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Abstract

In this thesis, we consider the joint design of transceivers for a multiple access Mul-

tiple Input and Multiple Output (MIMO) system having Inter-Symbol Interference

(ISI) channels. The system we consider is equipped with the Minimum Mean Square

Error (MMSE) Decision-Feedback (DF) detector. Traditionally, transmitter designs

for this system have been based on constraints of either the transmission power or the

signal-to-interference-and-noise ratio (SINR) for each user. Here, we explore a novel

perspective and examine a transceiver design which is under a fixed sum Gaussian

mutual information constraint and minimizes the arithmetic mean square error of

the MMSE-decision feedback detection. For this optimization problem, a closed-form

solution is obtained. We prove that the optimal solution is achieved if and only if the

sum mutual information is uniformly distributed over each individual user per the

number of its active subchannels; i.e., user mutual information uniform distribution.

Meanwhile, the Gaussian mutual information of the current user under perfect feed-

back for all the previous users is uniformly distributed over each individual symbol

within the block signal of the user; i.e., symbol mutual information uniform distri-

bution. The user mutual information uniform distribution is attained by successively

solving a series of inverse (dual) problems of maximizing single user throughput, while

the symbol mutual information uniform distribution is maintained by using the equal

diagonal QRS decomposition. We also show that such uniform decomposition, in

addition to minimizing the arithmetic MSE of MMSE-decision feedback detection,

also has another two optimality properties: (a) Both the optimal user-detection order
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and symbol-detection order are natural orders in terms of signal to interference and

noise ratios. (b) The free-distance for the Maximum Likelihood (ML) detector has

an asymptotic behavior when the sum Gaussian mutual information tends to large.
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Chapter 1

Introduction

During the past years, wireless communication systems have gained significant im-

portance and attention due to the heavy demand of ubiquitous communications in

society. While there are only limited resources in a communication system, the in-

creasing amount of information that has to be handled places higher demands on the

capacity, reliability and frequency efficiency of the system. Multiple-input multiple-

output (MIMO) communication schemes are momentous breakthroughs of communi-

cation techniques to meet these recent challenges due to their numerous advantages

and potentials including greatly increased channel capacities, as well as diversity and

spectral efficiencies.

1.1 What is MIMO

Figure 1.1 illustrates different input-output configurations defining space-time com-

munication systems: 1) Single-input single-output (SISO), 2) Multiple-input single-

output (MISO), 3) Single-input multiple-output (SIMO) and 4) Multiple-input multiple-

output (MIMO) systems, depending on the number of inputs and outputs at the

transmitter and the receiver respectively. MIMO systems, in particular, have at-

tracted much attention in communications, since they offer significant increases in
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data throughputs and link ranges without additional bandwidths or transmission

power. This is achieved by higher spectral efficiency (more bits per second per Hertz

of bandwidth) and link reliability or diversity (reduced fading). For these advantages,

MIMO is currently a research topic enthusiastically pursued.

Tx RxSISO

SIMO Tx

Rx

RxM

TxMISO M

Tx M RxMMIMO

Figure 1.1: Multi-antenna types

To exploit all its advantages, a MIMO system divides its functions into three

primary parts:

• Precoding – This function of the tranmitter puts appropriate weights on the sig-

nals to be transmitted in order to achieve different objectives such as maximizing

the link throughtputs (or sum mutual information) at the receiver output, or

minimizing the mean square error (MSE) of the detection, or minimizing the

bit error rate (BER), etc. Therefore, with the use of precoding, the system per-

formance can be further improved. It should be noted that optimum precoding

generally requires full knowledge of the channel state information (CSI) at the

transmitter.
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• Spacial multiplexing – In MIMO systems, this offers a linear increase in the

transmission rate (or capacity) for the same bandwidth and with no additional

power expenditure [?]. For spatial multiplexing, a high rate signal stream is

split into multiple lower rate streams and each of these streams is transmitted

from one transmitter antenna in the same frequency channel. If these signals

arrive at the receiver with sufficiently different spatial signatures, the receiver

can separate these streams, i.e., spacial multiplexing can create parallel channels

with knowledge of CSI. The maximum number of spatial streams is limited by

the smaller of the numbers of antennas at the transmitter and receiver. In this

case, channel knowledge is not required at the transmitter.

• Diversity techniques – These are used to increase reliability of transmission es-

pecially under fading conditions. There are three main types of diversity: tem-

poral diversity, frequency diversity and spacial diversity, each of which provides

replicas of the transmitted signals over time, frequency, and space respectively.

As a result, at the receiver end, replicas of the transmitted signals are obtained

which can be helpful to recover the original signals. If parts of the signals face a

deep fade in the channel and are distorted badly, there are still other replicas of

the signals transmitted through different and independent paths or frequencies

that can be used for detection. In a MIMO system, due to its multiple antenna

facility, spatial diversity through different transmitter and receiver antennas

are generally utilized such that the transmitter sends the same signal through

multiple paths while the receiver receives multiple replicas of the same trans-

mitted signal. Thus, the higher is the diversity, the better we can combat the

fading of a channel. Diversity is characterized by the number of independent

fading branches, or paths (routes). These paths are also known as diversity

order. Full diversity is achieved when the total degree of freedom (the number

of transmitter antennas times the number of receiver antennas) offered in the

multi-antenna system is utilized [?].

3
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From the above, it can be seen that the use of multiple dimension at both the

transmitter and the receiver brings significant enhancement in spectral efficiency, link

reliability as well as a considerable increase of transmission rate.

1.2 Examples of MIMO Communication System

MIMO channels arise in many different scenarios and we will give some typical ex-

amples of MIMO applications in this section.

• A multi-carrier system in which the available bandwidth is partitioned into L

subbands and then each subband is independently used for transmission [?,

?]. Such an approach not only simplifies the communication process but also

provides a capacity-achieving structure for a sufficiently large L [?]. If the

signals are transmitted using a block transmission together with a cyclic prefix,

the corresponding channel model then is represented by a circulant matrix which

when combined with an inverse/direct discrete Fourier transform (DFT) at

the transmitter/receiver, is transformed into a diagonal matrix with diagonal

elements given by DFT coefficients [?].

• The multi-antenna wireless channel is a paradigmatic example of a MIMO sys-

tem (shown in Figure 1.2). This particular system can offer all the main advan-

tages of MIMO systems [?, ?, ?].

• The wireline digital subscriber line (DSL) technology has gained popularity as

a broadband access technology capable of reliably delivering high data rates

over telephone subscriber lines [?]. Modeling a DSL system as a MIMO channel

presents many advantages with respect to treating each twisted pair indepen-

dently [?, ?] which was done three decades ago [?]. The dominant impairment in

DSL systems is crosstalk arising from electromagnetic coupling between neigh-

boring twisted-pairs. Near-end crosstalk (NEXT) comprises the signals orig-

4
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Figure 1.2: Example of a MIMO channel arising in wireless communications

inated in the same side of the received signal and far-end crosstalk (FEXT)

includes the signal originated in the opposite side of the received signal. In

Figure 1.3: Example of a MIMO channel arising in DSL communications

DSL system, a bundle of twisted pairs is treated as whole. As shown in Fig-

ure 1.3, a binder group composed of L users in the same physical location plus

some other users that possibly belong to a different service provider and use dif-

ferent types of DSL systems. The MIMO channel represents the communication

of the L intended users while the others are treated as interference. DSL chan-

5
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nels are highly frequency-selective, as a consequence, practical communication

systems are based on the multicarrier MIMO signal model [?].

1.3 Multi-user MIMO System

Our discussion above focuses on MIMO communication systems with a single user.

However, MIMO transmission can also be used by multiuser systems. For a MIMO

multi-access channel (MAC), multiple users communicate with one base station. The

signals received by the base station is the summation of all the signals from all the

users. A similar system can be considered as the broadcast channel (BC), i.e., the

downlink channel of the MAC where a common transmitter sends information to

distributed receivers. When applying MIMO scheme in a multi-user system, a specific

model needs to be established.

A pragmatic approach to deal with multiuser systems consists of employing single-

user designs for the users of the network in an iterative manner [?] or iteratively

optimizing the receivers and the transmitters [?], but a global optimum may not be

reached.

1.4 Motivation and Contribution of the Thesis

Given the increasing importance of the MIMO technology as well as the importance

of multi-user communications in practice, a critical issue arises, i.e., the joint design

of a transceiver for a multi-access MIMO channel. This is the subject of this thesis.

It should be noted that the optimal design solutions for the single user system cannot

be directly generalized to a multi-user scenario. The main technical obstacle is, in the

case of a multi-user system, the transmitter matrix has a block structure such that

each sub-block is constrained in power individually. Thus far, this difficult problem of

designing optimal transceiver pairs for a multi-user case has been successfully tackled

6
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by minimizing the total MSE in the system employing a linear MMSE receiver [?,

?] and optimal power allocation has been developed for OFDM or DMT system

in [?, ?, ?]. Also the capacity in a multi-user system has been maximized in [?, ?]

Since minimum mean square error- decision feedback equalization (MMSE-DFE) has

superior performance to, as well as other advantages over the linear MMSE equalizer,

we will concentrate on the optimum design of a multi-user MIMO transceivers having

a MMSE-DFE receiver.

We first considered using individual power constraints in a multiple access com-

munication system with MMSE-DFE when minimizing the arithmetic mean square

error (MSE). However this problem faces two main difficulties. The first one is due

to the specific block structure for the transmitter matrix. We considered applying

the trace-determinant inequality to obtain the lower bound of the MSE. However, the

problem of the block structure matrix renders this bound unachievable. The other

obstacle is that this optimization problem is not convex and may not be easily solved.

Therefore, we explore a novel perspective of the transceiver pair design for block-

by-block intersymbol interference (ISI) multiple access MIMO channels with the

MMSE-DF detector such that the arithmetic mean square error for K users is mini-

mized subject to a fixed sum mutual information constraint. By using this criterion,

we avoid the structural problem of the transmission matrix. Furthermore, by using

the dual water-filling solution, the transmission power of each user is simultaneousy

minimized and a closed form solution is provided.

To sum up, in this thesis, the optimal design of the transceiver pair for a syn-

chronous multiple access MIMO system in which the K-user data sequences are pre-

coded separately and transmitted block-by-block at full rate over frequency selective

ISI channels is taken into account. At the receiver end of this multiple access MIMO

system, the MMSE-DF detector is employed to detect the signals. The optimization

problem to minimize the arithmetic MSE in a multi-access MIMO communication

system subject to fixed sum mutual information is examined, and the closed-form

7
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optimal solution is then provided. Simulation results of the performance under this

design are presented and compared with that of the multi-access with linear equal-

ization and maximum likelihood detection.

