Chapter I Problems Solutions

1. e Determine the range of permissible cutoff frequencies for the ideal
lowpass filter used to reconstruct the signal

z(t) = 10 cos(6007t) cos? (16007t)

which is sampled at 4000 samples per second. Sketch X (w), Xs(w)
z(t) = 10 cos(6007t) cos? (16007t)

1 1
=10 cos(6007rt)[§ +3 cos(32007t)]

= 5 cos(6007t) + 2.5 cos(38007t) + 2.5 cos(26007t)

The sampling frequency =4000Hz, i.e spectrum repeats every 4000Hz.
The replica of the spectrum are shown dotted.
The range of the cutoff frequency of the ideal LPF is 1900H z < f. < 2100H z
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2.

e Consider a signal f(t) having a probability density function

p(f):{ Kelll —4<f<4

0 otherwise

a) Find K.

b) Determine the step size A if there are four quantization levels.

c¢) Calculate the variance of the quantization error when there are
four quantization levels. Do not assume that p(f) is constant over
each level.

o a) [Z p(f)df = [1, Ke Vldf = 2K [le 7df = 2K(1 —e™) = 1
= K = 72(1—2*4) ~0.51
b) The step size A = 8/4 = 2, (Quantization levels f; = =3, fo =
-1, f3=1f1=3)

c) Total variance of the quantization error is equal to the sum of
the variance of the quantization error at each step of quantization,
ie

4 fi+%
By =Y [ et

2 4
— _1)2,—f —_ 92—
—QK/O (f—1)% df+2K/2 (f —3)%e7df

=2K(1—5e?) + 2K (e ? — 5e %) ~ 0.374



Figure 1:

e A signal f(t) is bandlimited and is ideally sampled at a sampling
period Ty such that there is no aliasing error. Each of the ideal
samples is then quantized to a step-size A. The resulting signal can
be written as

z(t) = i fnTs)o(t —nTs) + i end(t —nTy)

where f(nT) are the original unquantized sample values and e,, is
the quantization noise associated with the sample at nT;. Assuming
that {e,}is a set of independent random variables, show that the
power spectral density of the quantization noise is a constant (white
noise) within the frequency range of —7- Sw< 7. Also assume
that there are many levels of quantization.

e The noise process is given by
o0
e(t)= Y end(t —nT\)
n=—oo
where e, is a random variable. We will approach the problem by
considering a finite sequence instead of an infinite sequence, i.e. let

N-1
er(t) =Y end(t—nTy)
n=0

where N is a finite number.

The finite length sequence is shown in figure (1). Now imagine a
periodic sequence of impulses with period T such that each impulse
is of strength eg. This sequence is shown in figure (2). The periodic
sequence is designated po(t) and can be expressed as a Fourier series

po(t) =eo(t) > 6(t—kT)=eo Y aopexp(jk2nt/T)

k=—oc0 k=—oc0
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Figure 2:

= ¢ Z aoy exp(jkAwt)

k=—00
where Aw = 27 /T. The power of the periodic sequence is given by

1 T/2 1 T/2 o0
Py = T/ pe(t)dt = —/ [eo 2_: agy, exp(jkAwt)|*dt

—T/2 TJ)orp =,

oo
=eg > ookl

k=—o00
But

L[ sty explssonyis = 2
Qo = — t)exp(—jkAwt)dt = — , Vk,
T g T

2
Thus Py is a staircase function increasing by a step of % for every
Aw. (Figure (3))

By

,—,—,7 w = kAw

Figure 3:
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The power spectral density of the impulse sequence is given by (see
Figure (4))

. dPRy el & 5 A
Spo(w) =2m—— = nﬁk; (w — kAw)
Now consider a similar sequence of impulses each of a strength e; but
occurring at t = kT + T, (Figure (5)).

It can be similarly expressed as a Fourier series such that

pi(t) = e Z 0t —kT —Ts)=e Z ay exp(jkAwt — JAWTY)

k=—0oc0 k=—00

Again ay, = 1/T. Now imagine a periodic sequence ér(t) of pe-
riod T, such that the impulses inside each period have strengths
€0,€1,---,en—1. In other words, imagine the sequence in Figure (1)
to repeat itself every T = NTj, then this periodic sequence can be



written as

ér(t) = Z pa(t) = en Z o, exp(jkAwt — jAwnTy)
n=0 n=0 =—00
N-1 e e’}
= 2 ?n exp(—jAwnTs) kzz_:oo exp(jkAwt) (1)

But ér(t) is a periodic function, therefore it can be expressed as a
Fourier series, i.e.

