EE3TR4 Introduction to Communication Systems Mid-Term Test

7 March, 2014 Prof. K.M. Wong

(5%)

DURATION OF TEST: 2 hours No book or notes allowed Only Cassio FX991 calculators are permitted

1. a) The convolution between two signals $S_1(\omega)$ and $S_2(\omega)$ in the frequency domain is defined as

$$S_1(\omega) * S_2(\omega) = \int_{-\infty}^{\infty} S_1(\mu) S_2(\omega - \mu) d\mu$$
(1)

Show that,

$$\mathcal{F}[s_1(t) \cdot s_2(t)] = \frac{1}{2\pi} \left\{ S_1(\omega) * S_2(\omega) \right\}$$

i.e., the Fourier transform of the product of two time signals $s_1(t)$ and $s_2(t)$ is the convolution of the spectra of the two signals. (10%)

- b) In particular, if $S_2(\omega)$ in Eq. (1) is $\delta(\omega \omega_c)$, show that the result of the convolution is a frequencyshifted version of $S_1(\omega)$. (5%)
- c) A signal s(t) the spectrum of which is shown in Fig. 1 is multiplied by a carrier signal $\cos \omega_c t$ yielding a signal $y(t) = s(t) \cos \omega_c t$. Given that $\mathcal{F}[\cos \omega_c t] = \pi[\delta(\omega + \omega_c) + \delta(\omega \omega_c)]$,
 - (i) sketch the spectrum $Y(\omega)$ if $\omega_c = 2\pi \times 10^4$ rad/sec.
 - (ii) sketch the spectrum $Y(\omega)$ if $\omega_c = 2\pi \times 2 \times 10^3 \text{ rad/sec.}$ (5%)

Figure 1: The spectrum of signal $S(\omega)$

- 2. a) Give an expression for the average power of a non-periodic power signal x(t) over an observation period T_0 . If $X(\omega)$ is the Fourier transform of x(t), derive an expression for the normalized power of the signal in terms of $X(\omega)$ and T_0 . Hence write down an expression for the spectral power density of the signal $S_x(\omega)$. (10%)
 - b) The above signal x(t) is passed through a circuit having a transfer function $H(\omega)$ yielding an output y(t). Derive a relationship between the input and output spectral power densities. (5%)

c) The autocorrelation function $R_x(\tau)$ of a power signal x(t) is defined as

$$R_x(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) x(t+\tau) dt$$

Show that there is a direct relationship between $R_x(\tau)$ and the spectral power density $S_x(\omega)$ of x(t). (5%)

d) White Gaussian noise $\nu(t)$ has an auto-correlation function given by

$$R_{\nu}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \nu(t)\nu(t+\tau)dt = \begin{cases} K/2 & \tau = 0\\ 0 & \tau \neq 0 \end{cases}$$

Express this characteristic of $R_{\nu}(\tau)$ in terms of a mathematical function and hence find the power spectral density $S_{\nu}(\omega)$ of white noise. (5%)

3. A 90° phase shift network has a transfer function such that

$$H(\omega) = |H(\omega)|e^{j\theta(\omega)}$$

with the magnitude and phase characteristics given by

$$\begin{aligned} |H(\omega)| &= 1\\ e^{j\theta(\omega)} &= e^{j\left\{\frac{\pi}{2} - \pi u(\omega)\right\}} = je^{-j\pi u(\omega)} \end{aligned}$$

If the input signal to the 90° phase shift network is f(t), we denote its output by $\hat{f}(t)$ such that

$$\widehat{f}(t)\leftrightarrow \widehat{F}(\omega)=F(\omega)H(\omega)=jF(\omega)e^{-j\pi u(\omega)}$$

- a) If the baseband signal is f(t), design a single sideband modulator having a carrier frequency of ω_c using the above 90° phase shift network. Write down the expression of the single sideband signal $s_{SSB}(t)$ in terms of f(t) and $\hat{f}(t)$. (15%)
- b) Show by taking the Fourier transforms of the signals at the various stages of your modulator, the output signal is indeed a single sideband signal. Comment on how the result is the upper sideband or the lower sideband. (15%)
- c) The above SSB signal is to be demodulated at the receiver by multiplying the signal $s_{SSB}(t)$ by a defective carrier $A\cos[(\omega_c + \Delta\omega)t + \phi]$ and low-pass filter. Derive the expression of the signal at the output of the demodulator. Comment on the phase characteristics of the demodulated signal if $\Delta\omega = 0$ and $\phi \neq 0$. (10%)
- d) If the above single sideband signal is transmitted together with a *large* carrier such that the resulting signal is $s(t) = A \cos \omega_c t + s_{SSB}(t)$, show that the envelope $s_e(t)$ of the transmitted signal s(t) can be approximated by

$$s_e(t) \approx A\left[1 + \frac{f(t)}{A}\right] = A + f(t)$$

and hence can be demodulated using an envelope detector.

(10%)