1.5 Organization of the Thesis

The thesis is structured as follows:

• In Chapter 2, the background knowledge of the multi-access MIMO commu-

nication system with several detection methods are provided for the reader to

better understand this work.

• In Chapter 3, according the system model, we propose a QR interpretation

of the decision feedback equalization, which successively cancels the previous

detected symbols.

• In Chapter 4, the dual water-filling problem is discussed. In a single user com-

munication system model, an dual water-filling problem is stated and the close-

form optimal solution is provided and proved.

• In Chapter 5, the design problem is proposed. By reformulating the objective

function and applying the inverse water-filling solution, the final closed form

optimal design is obtained. With the aid of QR decomposition, further insight

of the optimality is obtained.

• In Chapter 6, we simulate a multi-user MIMO communication system equipped

with the optimally designed transceiver. Simulation results are compared to

those using a linear receiver proposed in [?] and those using maximum likelihood

detection.

• In Chapter 7, conclusion on this work and suggestion for future work are pre-

sented.

8



Chapter 2

MIMO System

In this chapter, we present the necessary concepts and theories in adequate depth as

a preliminary to this thesis. The mathematical model of the multiple-input multiple-

output (MIMO) transmission is first presented. We then discuss the various criteria

to measure how the communication system performs. This is followed by the discus-

sion on different detection schemes. Finally, the system model of a multiple access

communication system is introduced.

2.1 System Model

A MIMO channel is mathematically represented by a matrix which provides a way

to show channels with different natures. The MIMO communication channel with N

transmitter and P receiver antennas can be described with the base band model

y = Hx + ξ (2.1)

if the channel is band limited. In this model, x is the N × 1 signal vector to be

transmitted, H is P × N channel matrix with the component hij of the channel

matrix is the gain/fading coefficient from the jth transmitter antenna to the ith

receiver antenna (as shown in Figure 2.1). The received signals constitute a P × 1
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column vector y, where each complex component refers to a receiver antenna. The

noise is then denoted by ξ.

Figure 2.1: MIMO channel model

2.2 Measures of Communication System Perfor-

mance

There are various ways to measure and compare the performance of different commu-

nication systems and transmission schemes. The three main criteria are bit error rate

(BER), mean square error (MSE), and channel capacity. Bit error rate is the ratio

of the number of incorrectly received bits to the total number of bits sent during a

specified time interval. This is a measure of how well the demodulator and encoder

perform. More precisely, the average probability of a bit-error at the output of the

decoder is a measure of the performance of the system. In general, the probability of

error is a function of the code characteristics, the types of waveforms used to trans-

mit the information over the channel, the transmitter power, the characteristics of

the channel (i.e., the amount of noise, the nature of the interference, etc.), and the

method of demodulation and decoding.

MSE is the square of the difference between the detected signals and the trans-

mitted signals. It measures the average square of the distance between the received

and the transmitted signal vectors. Therefore, the smaller the MSE is, in general, the

10
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less probable it is for the detector to make an error. The mean square error remains

a significant parameter for the assessment of the performance of the communication

system [?, ?].

Channel capacity is the tightest upper bound on the amount of information that

can be reliably transmitted over a communications channel. By the noisy-channel

coding theorem [?], the capacity of a given channel is the limiting information rate

(in units of information per unit time) that can be achieved with arbitrarily small

error probability. The notion of channel capacity defined by Shannon in information

theory provides a mathematical quantity by which one can compute it. The key

result states that the capacity of the channel is given by the maximum of the mutual

information between the input and output of the channel, where the maximization is

with respect to the input distribution [?].

When comparison of communication systems are made, other factors such as the

transmission power and complexity of implementation should also be taken into con-

sideration.

2.3 Detection Methods

A major problem in data communications arises from the intersymbol interference

(ISI) created by a frequency selective channel. ISI is a form of distortion of a sig-

nal in which one symbol interferes with subsequent symbols. This is an unwanted

phenomenon since the previous symbols have similar effect as noise, thus making the

communication less reliable. When the signals are transmitted through a bandlim-

ited channel, wire or wireless, the channel characteristic is usually non-ideal, i.e., the

amplitude response is not constant for the pass band and the phase response is not a

linear function of frequency. A sequence of the pulses transmitted through the channel

will then be distorted and may not be clearly distinguishable at the receiver [?].

This problem, however, can usually be simplified by transmitting the data in a

11
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block-based fashion [?, ?]. In particular, effective detection can be performed on a

block-by-block basis if the blocks are designed so that there is no inter-block interfer-

ence (IBI) at the receiver. There are several schemes within this family of block-by-

block data communications, the most commonly used being the multi-carrier modu-

lation based Discrete Multi-Tone (DMT) [?, ?] and Orthogonal Frequency Division

Multiplexing (OFDM) schemes [?].

To reduce the intersymbol interference(ISI) problem in channels, the signals are

often put through an equalizer before making the decision. An equalizer is a device

which compensates for the non-ideal frequency response of the channel. In this sec-

tion, we introduce detection schemes which includes such an equalization process at

the receiver.

2.3.1 Maximum Likelihood

From a detection error viewpoint, an optimal transmitter for a single user block-

by-block data communication over an ISI channel with Gaussian noise is one that

minimizes the detection error probability of the maximum likelihood (ML) detector [?,

?, ?, ?]. If the received signal vector is y = Hx + ξ with ξ being the Gaussian white

noise, then the joint probability density function (PDF) of the random variable y

conditioned on the transmitted sequence x is

p(y|x) =
1

(2π)N/2 det(Σξξ)1/2
exp

{
−1

2
(y −Hx)HΣ−1

ξξ (y −Hx)

}

for real symbols where Σξξ = E[ξξH ] is the noise covariance matrix. Under the

maximum likelihood criterion, we choose x̂ so that it is the value that most likely

caused the received value of y to occur. Thus, the maximum-likelihood estimate,

x̂ML, is the one that maximizes this joint probality density, i.e., minimizes the distance

between y and Hx. At high signal-to-noise ratios (SNRs), the average probability

of error over all blocks is dominated by the free distance term [?, ?]. (This suggests

that maximizing the free distance may be a good transmitter design strategy). In

12
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the presence of ISI that spans (N + 1) symbols (N interfering components), the ML

criterion is equivalent to the problem of estimate a state in the total of MN states

if the information symbol is M -ary. A famous algorithm, the Viterbi algorithm [?],

is usually used in finding the optimal solution whose basic idea is to search all the

possible combination of symbols via the trellis representation of the detection process.

This shows that if the symbol length N is large the ML detector is, in general,

very complicated to implement (the computational cost grows exponentially with

the length of the symbol block) and may not be practical. We will describe two

suboptimal channel equalization approaches in the following sections.

2.3.2 Linear Receiver

One suboptimal equalization is linear equalization (LE) which employs a linear transver-

sal filter. The computational complexity (usually it is the complexity of calculating

the inverse of the channel matrix) may, in special cases, be as low as a linear function

of the channel dispersion length [?]. Under such a scheme, decision will be made

based on x̂ = Jy, where J is the equalizer matrix. This equalized signal vector x̂ is

then quantized to the nearest symbol to form the estimation such that x̂LE = Q[x̂]

where Q[.] denotes the quantization process. The detection error can then be written

as

e = x̂− x = Jy − x

= J(Hx + ξ)− x = (JH− I)x + Jξ (2.2)

The equalization matrix J can be designed according to different criteria. Two

popular criteria for this purpose are zero-forcing (ZF) criterion and minimum mean

square error (MMSE). In zero-forcing, we force the ISI part of the error to be zero,

i.e., in Eq. (2.2), we have JH− I = 0, i.e.,

J = (H)† = (HHH)−1HH

13
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where (.)† denotes the Moore-Penrose pseudo-inverse of a matrix. The zero-forcing

equalizer removes all ISI, and is ideal when the channel is noiseless. However, when

the channel is noisy, the zero-forcing (ZF) equalizer may amplify the noise power

greatly. A more balanced linear equalizer is the MMSE equalizer which does not aim

at eliminating ISI completely, but instead, minimizes the total power of the noise and

ISI components at the output. According to Eq. (2.2), the MSE can be obtained as

the trace of the error covariance matrix, i.e.,

ε = tr(E[eeH ])

= tr
[
(JH− I)(JH− I)H + JΣξξJ

H
]

and the MMSE linear equalizer matrix J is the one that minimizes the above MSE,

and this minimization can be realized if E[eyH = 0]. So the equalizer matrix can be

expressed as

J = (HHH + Σξξ)
−1HH

The advantage of linear equalization is in the simplicity of implementation. However,

this is achieved at the expense of loss in accuracy in the sense that the performance

of the linear equalizer is worse than ML detection, and under severe ISI, it may not

yield acceptable results.

2.3.3 Decision Feedback Equalization

Another effective alternative is to employ decision feedback equalization (DFE) at the

receiver which is a good compromise between implementation complexity and overall

performance. The DFE is widely used to combats intersymbol interference (ISI) in

linear dispersion channels. To disentangle the intersymbol interference, each input

symbol based on the entire received sequence is first decoded, and its effect on the

remainder of the sequence then subtracted before the decoding of the next symbol

begins. The canceling of the interference by the DFE can be effected using either the

14
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criterion of ZF or that of the MMSE, and are designated ZF-DFE and MMSE-DFE

respectively.

The decision feedback equalizer (DFE) consists of two filters, a feedforward filter

F and a feedback filter B.

F

B

Detector⊕
-

y z x̂

Figure 2.2: A conceptual model for decision feedback equalization

Figure 2.2 shows a conceptual model of the structure of DFE. The input of feed-

forward section is the received signals y from which we obtain the output z = Fy.

Therefore in this respect, F plays an identical role as the linear equalizer J in linear

equalization. The functional form of F depends on if ZF-DFE or MMSE-DFE is

used. The feedback filter has an input which is the sequence of previously detected

symbols. These are used to remove the intersymbol interference from the present

symbol estimate.

Given a block of N transmitted symbols, the detection proceeds sequentially start-

ing from the Nth symbol by making the decision on x̂N = zN , and then x̂n =

zn −
∑N

i=n+1 bnix̂i, where bni is the coefficients in the feedback matrix B. Once this

block has been estimated, the states of the feedback filter are reset to be zero. Thus

we have the structure of B as

B =




0 b12 b13 · · · b1N

0 0 b23 · · · b2N

...
...

. . . . . .
...