ér(t) = Z ay exp(jkAwt) (2)
k=—o0
Comparing (1) and (2), we see that

N-1

€n )
ay = Z T exp(—jAwnTy) (3)
n=0
The power spectral density of ér(t) is

Sep(w) =27 Z lar)?6(w — kAw)
k=—o00

The power spectral density of ér(t) associated with the interval is
SgT(kAw) such that the power falling within the frequency range
(kAw — —) to (kAw + 4 22) is |ax|® = araj.

But aj is a random varlable since e, is a random variable. Their
relationship is given by (3). Hence we have to consider the average
power falling within the frequency range (kAw — —) to (kAw + A% 5
such that

% E{S:, (kAw)Aw} = E{aia}}

N-—-1

N-1

€n €m

= E{| E T exp(—jAwnTy)] E T ex p(jAwmTs)|}
n=0 m=0

But E{e,en} = 0 for m # n since e, e, are independent and zero
mean,

N-1

— 5 B{Ser (kAw)}Aw = Bl 3 €3} = Z B{e2)

n=0

N—1

1 A2 1 A2
==Y ()= =5N—
T2n§(12) T2 12



Now, T'= NT;, and Aw =27 /T

1 A2
— E{SgT (kACU)} = ?E

Finally, let T' — oo, such that kAw — w and we have

. 1 A2
Selw) = lim Ser(w) = 775

i.e, the noise is white.



4.

l—

—>

Figure 6:

e The signal in Problem 1.3 has probability density uniformly dis-

tributed between £V. It is quantized into M discrete values, i.e.

M-1 M-1 M-1
(s (M s osas (M50 s

Find the signal to quantization noise ratio.

The ideal sampled signal (without quantization) is given by

f®)= > f(nT.)é(t —nT,)

n=—oo

We are given that f(nTs) is a random variable evenly distributed
between +Vand —V (Figure 6). This sampled sequence is very similar
to the noise sequence considered in Problem 1.3, except that f(nT)
has a much larger range than e,. More precisely, the range for f(nT5s)
is from —MA/2 to + M A/2 while the range for e,, is from —A/2 to
+A/2.

Hence we can draw the conclusion that the power spectral density

for this sampled signal is given by
1 (MA)?
St (w) = T. 12

To recover the signal we pass this sequence through a lowpass filter
of bandwidth w. = ws/2 = m/T, (Nyquist rate is assumed) so that



the signal power at the output of the filter is

1 /T 1 M2A?
il doy = — — —
21 J_o/m, Sp- W = 75745

1 [T 1 A2

% —7/Ts
S

= — |outpu :M2:22N
Nq| tput

where N is the number of bits to represent the M levels of quantiza-
tion.



5.

e A signal f(t) is not strictly bandlimited. We bandlimit f(¢) and

then sample it. Due to bandlimiting, distortion occurrs even without
quantization.

a) Show that the noise power due to the bandlimiting distortion is
given by

™

Np = —/ St (w)dw

m

where Sy (w) is the power spectral density of f(t) and wy, is the cutoff
frequency of the bandlimiting filter.

b) If Sp(w) = Age™1w/«0l find Np

c) If the bandlimited signal f(¢) is sampled at the Nyquist rate and
quantized to a step-size A, find the total output signal-to-noise power,
i.e. find So/(Np + N;) assuming that the power spectral density of
the quantization noise is constant within —7/Ts < w < ©/T5. (See
problem 1.3)

a) Let the noise power due to the distortion of filtering be Np, then

1 o0 1 Wm
Np = — -
D=5 /_oo Sy (w)dw = Sy (w)dw

% [/wm Sy (w)dew + /OO sf(w)dw} - % /:O Sy (w)duw

oo Wm m

b) Given that S¢(w) = Age1@/wol

1 [ 1
— Np=-— Aoefw/wodw — _Aowoefwm/wo
™

Wm

c) Let the signal which has been bandlimited to w,, be fp(t). This
bandlimited signal already consists of a distortion noise np(t) the
power of which is Np. Thus we can write

fB(t) = f(t) + np(t)
The power spectral density of this bandlimited signal is

_ Age~lw/wol for —w, < w < wi
Sps (W) = { 0 elswhere

10



The bandlimited signal fg(¢) is then sampled at the Nyquist rate,
ie. ws =27/Ts = 2wy,

