) in the form

$$
\left[\frac{k_{12} \tau}{\tau_{G}}\right] x=e^{-x}
$$

Where

$$
\begin{aligned}
k_{12} \tau / \tau_{G} & =3.162 * 10^{-4} * 4 / 1.21=1.045 * 10^{-3} \\
x & =\tau_{G} \omega_{c}
\end{aligned}
$$

and solving (2) graphically we have $x=5.2$ So

$$
\omega_{c}=5.2 / 1.21 * 10^{-6}=4.30 \mathrm{Mrad} / \mathrm{s}
$$

and the channel bandwidth $f_{c}=684 \mathrm{kHz}$