0 0 0 · · · b(N−1)N

0 0 0 · · · 0




15
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which is an upper triangular matrix with diagonal elements being zero. Under the

assumption that the previous decisions are all correct, the estimated signal vector can

be written as

x̂DFE = Fy −Bx = (FH−B)x + Fξ (2.3)

Then we can further have the error vector as

e = x̂DFE − x = (FH−B− I)x + Fξ (2.4)

For the ZF-DFE, we use the ZF criterion such that FZFH = B + I, and then the

optimal feedforward filter is given by

FZF = (B + I)(H)†Σ−1/2
ξξ (2.5)

For the MMSE-DFE, we apply the MMSE criterion by exploiting the orthogonality

principle E[eyH ] = 0 [?, ?] so that

FMMSE = (B + I)RxyR
−1
yy = (B + I)HH(HHH + Σξξ)

−1 (2.6)

where

Ryy = E[yyH ] = E[(Hx + ξ)(Hx + ξ)H ]

= HHH + Σξξ

is the covariance matrix of y, and

Rxy = E[xyH ] = E[x(Hx + ξ)H ]

= HH = RH
yx

is the cross-correlation matrix of x and y.

Since the error of the detection is defined in Eq. (2.4) the error covariance matrix

of DFE can be then written as

Σee = E[eeH ] = E
{
[(FH−B− I)x + Fξ][(FH−B− I)x + Fξ]H

}

= (FH−B− I)(FH−B− I)H + FΣξξF
H

= FHHHFH − (B + I)HHFH − FH(B + I)H

+(B + I)(B + I)H + FΣξξF
H (2.7)
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Substituting Eq. (2.6), we can obtain

FHHHFH + FΣξξF
H = F(HHH + Σξξ)F

H

= (B + I)HH(HHH + Σξξ)
−1H(B + I)H (2.8)

and

(B + I)HHFH = (B + I)HH(HHH + Σξξ)
−1H(B + I)H (2.9)

= FH(B + I)H

Then substituting Eq. (2.8) and Eq. (2.9) back into Eq. (2.7), the error covariance

matrix is further written as

Σee = (B + I)
[
I−HH(HHH + Σξξ)

−1H
]
(B + I)H

= (B + I)(I + HHΣ−1
ξξ H)−1(B + I)H (2.10)

Decision feedback equalization offers improved performance over the linear ap-

proach while maintaining reasonable complexity. Under the assumption of no error

propagation, the MMSE-DFE can achieve the capacity of a Gaussian linear disper-

sion channel [?]. Even for binary input signals, the capacity achieved by the MMSE

decision feedback detector is very close to that achieved by the optimal ML detector

at moderate signal to noise ratio region [?]. MMSE equalization has the additional

advantage that it combines well with lattice-type codes to achieve the capacity of

additive white Gaussian noise channels [?, ?, ?]. Mathematically, the derivative of

the mutual information with respect to the signal-to-noise-ratio for an MMSE-DFE

is equal to half of the MMSE, regardless of the input statistics [?]. In this thesis, our

receiver focuses on the use of MMSE-DFE.

17
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2.4 Transceiver Designs for Single-user MIMO Chan-

nels

The term transceiver here corresponds to the combination of the procoding at the

transmitter that we discussed before and the equalization parameters at the receiver

end. The concept of MIMO transceiver is a transformation applied on the transmitted

and received signals to improve the communication performance. Using the channel

model in the previous section, the precoded channel model can be described as

y = HTx + ξ

where H is the P ×M channel matrix and T is an M ×N precoder matrix. The goal

to design this transmitter (or precoder) matrix T is to enhance the communication

system in various aspects such as maximizing the channel capacity, minimizing the

probability of error, or minimizing the mean square error, etc. At the receiver, the

optimal equalization matrices, J in linear equalization or F and B in DFE, can be

designed as a function of T. This is the reason why the joint design of transceivers

is usually considered for improving the overall performance of the communication

system.

Research on transceiver designs for a single user system have been successfully

carried out in the past years. For linear receivers the corresponding optimum trans-

mitters designed under different criteria [?, ?, ?, ?, ?] ranging from maximization of

mutual information and maximization of SNR to minimization of mean-square error

(MSE) and minimization of receiver bit-error-rate (BER). However, compared to use

of a ML detector at the receiver, all these show substantial loss in performance.

For DFE receivers, the joint design of the transmitter and MMSE-DFE receiver

using a geometric MSE criterion has been obtained in [?]. However, the resulting

optimal transmitter does not guarantee to simultaneously minimize the minimized

MSE. More recently, closed-form optimal transceivers with ZF-DF [?, ?] and MMSE-

DF [?, ?, ?] detectors have been obtained using a newly developed equal diagonal
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QRS decomposition of a matrix [?]. It has been shown [?] that with the use of the

respective optimum transmitters, the system employing MMSE-DFE is superior in

performance to that with the ZF-DFE. Indeed, the MMSE-DFE receiver has been

analysed [?, ?, ?, ?] and is referred to as a canonical receiver suggesting that by using

the properly designed codes and under the assumption of having no error propagation,

reliable communication at rates approaching the capacity of the block transmission

system can be achieved by using independent instances of the same (Gaussian) code

in each element of block. Thus, for no loss in information and for having a low

complexity compared to the ML detector, the MMSE-DFE is a desirable receiver.

For this reason, our focus in this thesis is on MIMO systems employing the MMSE-

DFE in the receiver.

2.5 Multi-user System Model

Before we address the problem of optimum transceiver design for a multi-user MIMO

system, we should first establish a model. The multi-access communication system

model considered in this thesis is shown as the following Figure 2.3.

Figure 2.3: Multi-access system model

We consider a block-based synchronous multiple access frequency selective MIMO

channel in which the K users’ data sequences are precoded separately and are trans-

mitted over distinct ISI channels. Denoting the signal vector for the kth user as xk,
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k = 1, · · · , K, the received signal is given by

y =
K∑

k=1

HkTkxk + ξ (2.11)

where Hk is a P×M block Toeplitz tall channel matrix corresponding to zero-padded

modulation [?] or an M ×M square block diagonal channel matrix corresponding to

DMT modulation [?, ?, ?] for the kth user, and Tk is an M ×Nk precoder matrix for

the kth user. xk is the block of Nk transmitted symbols for User k, which is assumed

to be zero-mean, white and of identity covariance matrix, and ξ is an P × 1 white

Gaussian noise vector with identity covariance matrix and independent of the input

signal vector xk. Assume the channel state information (CSI) is perfectly known for

both transmitter and receiver.

Transceiver designs for multi-user system is not an easy extension of those for

single users and it is a difficult problem which may not even have a closed form so-

lution. In [?],transceiver optimization for multi-user system using linear equalization

is discussed. The objective there is to minimize the total MSE under the individual

power constraint. [?] formulates the original problem and transforms it into a convex

optimization problem which is then solved by using the numerical method. In [?], the

transmitter of a multi-user system is optimized by considering the minimization of the

transmission power under rate region constraint. The inverse problem is also posed

and solved. When the rate or power is constrained in certain regions, the optimiza-

tion problem can be formulated into a convex problem. Only numerical algorithm

and solution are provided in the paper. In this thesis, we consider a multi-access

system and exploit the MMSE-DFE to detect the received signals. Our task is to

obtain an optimum design for all the K transceivers to minimize the arithmetic MSE

under a novel constraint of fixed sum Gaussian mutual information.
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Chapter 3

QR Interpretation of MMSE

Decision Feedback Equalization

As mentioned in Chapter 2, the MMSE-DFE is a desirable receiver reasonable in

implementation complexity and excellent in performance. Here in this section, we

provide a new interpretation of MMSE-DF detection from the viewpoint of QR de-

composition in linear algebra. For simplicity in illustration, we examine its operation

in the case of a general single user.

Let x = [x1 x2 · · · xN ]T be an N × 1 vector of symbols to be transmitted over a

noisy channel. Each symbol xi is chosen from a finite-size alphabet X . Consider a

general matrix channel

y = Hx + ξ (3.1)

where H is a P × N channel matrix (known to the receiver), ξ = [ξ1 ξ2 · · · ξP ]T is

a noise vector with a covariance matrix E(ξξH) = Σξξ, and y = [y1 y2 · · · yP ]T is

the observed received vector. Our task is to detect (estimate) the vector x ∈ XN

given the noisy observation y = [y1 y2 · · · yP ]T . We denote the estimate of x by

x̂ = [x̂1 x̂2 · · · x̂N ]T . The matrix H here can be of a general format. for example, if

we let H = [H1T1 H2T2 · · · HKTK ] and x = [xT
1 xT

2 · · · xT
K ]T , the model in (3.1)

becomes that of the multi-user system in Eq. (2.11).



M.A.Sc: Wenwen Jiang McMaster - Electrical and Computer Engineering

3.1 The Feedforward and Feedback Filter Matrix

in MMSE-DFE

As we discussed in Section 2.3.3, the DF receiver, assuming perfect feedback, makes

successive decision on the vector z = Fy − Bx [?, ?, ?, ?, ?], where F and B are

the feedforward and feedback matrices, respectively. For the MMSE-DF receiver, the

feedforward matrix in Eq. (2.6) can be written as

FMMSE = (B + I)RxyR
−1
yy = (B + I)G−1HHΣ−1

ξξ (3.2)

For notational convenience, we also denote

G = I + HHΣ−1
ξξ H (3.3)

We will call G1/2 the mutual information matrix. Applying the QR decomposition

to G1/2 such that G1/2 = QR, then we have

G = (QR)H(QR) = RHR = (D−1/2R)HD(D−1/2R) (3.4)

where D is a positive diagonal matrix D = diag(d1, d2, · · · , dN) whose ith diagonal

entry is equal to the square of the corresponding diagonal element of the R-factor R,

i.e.,

di = [R]2i (3.5)

Therefore the matrix D−1/2R is an upper triangular matrix with unit diagonal entries.