Because of sampling, the power spectral density repeats at every ws,
and scaled by % Figure (7) illustrates this fact. Thus,

=1
Sst(w): Z ﬁSfB(w_nws)

n=—oo

where fps(t) is the bandlimited signal sampled at ws.
Suppose we do not quantize this sampled bandlimited signal. To

2
1.5 —
=
= o1 |
w
0.5 —
O Il Il Il
~6 —a -2 o 2 a 6
- w
m m
2

Figure 7:

recover this signal we use a LPF having cutoff frequency at wy,.
Hence the output signal power is

L[ Ao gl Ao -
- -0 w/w — 20 11— W, [wo
So 5 /wm Tsze dw 7rTs2w0[ e ]

Since the signal has been bandlimited before, hence this output signal
power is the power of the distorted signal. We can never recover the
true signal at the output even if there were no quantization because
part of the signal has been filtered off. Hence, we have to regard Sy
as the signal power at the output. From Problem 1.3, quantization

11



noise at the output of the filter is

1 [T 1 A2 1 A2
Nq = — — —aw = —2—

2r )1, Ts 12 T2 12
Hence output signal-to-quantization noise ration is

So 124,

N = oazwoll —eTm ]
q

Note: Np has already been taken into account since we chose Sy to
be the output signal power.

12



6.

e A compressor has the characteristic fo = C'(f) where f is the input

signal and fy is the compressed signal. Thus, if no compression is
employed, fo = f.

a) Show that as a result of compression, a uniform step size of A volts
in the output fo results in nonuniform quantization, i.e., varying step
size, of the infut f. Do this by dividing fy into 8 equal quantization
steps.

b) Show that the variance of the quantization error is now,

f1+% f2+%
By = [ G- m s [ pre

fs-‘r%
bt /f (f — fo)?p(F)df

A
=3

A ;
where f; — % = fmin and fs + % = fmaz, fiv1 — % =fi+ A21-
c) If there is a large number of quantization levels, show that

where C'(f;) = 29 ;_y,

Hint: Note 2_?; ~ C'(f)

d) If p(f) is approximately constant throughout each step, show that
E{e?} becomes

E{e?} ~ o [Alp() + Adp(f) + -+ Adp(f)]

e) Using the result of c), show that if there are many quantization
levels, that is ,

p - 7 -

[ () 12 Uy, [C(HP

o fmaz
E{ 2} — ?Z Azp(fz) ~ A2 p(f) df

13



Figure 8:

e b) From figure(8),
8 fet 5k
B} =3 [, (-
k=1 fkak

c) If there is a large number of quantization levels, then A is small,

A Afe _dfo
Ay Afi, ~ dfin

fin=fi = C"'(fin)

fin=/fr

A
C'(fr)

:>Ak:

8 fk+%
Bt =Y [ - nrnd vE=1.8
=1 f— ="

14



But, p(f) ~ p(fr) within the interval f; — % <f<fe+ %

8 kar%
— B=Y [T (¢ e
k=17 e ="

kar% 8 3
=Yoot [, - hrar =3 e
k=1 kT T2 k=1
e)
2 d % > Ay 2
Ele;] ~ 1; Ep(fk) o~ ; 1_[0’(f )] p(fr)

_AQZ Arp(fi) A [Imes p(f)
= {C'(f)? 12 /. {C(NP

df

15



7. This problem is too tedious. You can just skip it.

16



8.

e Assume logarithmic companding with C'(f) given by

log(1 + p|f|/ finas)
log(1 + p)

C(f) = fmae sgn(f)

where p is a constant known as the compression parameter. Find
the mean square quantization error. Assume signal to be uniformly
probable between =+ f,qz.

log(1 + p|f/ fmac)
log(1 + p)

C(f) = fmae sgn(f)

Assuming the signal has a pdf uniformly distributed between = f,,,42
then
1

p(f) =5 A

Using part e) of 1.6,

A2 fmaz 1 A2 fmaz 1
E[ﬁ?] / 2imae df = / [rmos 12 df
0

RN /SR (el F ) SR S (e F)
_ log(1+p) _
Jomaz = fmaw[log(l i N) = fmae
fomin = _fomaac
A= (fomaac - fomin)/M = QJZE—MU

where M is the number of quantization levels.

