

Note that the combined characteristic of $H_{1}(\omega)$ and $H_{2}(\omega)$ such as shown in fig 3 (b) only when the disses D_{1} and D_{2} are tatum into account, ie. 1_{1} the prlani I_{y} has been accounted for,

Note also that if $u_{1}(t)$ is added to $u_{2}(t)$ before rectification, then we will have the signal $u(t)$ given by $\mu(t)=\mu_{1}(t)+\mu_{2}(t)$,

ie. The toe envelope e_{u+} of $\mu(t)$ is the sum of the positive envelopes of $\mu_{1}(t)$ and $u_{2}(t)$ While the -re " e_{u-}. $u(t)$.. negatwie This is a distorted envelope and if $\mu(t)$ is demodulated directly using an envelope detector, the result will be a distorted basebane signal.
The undistorted baseband is obtained from the sum of $y_{1}(t)$ and $y_{2}(t)$, ie. The sum of the positive envelope of $u_{1}(t)$ and the negative envelope of $\mu_{2}(t)$.