From Eq. (2.10) and Eq. (3.4), the error covariance matrix of MMSE-DFE can be

written as

Σee = (B + I)(I + HHΣ−1
ξξ H)−1(B + I)H

= (B + I)G−1(B + I)H

= (B + I)
[
(D−1/2R)HD(D−1/2R)

]−1
(B + I)H (3.6)

Since (D−1/2R)H is then a lower triangular matrix, (D−1/2R)HD(D−1/2R) is the

Cholesky decomposition of G. Denote L = (D−1/2R)H , then we can have Eq. (3.6)

22



M.A.Sc: Wenwen Jiang McMaster - Electrical and Computer Engineering

as

Σee = [(B + I)L−H ]D−1[L−1(B + I)H ]

= ZD−1ZH (3.7)

where Z = (B + I)L−H . Since both B + I and L−H = R−1D1/2 are upper triangular

matrices with unit diagonal entries, Z is an upper triangular matrix with unit diagonal

entries. The mean square error is defined as

tr(Σee) = tr(ZD−1ZH) = tr(Z̃Z̃H) (3.8)

where Z̃ = ZD−1/2. From the definition of trace, Eq. (3.8) can be written as

tr(Σee) = tr(Z̃Z̃H)

=
N∑

n=1

Z̃n·[Z̃H ]·n

=
N∑

n=1

Z̃n·[Z̃∗n·]
T (3.9)

Therefore, the MSE is the summation of the inner product of the columns of Z̃ and

their conjugate. Since Z has unit diagonal entries, we can rewrite Eq. (3.9) as

tr(Σee) =
N∑

n=1

Z̃n·[Z̃∗n·]
T

=
N∑

n=1

d−1
n + δ

where δ is a non-negative number. Then we can have

tr(Σee) ≥
N∑

n=1

d−1
n

where equality holds if and only if δ = 0, i.e, Z is an identity matrix. Therefore, to

minimize mean square error of DFE, we obtain that the feedback matrix must satisfy

(B + I)L−H = (B + I)(D−1/2R)−1 = I (3.10)
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i.e,

B + I = D−1/2R (3.11)

Therefore the feedforward matrix can be re-written as

FMMSE = D−1/2RG−1HHΣ−1
ξξ

= D−1/2R−HHHΣ−1
ξξ

= D−1(B + I)−H(Σ
−1/2
ξξ H)HΣ

−1/2
ξξ (3.12)

Examining the feedforward filter matrix in Eq. (3.12), we see that the architecture

of the feed-forward matrix F consists of four parts:

1. Whitening filter Σ
−1/2
ξξ – This process matches the noise covariance and whitens

the spatially correlated noise.

2. Matched filter (Σ
−1/2
ξξ H)H – This process matches the channel and noise and

thus functions as a matched filter.

3. De-correlating filter (B + I)−H – The purpose is to de-correlate the detection

error so that the resulting error covariance matrix is diagonal.

4. Scaling process D−1 – Here, different subchannels are scaled by different coee-

ficients.

3.2 The Error Covariance Matrix in MMSE-DFE

Using Eqs. (3.11) and (3.7), the error covariance matrix of MMSE-DFE in Eq. (2.10),can

be written as

Σee = D−1/2RG−1RHD−1/2

= D−1/2RR−1R−HRHD−1/2

= D−1 (3.13)
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where we can see that after MMSE-DF equalization, the error vector is uncorrelated

but not white. From Eq. (3.5), the error covariance matrix in Eq. (3.13) can be

rewritten in terms of the diagonal entries in the R-factor such that

E[eeH ] = diag
(
[R]−2

1 , [R]−2
2 , · · · , [R]−2

N

)
(3.14)

and thus, the arithmetic MSE of MMSE-DF detection can be expressed in terms of

the diagonal entries of the R-factor of the mutual information matrix G1/2 as

E =
1

N

N∑
n=1

[R]−2
n (3.15)

3.3 QR Decomposition and MMSE-DFE

Returning to the QR decomposition of the mutual information matrix G1/2 such that

G1/2 = QR, where Q denotes a N ×N orthonormal matrix and R denotes an N ×N

upper triangular matrix, we have

R =




r11 r12 . . . r1N

0 r22 . . . r2N

...
...

. . .
...

0 0 . . . rNN




, rkk > 0 for k = 1, 2, · · · , N

In addition, we notice that

HHΣ−1
ξξ H = G− I = RHR− I (3.16)

Applying the feedforward filter matrix FMMSE in Eq. (3.12) to the received signal

vector y and using Eqs. (3.11) and (3.16) yields

D−1/2R−HHHΣ−1
ξξ y = D−1/2(R−R−H)x + D−1/2R−HHHΣ−1

ξξ ξ (3.17)

Therefore, after having been processed by FMMSE, the original channel in Eq. (3.1)

is transformed into the following channel model,

ỹ = R̃x + ξ̃ (3.18a)
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where

ỹ = D−1/2R−HHHΣ−1
ξξ y (3.18b)

ξ̃ = D−1/2
(
diag([R]−1

1 ,· · ·, [R]−1
N )−R−H

)
x︸ ︷︷ ︸

Interference

+D−1/2R−HHHΣ−1
ξξ ξ (3.18c)

R̃ = D−1/2(R− diag([R]−1
1 ,· · ·, [R]−1

N )) (3.18d)

Notice that the reason that we subtract the diagonal elements of R−H from R in

Eq. (3.18d) is that we want to obtain an unbiased estimation of x (see more details

in [?]). So the covariance matrix of ξ̃ is determined by

Σξ̃ξ̃ =D−1
[
diag([R]−2

1 ,· · ·, [R]−2
N )−diag([R]−1

1 ,· · ·, [R]−1
N )

(
R−1+R−H

)
+I

]
(3.19)

Thus, [Σξ̃ξ̃]k = [R]−2
k (1− [R]−2

k ). This shows that the signal to interference and noise

ratio for the k-th symbol xk is

SINRk =
[R]−2

k ([R]k − [R−1]k)
2

[Σξ̃ξ̃]k
= [R]2k − 1 (3.20)

which is consistent with the result given in [?, ?].

The above discussion establishes the equivalence between the MMSE-DFE de-

tection and the QR decomposition. Thus, the following Algorithm 1 provides an

interpretation of MMSE-DF detection for the equivalent channel model in Eq. (3.18).

Algorithm 1 (QR interpretation of MMSE-DFE):

1. QR-decomposition. Perform the QR-decomposition of the mutual informa-

tion matrix, G1/2 = QR to form the upper triangular matrix R̃ defined by

Eq. (3.18d). We have




ỹ1

ỹ2

...

ỹN




=




r̃11 r̃12 . . . r̃1N

0 r̃22 . . . r̃2N

...
...

. . .
...

0 0 . . . r̃NN







x1

x2

...

xL




+




ξ̃1

ξ̃2

...

ξ̃N




(3.21)
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Equation (3.21) is equivalently written as

ỹk = [R̃]kxk +
N∑

m=k+1

r̃kmxm + ξ̃k

2. Hard decision. From the last row in Eq. (3.21) we first estimate the symbol xN

by making the minimum-error-probability hard decision x̂N = Q
[
ỹN/[R̃]N

]
.

The Q[x] operation here is defined as choosing the closest symbol to x to be

the estimation x̂.

3. Cancelation. Substitute the estimated symbol x̂N back into the (N − 1)-th row

in Eq. (3.21) so as to remove the interference term in ỹN−1 and then estimate

xN−1. Continue this procedure until we obtain the estimate of the first symbol

x1. The above procedure is described by the following recursive algorithm,

x̂N = Q
[

ỹN

[R̃]N

]

x̂k = Q
[

ỹk −
∑N

m=k+1 r̃k,mx̂m

[R̃]k

]
for k = N − 1, N − 2, · · · , 1
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Chapter 4

The Dual water-filling Solution

The theme of this thesis is on multi-access MIMO communication systems and the

goal is to obtain an optimum transceiver design for the system. The water-filling

solution has been derived as the optimum solution for such designs for single-user

cases, especially when the channel capacity is to be maximized subject to a power

constraint. In this chapter, we examine the water-filling problem from a different

perspective by considering its inverse problem. In other words, we seek a transmitter

design that minimizes the total transmission power of the input signal subject to

a fixed Gaussian mutual information constraint. A closed-form optimal solution is

obtained by allotting the total information to each eigen-subchannel according to

water-filling. This information loading scheme also provides a novel interpretation to

the water-filling solution of the original problem of maximizing the Gaussian mutual

information.

4.1 The Water-filling Solution

The basic model for a MIMO system is given by Eq. (2.1). We now employ a precoder

T at the transmission end to process the data before sending out. Thus, the discrete-
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time baseband model for the received signal is given by

y = HTx + ξ (4.1)

where H is an P × M complex matrix that models the channel, T is an M × N

linear precoding matrix (M ≥ N), x is the block of N transmitted symbols, which is

assumed to be zero-mean, white and of identity covariance matrix, and ξ is an P × 1

white Gaussian noise vector with identity covariance matrix and independent of the

input signal vector x. It is well known that if the channel matrix H is known at both

the transmitter and receiver, the Gaussian mutual information of model (4.1) is given

by [?]

IH = log det (I + THHHHT) (4.2)

Hence, for a given transmission power constraint tr(THT) ≤ p, the Gaussian mutual

information IH is maximized when the transmitter T is the water-filling solution [?,

?]. Therefore, the capacity-achieving input for the channel model (4.1) is obtained

by solving the following optimization problem:

Problem 4.1. (Water-filling problem) Find a transmitter T such that the Gaus-

sian mutual information IH is maximized, i.e.,

max
T

log det (I + THHHHT)

subject to a total transmission power constraint,

tr(THT) ≤ p

If the eigenvalue decomposition of HHH is UΛUH with eigenvalues λm for m =

1, · · · ,M arranged in a non-increasing order, then, the optimal transmitter is obtained

according to the water-filling principal over the eigenvalues. More specifically, the
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solution selects the largest integer k not exceeding M such that

1

λk

<
1

k

(
p +

k∑
j=1

λ−1
j

)

Therefore, the optimal T is given by T = UkΦS, where S is an arbitrary unitary

matrix, Uk consists of the first k columns of the unitary matrix U, and Φ is a diagonal

matrix with diagonal entries being

|φii|2 =
1

k

(
p +

k∑
j=1

λ−1
j

)
− λ−1

i

Thus, the maximum Gaussian mutual information; i.e., channel capacity, is given by

C = log


k−k

(
p +

k∑
j=1

λ−1
j

)k k∏
i=1

λ−1
i




Note that the channel capacity is not affected by the unitary matrix S. Therefore,

we have an extra degree of freedom provided by the unitary matrix S within the

water-filling solution family which can be designed so as to improve other aspects of

system performance [?, ?, ?].

4.2 The Dual water-filling Problem and its Solu-

tion

After reviewing the classic water-filling principle, we now consider the dual of the

problem of maximizing the throughput.

4.2.1 Problem Statement and Necessary Lemmas

Our inverse problem of the capacity-achieving input can now be formally stated as

Problem 4.2. (Dual water-filling problem) Find a transmitter T such that the

total transmitted power is minimized subject to a fixed Gaussian mutual information,
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i.e.,

min
T

tr(THT)

subject to the following Gaussian mutual information constraint:

log det (I + THHHHT) = IH

It is clear that if IH = 0, then, T = 0 is one of the optimal solution to Problem 4.2.

Therefore, in the following we only need to consider the case where IH 6= 0.

In order to solve this optimization problem, we first establish the following three

lemmas, the proofs of which are given in Appendices A.