, _ w
C ( ) - log(l _|_,u,)(1 +llff/fmam)

A2 /fmam 1 10g2(1 +p)(1+ ,Uf/fmaac)2
0

E fmaz Nz df

= E[e?] ~

2

2
— mazl 21 1 :u’_
£l og” (1 + m[l +p+ =]

17



Given an audio waveform given by
f(t) = 3sin(500t) + 4 sin(1000¢) + 4 sin(1500¢)

Find the signal to quantization noise ratio if this is coded using delta
modulation.

Signal is
f(t) = 3sin(500¢) + 4 sin(1000¢) + 4 sin(1500¢)
Therefore signal power is

_32+42+42

5 2

=20.5
In delta modulation, the sampling period is flexible, the smaller the
sampling period, the smaller the quantization error. The maximum
sampling period is at the Nyquist rate, i.e. Tspar = 7/1500.
Now the slope of the signal is

df

pi —3 x 500 cos(500¢) — 4 x 1000 cos(1000¢)

—4 x 1500 cos(1500t)

The maximum slope is

dj
d—];:3><500+4><1000+4><1500:11500

To ensure no overloading, according to Eq(I.4.1), we have

A _ df
— > —|maz, 6. A > 115007

T, Z gy mes 1o A 2

where A is the quantization step size. Using Eq(I1.4.5), the quantiza-
tion noise power is

N _ AlwnTy _ (115007,)(15007%)
“T 6r 67

At Nyquist rate,

3

N, = 11500 x 11500 x 1500 x m = 96.69

s
15003 /6
Therefore, at the Nyquist rate,

S 205
2 =2 — _6.74dB
N, ~ 96.69

18



This value is unacceptable. Suppose, we increase the sampling rate
32 times, then Ts = 7/(32 x 1500), therefore

3

™
N, = 11500 x 11500 x 1500 x ——————
‘ 8 T 1500 x 32)8

/6T =2.95 x 1073

Therefore at this sampling rate

S 20.5

- T —3842dB
N, " 205x 103 _ oo42d

which is acceptable.

19
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10. e Prove Eq.(1.7.5)

1 > j 1 W W sin(Wt
s1(t) = %/ Sl(w)ejwtdw: %/Wejmdw: ?[ I/(Vt )]

1 [ .
so(t) = ﬂ/ So(w)el“tdw

But S2(w) is an even function. Therefore,
1 o0
sa(t) = 2 [— / So(w) cos(wt)dw]
2 0

1 v 1 2w
= —/ S (w) cos(wt)dw + — Sa(w) cos(wt)dw
T Jo T Jw

Let w = W — X in the first integral
and w = W + X in the second integral, then

w w
sa(t) = % /0 So(W — A) cos(W — A)tdA + % /0 So(IW + A) cos(IW + A)tdA

20



1 /W
= [S2(W — X) cos(W — ANt + So(W + X) cos(W + N)t]dA

But Sz (w) has odd symmetry about W, i.e. So(W—X) = —=Sa(W+N).
Therefore,

sa(t) = % /OW S (W + N)[cos(W + Nt — cos(W — A)tldA
Now,
cos(W + A)t — cos(W — A\)t = —2sin(Wt) sin(At)
Therefore,
1 w
s2(t) = ~[~25in(17) /0 So (W + A) sin(A)dA]

or,

_ —2Wt[sin(Wt)

w
s2(t) - W /0 So (W + w) sin(wt)dw]

21



11. e A computer output is atrain of binary symbols at 56 Kbit/sec. Raised-
cosine spectral shaping with Wy /W = 0.3 is used prior to baseband
transmission.

a) Determine the minimum bandwidth required.
b) Repeat if two successive digits are combined into one pulse with
four possible amplitudes.