Lemma 4.1. For IH > 0, let {ak}n
k=1 be a positive decreasing sequence, i.e., a1 ≥

a2 ≥ · · · ≥ an, and ra be the largest positive integer not exceeding n such that

ak >

(∏ra

i=1 ai

2IH

)1/ra

for k = 1, 2, · · · , ra (4.3)

Let the positive sequence {bk}n
k=1 satisfy the following two conditions,

1. a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ an ≥ bn.

2. Let rb be the maximal positive integer such that

bk >

(∏rb

i=1 bi

2IH

)1/rb

for k = 1, 2, · · · , rb. (4.4)

Then, we have

1

r

r∑
i=1

(
b−1
i − a−1

i

) ≤
(

2IH∏r
i=1 bi

)1/r

−
(

2IH∏r
i=1 ai

)1/r

where r = min{ra, rb}, and the equality holds when bi = ai for i = 1, 2, · · · , r.
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Lemma 4.2. Let c1 ≥ c2 ≥ · · · ≥ cq > 0 and rc be the greatest integer not exceeding

q such that

ck >

(∏rc

n=1 cn

2IH

) 1
rc

for k = 1, 2, · · · , rc.

Then, the sequence

Pk = k

(
2IH∏k
n=1 cn

) 1
k

−
k∑

n=1

c−1
n

for k = 1, 2, · · · , rc is strictly decreasing.

Lemma 4.3. For any complex matrix T and Hermitian matrices A and B, we can

obtain the following derivative

∂ log det(A + THBT)

∂T
=

[
BT(A + THBT)−1

]∗
(4.5)

We also need the following lemma, the proof of which is given in [?]

Lemma 4.4. Let M be an M×N matrix and M̄n be the remaining matrix by deleting

the nth column from M. If we let {σi} and {σ̄i} denote the singular value sequences

of M and M̄n, respectively, both arranged in nonincreasing order, then, we have the

following two statements:

1. If M ≥ N , then,

σ1 ≥ σ̄1 ≥ σ2 ≥ σ̄2 ≥ · · · ≥ σ̄N−1 ≥ σN ≥ 0

2. If M < N , then,

σ1 ≥ σ̄1 ≥ σ2 ≥ σ̄2 ≥ · · · ≥ σM ≥ σ̄M ≥ 0
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4.2.2 The Optimal Solution

Now, we are in a position to formally state our main result.

Theorem 4.1. Let the Gaussian mutual information IH for the channel model (4.1)

be given by Eq. (4.2) and the eigen-value decomposition of HHH be

HHH = UΛUH

where U is an M ×M (M ≥ 1) unitary matrix and Λ = diag(λ1, λ2, · · · , λM) with

λ1 ≥ λ2 ≥ · · · ≥ λM > 0. If we let r be the maximal positive integer not exceeding M

such that

λm >

(∏r
i=1 λi

2IH

)1/r

for m = 1, 2, · · · , r (4.6)

then, the optimal solution, Topt, of Problem 4.2 is an M × r tall matrix, given by

Topt = UrΓVH (4.7)

where Ur is an M × r matrix consisting of the first r columns of the unitary matrix

U, V is an arbitrarily r× r unitary matrix and Γ = diag(γ1, γ2, · · · , γr) with each γm

determined by

γm =

√(
2IH∏r
i=1 λi

)1/r

− λ−1
m (4.8)

The minimum power is determined by

P = r

(
2IH∏r
i=1 λi

)1/r

−
r∑

m=1

λ−1
m (4.9)

Proof : Introducing the Lagrangian function, L(T), of the original Problem 4.2

L(T) = tr(THT)− ρ log det(I + THHHHT)

where ρ is the Lagrange multiplier, and requiring that the gradient of L(T) vanishes,

using Lemma 4.3 we have

T∗ − ρ
[
HHHT(I + THHHHT)−1

]∗
= 0
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i.e.,

T− ρHHHT(I + THHHHT)−1 = 0 (4.10)

Left-multiplying both sides of Eq. (4.10) by TH yields

THT + ρ(I + THHHHT)−1 = ρI (4.11)

Let the singular value decomposition of T be

T = WΓVH

where W is an M × N column-wise orthonormal matrix, V is an N × N matrix

and Γ is a diagonal matrix Γ = diag(γ1, γ2, · · · , γN) with γ1 ≥ γ2 ≥ · · · ≥ γN > 0.

Substituting this decomposition into Eq.(4.11) results in

ΓHΓ + ρ(I + ΓHWHHHHWΓ)−1 = ρI (4.12)

Since T is required to be of full column rank, Γ must be invertible. From Eq. (4.12),

since all the other matrices are diagonal WHHHHW must be diagonal. Let WHHHHW =

Θ = diag(θ1, θ2, · · · , θN) with each θk being non-negative. Then, Eq. (4.12) can be

rewritten as

ΓHΓ + ρ(I + ΓHΘΓ)−1 = ρI

Since both Γ and Θ are diagonal matrices, we can easily equate the diagonal elements

resulting in

γn =
√

ρ− θ−1
n (4.13)

In this case, the Gaussian mutual information constraint can be expressed in terms

of γn and θn as

det(I + ΓHΘΓ) =
N∏

n=1

(1 + γ2
nθn) = 2IH
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Combining this with Eq. (4.13) yields

ρ =

(
2IH∏N
n=1 θn

)1/N

and as a result, the power in the mth subchannel is given by

γ2
m =

(
2IH∏N
n=1 θn

)1/N

− θ−1
m (4.14)

Therefore, the resulting total power, F(θ1, θ2, · · · , θN), is given by

F(θ1, θ2, · · · , θN) = N

(
2IH∏N
n=1 θn

)1/N

−
N∑

m=1

θ−1
m

where θ1, θ2, · · · , θN must satisfy the following two constraints:

1. Positivity of the power of each subchannel:

θn >

(∏N
i=1 θi

2IH

)1/N

for n = 1, 2, · · · , N

2. λ1 ≥ θ1 ≥ λ2 ≥ θ2 ≥ · · · ≥ λN−1 ≥ θN−1 ≥ λN ≥ θN , as a result of Lemma 4.4.

Thus, the proof of Theorem 4.1 is reduced to finding an optimal θ that minimizes

F(θ1, θ2, · · · , θN) subject to the above two constraints. Now, from Lemma 4.1, for rλ

to be the largest integer that satisfies

λn >

(∏rλ

i=1 λi

2IH

)1/rλ

, for n = 1, 2, · · · , rλ

we can obtain F(θ1, θ2, · · · , θr) ≥ F(λ1, λ2, · · · , λr), where r = min{N, rλ} and

where equality holds when λm = θm, for i = 1, 2, · · · , r. Then applying Lemma 4.2,

we can obtain the last integer variable N by observing that the total power P is a

decreasing function with respect to r, P is minimized when N = rλ. This completes

the proof of Theorem 4.1.
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4.2.3 Further Discussion

While providing a closed form solution of the optimum transmitter and the minimum

transmission power for the dual water-filling Problem, Theorem 4.1 also provides us

with a novel outlook of the water-filling solution. Suppose the power is constrained on

the transmitter matrix T, i.e., tr(THT) ≤ p. We attempt to maximize the Gaussian

mutual information IH. From Eq. (4.9), the power constraint on the transmitter can

be changed to

P = r

(
2IH∏r
n=1 λn

)1/r

−
r∑

n=1

λ−1
n ≤ p

which leads to

2IH ≤
(

p +
∑r

n=1 λ−1
n

r

)r r∏
n=1

λn (4.15)

Therefore, the Gaussian mutual information IH is maximized when equality holds in

Eq. (4.15). In other words, the channel capacity is achieved and equal to

C = r log

(
p +

∑r
n=1 λ−1

n

r

)
+

r∑
n=1

log λn (4.16)

Substituting this maximum information into the power loading solution in Eq. (4.8)

yields

γ2
n =

p +
∑r

k=1 λ−1
k

r
− λ−1

n

which is exactly the water-filling solution.

4.3 Why Use the Inverse Problem?

The maximum Gaussian mutual information, i.e., channel capacity is the fundamental

limit for reliable data communications [?, ?, ?]. From an information theoretic view-

point, maximizing throughput is a major concern and is thus an important design cri-

terion for the transmitter. Therefore, this criterion has been used by many researchers
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to design capacity-achieving transmitters not only for a variety of single user and de-

terministic channel models [?, ?, ?], but for different kinds of multiple users [?, ?],

multiple input and multiple output random channel models as well [?, ?, ?, ?, ?].

From the inverse perspective, if we fix the mutual information of the communi-

cation system, we are proposing a requirement of the channel capacity. Since the

objective is for the total transmission power, this design solves the problem of: “what

is the minimum power needed to guarantee such amount of information transmitted

reliably through the channel”. From the results, we find that, the optimal solution of

the dual water-filling solution performs in a similar way to the famous water-filling so-

lution. However, in the inverse problem, it is the mutual information that is allocated

to the different subchannels.

It should be noted that similar research work to Problem 4.2 can be found in [?]

where the delay-limited capacity (DLC) for the general class of fading channel in

MISO, SIMO and MIMO was derived, and the impact of the mean component and

spatial correlation on the bounds of DLC was characterized. Also, in [?], the power

region and capacity region are characterized under rate and power constraints for the

fading multi-access channels and fading broadcast channels with multiple transmitter

and receiver antennas. In general, there is no closed-form analytic solution for these

optimal power and rate allocation problems. Therefore, efficient numerical methods

have been developed and provided in [?].

37



Chapter 5

Joint Design of Transceivers for

Multiple Access Channel

With the dual water-filling solution in mind, we now consider the joint design of the

transceivers for a multiple access ISI MIMO system equipped with the MMSE-DFE.

The goal of our design is to minimize the arithmetic MSE for the K users subject to

a fixed sum Gaussian mutual information constraint.

5.1 Problem Statement

Since the design objective is to minimize the arithmetic MSE of the K users, let us

first form our design problem into a certain optimization problem.