05 i

8 10

Figure 9:
a) Bit Period T) = sgsigs
Therefore,
7r _ 1
W~ 56 x 103

Total bandwidth = W + 0.3W = 1.3W = 1.3 x 7 x 56 x 10% =
228.7Krad/sec

b) If two pulses are combined into one, then symbol rate is halved.
Therefore,

Ts = 2% 55108

22



and

T x 56 x 102
2

The total bandwidth= (1.3)W = 114.35Krad/sec

W =

23
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Figure 10:

Consider the raised-cosine spectrum. Assume linear phase shift, i.e.
f(w) = —wto

Show that the impulse response signal is given by

(1) = E sin Wt cos Wit
ST TWE | 1- @Wt/n)?
From Eq.(I1.7.6)
. Wy
S(t) = g su{;fT/)If/t ll _ 9 0 Sa(w + W) sin wtdwl

But over the integration interval,

So(w + 1) = £ 4 L sl (w+ 1)

2 2 2Wq
Therefore,
(t) W sin IVt 1 2t/Wlls' t+ls' t cos| T (w + W1)]d
= — — — sin — sin —
y T Wt , 2 merT g SOy T I

24



W sin Wt coswt gy, t [N - - -
= — 1+t———|)' — = i t r . ‘—
T Wt + ;o 2/0 [Sm(w( + 2W1) + 2) + sin(w( YA
= ESinWt COSwt-{—ECOS(w(t*_QW%I)—'_%)h‘)’Vl _{_Ecos(w(t_%)_%) (I)/Vl
m Wt I 2 (t+ 7397) 2 (t—52-)
W sin Wt 1 cosWit 1 cosWit
= — cosWit — - — =z —
™ Wt 2(1+50)  2(1—55%)

2
T 1 T 1 s
W sin Wt 1- (2W1t) _5(1_2W1t)_5(1+2wlt)
= — cos Wit 5
T Wt 1 -
- (2W1t)

~ WisinWt  cosWit

T Wt 1_ (M)Q

25



13. e Consider a sequence of pulse samples z(kT;) which is assumed to
have finite energy. The correlation matrix of this sequence is defined
as

®,, = E[xpx}]
where x! is the transpose of xj,, and
x(kTs)
x(kTs — Ts)
X = )

2(kTy — NT, + T})

Show that the matrix ®,, is positive semi-definite, i.e. wt®,,w >0
for any non-zero vector w.

®,, = E[xkxfc]

Therefore
w'®,,w = E[w'x;xiw] = E[(w'xy)(x,w)]
Now,
N-1
wixy, = Z wpx(kTs — nTs) = y(kTs), (which is the kth sample of the output)
n=0
Also,
N-1
xtw = Z z(kTs — nTs)w,, = y(kTy)
n=0
Therefore,

wid,,w= E[yQ(kTs)] >0

That is ®,, is positive semi-definite.

26



14.

Input
Delay T Delay T
N\ Wo w1 \W2
D)
Output
Figure 11:

Some radio systems suffer from multipath distortion which is caused
by the existence of more than one propagation path between the
transmitter and the receiver. Consider a channel the output of which,
in response to a signal s(t), is defined by

1‘(t) = Kls(t — tl) + K2S(t — tg)

where K; and K> are constants, t; and t, represent transmission
delays. It is proposed to use the 3-tap delay line filter (Fig. 11) to
equalize the multipath distortion produced by this channel.

a) Evaluate the transfer function of the channel.

b) Evaluate wy,w; and we in terms of K, K5,t; and t, assuming
that Ky < K1 and ta > ;.

a) The channel output is
z(t) == Ky1s(t — t1) + Kas(t — to)
Taking the Fourier transform, we have
X(w) = K1S(w)e % 4 KyS(w)e 7wt

Hence the transfer function of the channel is
X(w)

w

= Kle_J“’tl + KQG_]wt2

H.(w) =
b) Ideally, the equalizer should be designed so that
H,(w)H,(w) = Kye <t

where Ky and ty are constants. Now for the tap-delay line equalizer,
the transfer function is

H,(w) = wy + wie 7T 4 e 20T

27



w1 _; w2 _;
=wg[l + —e T 4 Zemi2wTy]
Wo Wo

For the ideal equalizer,

K()e_jwto
He (w) = THo(w)
K[)eiju)to

 Kjeiwh 4 Kye—iwtz

_ (KO/Kl)efjw(toftl)
T 1t (Ko Ey)eiwlah)

Using the binomial expansion with % <1,
. Ko . K\ .
Hoi(w) = (Ko/Ky)e Jetto {1 = 2 ivtixt) 4 (?) et ]

With a 3-tap transversal delay line equalizer, we equate H.(w) to
H,,(w). Therefore,

Ts =tx—t1

Ky is an arbitrary constant. Choosing Ky = K, we find that the
tap weights are,

1w K (K2
0 y 1 K17 2 Kl

28



15. e In order to prevent detection error from propagating in the duobinary
signalling scheme, we employ the precoding method shown in figure
(12).

Tk aj Yk = A + Qp—1
@ Duobinary Op.

Delay T

Figure 12:

We first form the sequence
ar =Tk D ag—1

where @ represents the modulo-2 sum. Then we obtain the duobinary
sequence yj such that

Y = ar +ag-1 = (T, D ag-1) + a1
Since ar, =0or 1, y, = 0,1 or 2.

a) Find the values of z; when yr = 0, 1 or 2. Hence obtain a
decoding rule at the receiver for Z.

b) If the sequence z is 0 0 1 1 0 1 0, find the corresponding se-
quences ag, Y, and Ty.

c) Now, assuming an error is made in one of the values of the re-
ceived sequence yy, verify that the sequence % has only one error in
the corresponding position and that the error does not propagate.

e Let x be either 0 or 1. Then,
ap = T D ag—1
means that a; =0 or 1. Hence
0 ifar =0, ar_1 =0

Y = 1 ifakzl,ak_1:00rak:0,ak_1:1
2 ifak:]., ak,1:1

29



2)

Case I (yx = 2) Since

Yk =ap +ap 1= (a1 DTL) +ap 1

Y =2 = ap—1 =1 = a1 Prr =1 = x,=0

Case II (yx = 1) In this case, a1 =0 and ar =0

— 2, =0

Case III (yx = 0) In this case either,
(a) a1 =1, = a, =0 = =1
(b) ar—1 =0, = ar=1 = =1

Hence for
{ 0
Y = = 2, =0
2
and for
Y = 1 = Tp = 1
Thus to find Z, we put

T =y mod—2 1ie., T =y in binary without carry

b-c)
Tk 0 0 1 1.0 1 0
assumed
A~
ag 1 1 1 01 1 00
Yk 2 2 1 1 2 1 0
T = yrmod — 2 0 0 1 1.0 1 0
error
!
Y. 2 1 1 1 2 10
R ~ =~
&), = ymod — 2 0 1 1 1 0 10

Notice that this precoding scheme resulted in no error propagation.
That is error was just limited to one single bit.

30



e Show, by using the Shifting Theorem, that Eq.(1.9.6) in the text book
represents the transfer function of the pulse addition network in the
duobinary scheme.

o(t) @ hy(t ) h(t)
Hl (CU)
Delay T
H(w)
Figure 13:

hi(t) = 6(t) +6(t — Ts)

Therefore,
Hi(w) =1+e T
And,
T, - Z<w<X
Hy(w) = Loy ST
|w| > 7
Therefore,
1 —jwTs\T. — 9T wls —jwTs /2 _ 71 < < T
H(w) = Hi () Ha (w) = (1+e )T s COS “Tte 7 _Ww < E
0 |CU| > T,

31



[H(w)l

15

2Tscos(w TSIZ)=| H(w)|

/

D(w)=—w TS/2

¥

4

Figure 14:
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17.

e Show that in the word synchronization scheme as shown in Fig.

[.10.2, if each word has nbits excluding the sync. bit, and if M
of the sync. bits are summed together, the probability of having a
synchronization error is given by P, =1 — [1 — (1/2M)]".

LetP. =P(correct word sync.)=1— P,

P.=P(The 1st bit in each of the M data frames is not equal to 1) x
P(The 2nd bit in each of the M data frames is not equal to 1) X ...
P(The nth bit in each of the M data frames is not equal to 1)
Assuming the received bits to be independent and identically dis-
tributed,therefore

P. = P"(The 1st bit in each of the M data frames is not equal to 1)
But the probability of occurrence of a specific state in a binary M-bit
register= 5r.

Thus the probability that this specific state (of all 1’s) does not
occur=1— 2LM Thus,

1 n
P.=(1- Q—M)
Equivalently,
P.=1-P.=1-(1 L )"
e — c — 2M

33