5.1.1 Arithmetic MSE and the Original Problem

The multi-user MIMO system model is shown in Eq.(2.11) of Section 2.5 such that

y =
K∑

k=1

HkTkxk + ξ (5.1)

In general, for a DF receiver, signals are detected in the reverse order of the symbol

index. Here, we follow this reverse order for user detection, i.e., we first detect the
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signal from User K, then User K−1, and so on under the assumption the base station

has the signals of all the K users at all time. Based on this detection order, we thus

re-write the received signal in Eq. (5.1) as

y −
K∑

i=k+1

HiTixi = HkTkxk +
k−1∑

`=1

H`T`x` + ξ

︸ ︷︷ ︸
ζk

= HkTkxk + ζk for k = K, 2, · · · , 1 (5.2)

where ζk is the kth interference-plus-noise vector. In Eq. (5.2), the MMSE-DFE is

used to detect xk from the received signal y by successively canceling the previously

detected user signals. Therefore, the resulting error vector for the kth user of the

MMSE successive cancelation detection is defined as ek = x̂k − xk. Then, ek =

x̂k − xk = (FkHk − I − Bk)xk + Fkξk, where Fk and Bk are the feedforward and

feedback matrices for the kth user respectively. With the results in Chapter 3, using

the matrix inversion lemma [?] leads to the following error covariance matrix for User

k [?, ?, ?, ?]:

Σeek
= E[eke

H
k ]

= (Bk + I)(Gk)
−1(Bk + I)H

= diag([Rk]
−2
1 , [Rk]

−2
2 , · · · , [Rk]

−2
Nk

) (5.3)

where

Gk = I + (HkTk)
H(Σk)

−1HkTk

and Σk is the covariance of the interference and noise. Since the independence

of signals from different users and noise, and the assumption about the noise, i.e.

E[xixk] = 0, E[xkξk] = 0 and E[ξξH ] = I, we can obtain that

Σk = E[ζkζ
H
k ] = I +

k−1∑

`=1

H`T`(H`T`)
H

Σ1 = I
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for k = 1, 2, · · · , K. Rk is the upper triangular matrix in the QR-decompostion of

G
1/2
k . If we define the average MSE of the K users of the successive cancellation

detector as

E , 1

N

K∑

k=1

tr
(
E[eke

H
k ]

)
=

1

N

K∑

k=1

tr (Σeek
) (5.4)

where N =
∑K

k=1 Nk, then, our optimization problem can be formally stated as

follows:

Problem 5.1. Let rank(Hk) = Lk, k = 1, 2, · · · , K. Then, given K non-negative

integers N1, N2, · · · , NK with Nk ≤ Lk, where Nk is the length of the transmitted

signal vector xk, find the matrix sequence {Tk}K
k=1 such that

1. the MMSE for the K users of the MMSE-DF detection is first minimized, subject

to a fixed sum mutual information constraint, i.e.,

{T̃k}K
k=1 = arg min

{Tk}K
k=1

E (5.5)

s.t.

I = log det

(
I +

K∑

k=1

HkTkT
H
k HH

k

)
(5.6)

2. then, with respect to all the remaining free parameters, the transmission power

for each user is minimized sucessively.

5.1.2 Problem Reformulation

In order to solve Problem 5.1, we employ the inequality relationship between the

trace and determinant of a square matrix: for any positive semi-definite matrix M,

we have the relationship that tr(M) ≥ det(M), so that the total system error of the

MMSE-DFE in Eq. (5.4) is lower-bounded by

E ≥ 1

N

K∑

k=1

Nk det
(
G
−1/Nk

k

)
(5.7a)

=
1

N

K∑

k=1

Nk det
(
I + TH

k HH
k (Σk)

−1HkTk

)−1/Nk (5.7b)
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For matrices A and B of compatible dimensions, we have the Sylvester’s deter-

minant theorem det(I + AB) = det(I + BA) and property such that det(AB) =

det(A) det(B) [?], for each det(Gk) in Eq. (5.7a), we have

det
(
I + TH

k HH
k (Σk)

−1HkTk

)

= det
(
I + HkTkT

H
k HH

k (Σk)
−1

)

= det
(
Σk + HkTkT

H
k HH

k

)
det(Σk)

−1

=
det(Σk+1)

det(Σk)
(5.8)

Also, we apply the inequality relationship between the geometric and arithmetic mean

such that 1
N

∑N
n=1 xn ≥

(∏N
n=1 xN

)1/N

where the equality holds if and only if x1 =

x2 = · · · = xN . Thus, the following inequality applies to the right-hand side of Eq.

(5.7b)

1

N

K∑

k=1

Nk
det(Σk)

1/Nk

det(Σk+1)1/Nk
≥ det(ΣK+1)

−1/N = 2−
I
N (5.9)

Equality in Eq. (5.7a) holds if and only if matrices G
1/2
k have equal diagonal R-factors,

i.e.,

[Rk]1 = [Rk]2 = · · · = [Rk]Nk
(5.10)

Hence E reaches its minimum value when the condition in Eq. (5.10) holds. These

equal diagonal entries, in the DF receiver, mean that the mutual information of the

currently detected user is uniformly distributed over each individual symbol within

the block signal of the user when all the previous user signals have been perfectly

detected. Equality in Eq. (5.9) holds if and only if det(Σk) constitutes a geometrical

sequence, i.e.,

(
det(Σ1)

det(Σ2)

)1/N1

= · · · =
(

det(ΣK)

det(ΣK+1)

)1/NK

(5.11)

which means the averaged sum mutual information is uniformly distributed over each

individual user if the mutual information of each user is defined as 1
Nk

log det(Gk) and
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is equivalent to

det (Gk) = 2
Nk
N
I (5.12)

Therefore, solving Problem 5.1 is finally reduced to solving the following optimization

problem:

Problem 5.2. For any given K non-negative integers N1, N2, · · · , NK with Nk ≤ Lk,

find a sequence of matrices {Tk}K
k=1 such that

1. the total power for the kth user is minimized subject to the constraints that the

mutual information for User k is Ik = log det(Gk) = Nk

N
I.

2. within the space of the remaining parameters, Condition in Eq. (5.10) is satis-

fied.

5.2 The Optimal Solution

Examining the reformulated problem stated in the foregoing section, the first require-

ment in Problem 5.2 can be satisfied by using the result in the dual water-filling for

the single-user system in Chapter 4. After this, the lower bound of the average MSE

is fixed, i.e., the inequality in Eq. (5.9) holds with equality. To meet the second

requirement, we need to exploit a property of the optimal solution. If we modify the

matrix Gk in Eq. (5.7b) by attaching a unitary matrix Sk to Tk such that T̃k = TkSk,

then, we have

det(G̃k)
−1 = det(I + (TkSk)

HHH
k Σ−1

k HkTkSk)
−1

= det
(
SH

k (I + TH
k HH

k Σ−1
k HkTk)Sk

)−1

= det(I + TH
k HH

k Σ−1
k HkTk)

−1 = det(Gk)
−1
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Therefore, attaching a unitary matrix to Tk does not affect the value of the lower

bound of the average MSE, but the trace of the error covariance matrix would change

with different choices of the unitary matrix. Applying the QRS decomposition [?]

to the mutual information matrix Gk yields G
1/2
k Sk = QkRk with Rk having equal

diagonal elements. Thus, the condition of Eq. (5.10) is met.

Therefore, the above development for finding the optimal solution of Problem 5.1

can be summarized to form the following theorem:

Theorem 5.1. Given any K non-negative integers N1, N2, · · · , NK with Nk ≤ Lk,

let

Ak = HH
k (Σk)

−1Hk for k = 1, 2, · · · , K

and let the eigen-decomposition of Ak be Ak = UkΛk(Uk)
H with the diagonal elements

in Λk arrange in non-increasing order. Then, the optimal solution to Problem 5.1 is

given by

T̃k = UNk,k(Γk)
1/2Sk, k = 1, 2, · · · , K (5.13)

where UNk,k is the first Nk columns of Uk, Sk is an Nk×Nk unitary matrix denoting

the S-factors of the QRS decomposition of G
1/2
k , and Nk is a pre-assigned subchannel

number for the kth user. For the k-th user, let rk be the maximal positive integers

such that

λn,k >

(∏rk

i=1 λi,k

2Ik

)1/rk

for n = 1, 2, · · · , rk (5.14)

If Nk ≤ rk, the diagonal entries of Γk are determined by

γn,k =

(
2Ik

∏Nk

i=1 λi,k

)1/Nk

− (λn,k)
−1 (5.15)

for n = 1, 2, · · · , Nk. If Nk > rk, the diagonal entries of Γk are assigned by

γn,k =





(
2Ik∏rk

i=1 λi,k

)1/rk − (λn,k)
−1 n = 1, · · · , rk

0 n = rk + 1, · · · , Nk
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Theorem 5.1 tells us that the optimal solution of Problem 5.1 is achieved if and

only if

1. the mutual information of each user per active subchannel is uniformly dis-

tributed among all users, i.e., user mutual information uniform distribution

2. the mutual information of each user under perfect feedback is uniformly dis-

tributed among individual symbols within the signal block of the user trans-

mitted over the active subchannels; i.e., symbol mutual information uniform

distribution.

A more detail explanation on this is given in ensuing section.

5.3 Optimality Discussion

In this section, we will further explain the two optimality conditions stated above.

Then, we will show that such uniform distribution of the sum mutual information has

two optimality properties.

5.3.1 Decomposition of Sum Gaussian Mutual Information

To decompose the sum Gaussian mutual information, we need to first establish the

following lemma.

Lemma 5.1. Let H = [H1 H2 · · · HK ]. Then, the sum mutual information matrix

G1/2 = (I + HHH)1/2 of H can be decomposed as

G1/2 = QR (5.16)

where R is an upper triangular matrix with the (i, j)th block matrix being

Rij =





G
1/2
i if i = j

G
−1/2
i HH

i Σ−1
i Hj if i < j

(5.17)

with Σi = I +
∑i−1

k=0 HkH
H
k (Σ1 = I) and Gi = I + HH

i Σ−1
i Hi.
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The proof of Lemma 5.1 is in Appendix B.1. Although it is a specific application

of a block QR or the block Cholesky decomposition, Lemma 5.1 gives us a closed-form

block R-factor for the sum mutual information matrix and provides a simple and clear

relationship between the sum mutual information and the mutual information of each

individual user with the MMSE-DF detector. This will help us easily understand

the optimal solution of Problem 5.1 given in Theorem 5.1 from the viewpoint of

information theory.

Under the assumption that the channel matrix H is known to both the receiver

and the transmitter, the Gaussian sum mutual information for the precoded channel

model in Eq. (2.11) is given by [?],

IG(x;y) = log det
(
I +

K∑

k=1

HkTk(HkTk)
H

)
(5.18)

In order to give interpretation of the optimal transmitter pairs derived in Section 5.2

from an information theoretic viewpoint, we rewrite channel model in Eq. (2.11) as

y = Hx + ξ (5.19)

where H = [H1T1 H2T2 · · · HKTK ] represents the precoded channel. Therefore

the original channel model, Eq. (2.11), can be mathematically treated as the virtual

MIMO channel model Eq. (5.19). Correspondingly, the Gaussian sum mutual infor-

mation expressed in Eq. (5.18) can be regarded as the Gaussian mutual information

of Eq. (5.19) with a white Gaussian input signal vector x. Therefore, we can employ

the results in [?] as the following lemma.

Lemma 5.2. Let R denote the R-factor of H. Then, under an assumption of error-

free feedback, the mutual information between the (N−i)th symbol (or user) xN−i and

y conditional on xN−i+1
N = [xN , xN−1, · · · , xN−i+1] for the model in Eq. (2.11) can be

expressed as [?]

I(xN−i;y|xN−i+1
N ) = log([R2]N−i) (5.20)

for i = 0, 1, · · · , N − 1.
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Therefore, by Lemma 5.1 we have

IG(x;y) =
N−1∑
i=0

I(xN−i;y|xN−i+1
N )

=
K∑

k=1

Ñk−1∑

i=Ñk−1

I(xN−i;y|xN−i+1
N ) (5.21)

=
K∑

k=1

Ñk−1∑

i=Ñk−1

log([R2]N−i)

where Ñk =
∑K−k+1

`=K N` and Ñ0 = 0. Since R is a block upper triangular matrix

with the diagonal matrix being the R-factor of the QR decomposition of Gk, we can

obtain that

Ñk−1∑

i=Ñk−1

log([R2]N−i) = log det(Gk)

which indicates each user’s mutual information can be decomposed into the summa-

tion of each subchannel’s mutual information without any loss, and further

IG(x;y) =
K∑

k=1

log det(Gk) = log det

(
I +

K∑

k=1

HkTk(HkTk)
H

)

This shows that the sum mutual information is decomposed into the summation of

each user’s mutual information. For a given matrix H, its singular values are fixed

under any unitary transformation and hence, its eigen-subchannel mutual information

does not change. However, the R-factor diagonal values of the mutual information

matrix change with the unitary transformation. As a result, the capacity of each R-

factor-value subchannel in Eq. (3.18) for the MMSE-DF detector will change too. In

other words, different unitary transmitters lead to different R-factors and hence, dif-

ferent R-factor value subchannel capacities and different detection error performances

for the MMSE-DF detector.
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5.3.2 Even Distribution of Mutual Information

From the above discussion, a natural question arises: What is the optimal (in terms

of minimizing the mean square error) distribution of mutual information among the

R-factor value subchannels in Eq. (3.18) for the MMSE-DF detector? The answer is:

from both the information theoretic viewpoint and the signal detection error view-

point, the condition of uniformly distributed mutual information is optimal. This

uniformity of distribution is effected by applying the S-factor of the QRS decomposi-

tion to the mutual information matrix. Therefore, we have the following statement.

Property 5.1. (Uniform decomposition of mutual information for the MMSE-DF de-

tector) Under the assumption of error-free feedback, the sum Gaussian mutual infor-

mation for a block-by-block precoded multiple access MIMO channel in Eq. (2.11) can

be uniformly decomposed into the sum of each R-factor value subchannel in Eq. (3.18)

with H = H̃ for the MMSE-DF detector by rotating the input signal vector with the

S-factor of each user’s mutual information matrix G̃
1/2
k .

Uniform decomposition of the sum Gaussian mutual information, in addition to

minimizing the MSE of MMSE-decision feedback detection described by Theorem 5.1,

also has the following two optimality properties. Suppose we wish to use the VBLAST

detector [?] based on the MMSE-DF detector for the optimal system designed in the

previous section. A natural question is: What is the optimal detection order?

Property 5.2. If the mutual information matrix of a channel matrix has an equal-

diagonal R-factor, the optimal detection order (that ensures that the high SINR com-

ponents are detected first) is the natural order, i.e., xN → xN−1 → · · · → x1, in other

words, the i-th symbol to be detected is the symbol xN+1−i.

Proof : Let the QR decomposition of G1/2 be G1/2 = QR. Then, according to

the QR interpretation of MMSE-DF detection given in Chapter 3, we know that the

SINRk of k-th symbol is SINRk = [R]2k − 1. In addition, the QR interpretation of

the optimally ordered successive cancelation detection in Section 3.3 tells us that to
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prove Property 1, we only need to prove that if we permute the last column with any

other column of G1/2, the corresponding diagonal entries of the resulting R-factors

do not increase. The detail of this proof can be found in [?].

Definition 5.1. Define the minimum distance of a finite constellation X as

dmin(X ) = min
x6=x′,x,x′∈X

|x− x′| =
√

min
x,x′∈XN ,x6=x′

||x− x′||2 (5.22)

Definition 5.2. Define the free distance of an M ×N channel matrix H as

dfree(H) =
√

min
x,x′∈XN ,x6=x′

(x− x′)HHHH(x− x′) (5.23)

The following property, whose proof is given in Appendix B.2 shows the asymptotic

behavior of the free distance for a channel with an equal-diagonal R-factor mutual

information matrix.

Property 5.3. If the mutual information matrix G1/2 of H have an equal-diagonal

R-factor, then,

lim
I→∞

dfree(H)

2I − 1
= dmin(X ) (5.24)
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Chapter 6

Simulation Results

In this chapter, we verify the performance of our optimal transceiver design using

computer simulations. Here, we present four examples in which each element of

the transmitted signal vectors is independently and equally likely selected from the

4-quadrature amplitude modulation constellation.

6.1 Example 1: A Two-user Scenario

In this example, we consider the scenario of a two-user system. Two users commu-

nicate with a base station independently, and each user employs a DMT modulation

having 32 available subcarriers. The number of subchannels Nk allocated to each of

the users is predetermined. The channel is modeled as an FIR filter with 10 taps and

the tap coefficients are generated independently from a zero-mean circular complex

Gaussian distribution. The signals are selected with equal probabilities from a 4-QAM

constellation. All the three cases use the designed decision feedback equalization. If

a subchannel is used by both of the users, then it is called a shared subchannel. Let

Nk indicates the number of subchannels User k will uses. Since there are, in total, 32

subchannels in this system, if N1 + N2 ≤ 32, then each of the two users can use sepa-

rate subchannels without sharing. However, if some subchannels are of bad condition,
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they may not be used by any of the users, in which case, the better subchannels may

have to be shared. If N1 +N2 > 32, then there must be some subchannels which have

to be shared by the two users. Figure 6.1 shows the BER against the sum Gaussian

mutual information averaged over 1000 channel realizations. For each realization, the

additive Gaussian noise is also generated independently from a zero-mean circular

complex Gaussian distribution, and is normalized to unit energy. Three cases are

simulated:

• The number of subcarriers assigned to User 1 and User 2 is 16 each (N1 = 16 and

N2 = 16), if all the subchannels are good, then there is no shared subcarriers

between the two users;

• N1 = 16 and N2 = 17, i.e., there is at least one shared subchannel;

• N1 = 17 and N2 = 17, i.e., there are at least two subchannels shared by these

two users.

From Figure 6.1, it is observed that the BER decreases with the amount of sum

Gaussian mutual information. In general, we find that when the number of shared sub-

channels grows, for the same mutual information, the average bit error rate increases,

and this phenomenon is more obvious in the high sum Gaussian mutual information

part. On the other hand, for the same BER, the amount of sum Gaussian mutual

information increases with the number of subchannels shared.

6.2 Example 2: A Three-user Scenario

A three-user scenario is modeled and simulated. Again, each user employs a DMT

modulation having 32 subcarriers. Here, the environment and the system are the

same as those in Example 1. Figure 6.2 shows the BER against the sum mutual

information averaged over 1000 channel realizations. Three cases are studied:
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Figure 6.1: BER vs the sum Gaussian information in two-user scenario

• N1 = 11, N2 = 11, and N3 = 10, again, if all the channels are good, there will

be no shared subcarriers among the three users;

• N1 = 11, N2 = 11, and N3 = 11, i.e., at least one subchannel is shared;

• N1 = 12, N2 = 11, and N3 = 11, i.e., at least two subchannels are shared.

In Figure 6.2, we obtain similar results as those shown in Figure 6.1. This confirms

the expectation that when the signals from more users are transmitted through the

same subchannel, the more errors will occur.
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Figure 6.2: BER vs the sum Gaussian information in three-user scenario

6.3 Example 3: Comparison with Linear Equaliza-

tion

In this example, we compare the performance of the transceiver design proposed in

this paper with the linear transceiver design proposed in [?]. The simulation environ-

ment is the same as in Example 1. To ensure a fair comparison, the sum Gaussian

mutual information I and numbers of subcarriers N1 and N2 assigned to each user

in our design are calculated from the algorithm in [?] with a fixed power constraint.

Then with these sum Gaussian mutual information and block length for each user, our

proposed solution in Chapter 5 is run to design the transceiver in DFE system, after

which the transmission power is calculated. 200 channel realizations are simulated

and taken average over the sum Gaussian mutual information. Figure 6.3 shows the
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average bit error rate against the averaged sum Gaussian mutual information, Fig-

ure 6.4 shows the average bit error rate against the averaged signal to noise ratio,

and Figure 6.5 shows SNR vs the amount of sum Gaussian mutual information. In

Figure 6.5, the vertical axis label SNR means the transmitted signal power to noise

power ratio.
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Figure 6.3: BER vs the sum Gaussian information: compared with linear MMSE

detection

It can be observed from Figure 6.3 and Figure 6.4 that a significant gain over

the linear receiver is obtained when the sum Gaussian mutual information is greater

than 90 bits per Hz. However, it is also observed that the performance of our DFE is

worse than that of the linear receiver when the sum Gaussian mutual information is

less than 90 bits per Hz. A reasonable cause is that propagation of errors occurs in

the successive cancelation detection. It can also be observed that in the Figure 6.5
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Figure 6.4: BER vs average SNR: compared with linear MMSE detection

when the sum Gaussian mutual information is low, the SNR (at a fixed noise power)

for MMSE-DFE is about 2dB lower for each user than that of linear transceiver.

This shows that our systems requires lower power to achieve the same amount of sum

Gaussian mutual information.

6.4 Example 4: Comparison with ML Detection

In this example, we compare our designed MMSE-DFE transceiver with both the

maximum likelihood detector (MLD) and MMSE linear equalization in [?]. Again,

we consider a two user case. However, different from the previous example, a DMT

modulation having only 4 available subcarriers is employed.

Figure 6.6 and Figure 6.7 show the average bit error rates at different sum Gaus-

sian mutual information and average SNRs respectively. The sum Gaussian mutual
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Figure 6.5: SNR vs the sum Gaussian information: compared with linear MMSE

detection

information in the case of the linear receiver is calculated at each SNR from 0 to

20dB. The number of subchannels assigned to each user, Nk is also calculated. For

the MMSE-DFE system, at each value of sum Gaussian mutual information and noise

power, we obtain our optimal transceiver design for a particular channel realization.

The SNR for each channel realization is then calculated. The mean SNR is then ob-

tained by averaging the SNR over 100 channel realizations. For the case of MLD, two

scenarios are examined: the first one applies the optimum transmitter from our design

and uses ML for detection; the other does not use any precoder at the transmitter

but only ML detection at the receiver. From Figures 6.6 and 6.7, we can see that

the performance of our optimum transceiver approaches that of the precoder-MLD

combination. It can be observed that there is only a small gap between these two
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Figure 6.6: BER vs the sum Gaussian mutual information: compared with linear

MMSE and MLD

performance curves. However, the MLD without precoder performs very poorly. The

reason is in DMT modulation the channel matrix is diagonal, so there is less diversity

in transmission if no precoding is used. For a specific channel realization, if the chan-

nel coefficients are small compared with noise coefficients, the channel is dominated

by the noise. ML detection can be impaired badly due to the diagonal structure of

the channel. As a result, the overall average of the bit error rate of the ML detection

without precoder is dominated by these several bad cases. Also we find that the

cross-over point among the BER curves moves to a much lower SNR compared to

that in the previous example, which probably is due to the shorter transmission block

and less error propagation. This makes the interpretation of error propagation more

reasonable.
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Figure 6.7: BER vs average SNR: compared with linear MMSE and MLD

For a further comparison, we examine the SNR of the fours cases. To ensure a fair

comparison between MLD and our DFE, transmission power of the case of MLD with

no precoder is made the same with that of DFE system and the number of transmitted

symbols within a block is the same in these four schemes. The noise power is also the

same in DFE and MLD. Therefore the transmitted signal power to noise power ratio

of the ML detection is the same as that of the designed DFE transmitter. Figure 6.8

indicates the SNR in linear, DFE and ML systems. The vertical axis label SNR means

the transmitted signal power to noise power ratio. It can be noticed that the SNR is

almost the same in the communication system with designed MMSE-DFE transceiver

as that in the system equipped with linear transceiver.
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Figure 6.8: SNR vs the sum Gaussian mutual information: compared with linear

MMSE and ML detection
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have jointly designed the precoder, the feedforward and the feedback

matrix of a block-by-block transmission scheme for an ISI multiple-access MIMO

communication system equipped with the MMSE-DF receiver. The design minimizes

the average MSE under a fixed sum Gaussian mutual information. Through the

development, we assumed that channel state information is perfectly known at both

the transmitters and receivers. The optimal closed-form solution is obtained by the

following two steps:

1. Find an optimal transmitter that minimizes the total power for a single user

case subject to a fixed Gaussian mutual information, i.e, solve a dual problem

of maximizing single user throughput. Therefore, by successively solving these

dual problems user after user, the total Gaussian mutual information can be

uniformly distributed over each user with the MMSE-DF detector.

2. Properly choose unitary matrices within the dual water-filling solution family

using the equal diagonal QRS decomposition, so that the Gaussian mutual in-

formation of each user can be uniformly distributed into each active subchannels
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of the user.

In addition to minimizing the arithmetic MSE of MMSE-decision feedback detec-

tion, the optimal systems are further revealed to possess the following two optimality

properties in the precoded MAC MIMO detection theory:

1. Both the optimal user-detection order and symbol-detection order are natural

orders in terms of signal to interference and noise ratios.

2. The free-distance for the ML detector has an asymptotic behavior when the

sum Gaussian mutual information tends to large.

On the other hand, despite the fact that our attention here was restricted on a specific

design of minimizing the arithmetic MSE of MMSE-decision feedback detection for

an MAC, the methodology developed in this paper can be extended into the following

fairly general optimization problem. Given are a matrix H = [H1 H2 · · · HK ], a

non-negative constant I, and K non-negative integers N1, N2, · · · , NK . Subject a

constraint log det
(
I +

∑K
k=1 HkT

H
k TkHk

)
= I, we need to find each matrix Tk that

achieves the minimum

min
Tk

K∑

k=1

Nk∑
n=1

F(
[Rk]n

)

with [Rk]n being the nth diagonal entry of the R-factor of QR decomposition of the

matrix G
1/2
k , where Gk = I+(HkTk)

H(Σk)
−1HkTk and Σk = I+

∑k−1
`=1 H`T`(H`T`)

H .

In addition, function F(2t) with respect to t is assumed to be convex. This class of

optimization problems has a closed-from solution, which can be attained from our

presented technique in this paper. Thus, the solution strategy depends only on the

features of the MMSE-DF receiver, but does not depend on the specific structure

of the objective function F(·). As a result, a single user case where an asymptotic

bit error rate of the MMSE-DF detector was minimized [?] can be generalized in

straightforward way to the multiple users scenario.
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However, we must point out here that although the power of each user can be

explicitly obtained by separately and efficiently solving the individual dual water-

filling problem, the resulting optimal solution is not optimal in the sense of total

power minimization of all users. That is to say, we still have freedom of optimally

allocating the power of each user such that the total power of all users is minimized

while maintaining the optimum value of the original objective.

7.2 Future Work

Following this thesis, we can extend the work along several directions. We give a few

examples for potential future research as follows:

• As we said in the above conclusion, in this work, the transmission power is min-

imized individually for each user, which does not indicate the total transmission

power is minimized. Therefore, minimizing the total transmission power can be

considered in the future development.

• People may question what the practical meaning for using the sum Gaussian

mutual information as a constrain is. In this thesis, especially in the simulation

part in Chapter 6, we fix the signal constellation, which means the transmission

rate is fixed. Therefore the sum mutual information can reflect the total SNR

to some extent. Then an interesting extension of this work is to minimize the

arithmetic MSE subject to individual user power constraint.

• Even though the mean square error is a good criterion to design the transceivers,

the bit error rate is more accurately to reflect the communication system’s

performance. Unfortunately, for block based MSE-DFE there is not a closed-

form solution for the probability of error, we can not find an exact expression for

the BER. However, an approximation of the BER for DFE detection has been

given in [?, ?, ?, ?, ?]. We can further use Jensen’s inequality to obtain some
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lower bound of the approximation and find ways to minimize it. Similarly the

optimization constraints can be the sum Gaussian mutual information, single

user’s mutual information, individual user’s transmission power or the total

transmission power.
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Appendix A

Proof of Lemmas in Chapter 4

A.1 Proof of Lemma 4.1

We consider the following two cases.

Case 1: r = 1. In this case, we only need to prove

b−1
1 − a−1

1 ≤ 2IH

b1

− 2IH

a1

Since IH ≥ 0, the above inequality is always true, and the equality holds when

a1 = b1.

Case 2: r > 1. For the given c > 0, let fc(t) = crt−tr. Since the first derivative of

fc(t) with respect to t is given by f ′c(t) = r(c− tr−1), f ′c(t) > 0 when 0 ≤ t < c1/(r−1)

and hence, fc(t) is increasing. On the other hand, notice that condition (4.4) is

equivalent to

b
1− 1

m
m >

(∏m−1
i=1 bi

2IH

)1/m

for m = 1, 2, · · · , rb

which, in turn, is equivalent to

bm >

(∏m−1
i=1 bi

2IH

)1/(m−1)

for m = 1, 2, · · · , rb (A.1)

63



M.A.Sc: Wenwen Jiang McMaster - Electrical and Computer Engineering

Let

F(b1, b2, · · · , br) = r

(
2IH∏r
i=1 bi

)1/r

−
r∑

i=1

b−1
i

= fc(tr)−
r−1∑
i=1

b−1
i

where c =
(

2IH∏r−1
i=1 bi

)1/r

, r = min{ra, rb} and tr = b
−1/r
r . From condition (A.1), if

m = r, we have br >
(∏r−1

i=1 bi

2IH

)1/(r−1)

. This results in b
−1/r
r <

(
2IH∏r−1
i=1 bi

)1/r(r−1)

, and

thus, 0 ≤ t < c1/(r−1). Since ar ≥ br, we can obtain

a−1/r
r < b−1/r

r <

(
2IH

∏r−1
i=1 bi

)1/r(r−1)

Using the monotonicity of fc(t), we have

F(b1, b2, · · · , br) ≥ F(b1, b2, · · · , br−1, ar)

Continuing this process until we obtain

F(b1, b2, · · · , br) ≥ F(a1, a2, · · · , ar) (A.2)

with the equality holding when bi = ai for i = 1, 2, · · · , r. This completes the proof

of Lemma 4.1.

A.2 Proof of Lemma 4.2

For any positive integer k with k + 1 ≤ rc, we have

Pk+1 − Pk = (k + 1)

(
2IH∏k+1
n=1 cn

) 1
k+1

−
k+1∑
n=1

c−1
n − k

(
2IH∏k
n=1 cn

) 1
k

+
k∑

n=1

c−1
n

= k




(
2IH∏k+1
n=1 cn

) 1
k+1

−
(

2IH∏k
n=1 cn

) 1
k




+




(
2IH∏k+1
n=1 cn

) 1
k+1

− c−1
k+1


 (A.3)
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Since the first term can be rewritten as

k




(
2IH∏k+1
n=1 cn

) 1
k+1

−
(

2IH∏k
n=1 cn

) 1
k




= k

(
2IH∏k
n=1 cn

) 1
k+1


c

− 1
k+1

k+1 −
(

2IH∏k
n=1 cn

) 1
k(k+1)




(A.4)

and the second term can be represented by

(
2IH∏k+1
n=1 cn

) 1
k+1

− c−1
k+1 = c

− 1
k+1

k+1




(
2IH∏k
n=1 cn

) 1
k+1

− c
− k

k+1

k+1


 (A.5)

For simplicity, let

a =

(
2IH∏k
n=1 cn

) 1
k(k+1)

, b = c
− 1

k+1

k+1

Then, from Eqs.(A.4) and (A.5) we have

Pk+1 − Pk = kak(b− a) + b(ak − bk) (A.6)

Since ck+1 satisfies the following inequality, ck+1 >
(∏k+1

n=1 cn

2IH

) 1
k+1

. Hence, c−1
k+1 <

(
2IH∏k+1
n=1 cn

) 1
k+1

. This is equivalent to

c−1
k+1 −

(
2IH∏k+1
n=1 cn

) 1
k+1

< 0

As a consequence, we obtain ak > bk and hence, a > b. Combing this with Eq.(A.6)

yields

Pk+1 − Pk

= (a− b)(ak−1b + ak−2b2 + · · ·+ abk−1 + bk − kak)

< (a− b)(ak + · · ·+ ak − kak) = 0

This completes the proof of Lemma 4.2.
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A.3 Proof of Lemma 4.3

The derivative of a complex matrix T is defined as

∂f(T)

∂T
=

1

2

(
∂f(T)

∂<T
− j

∂f(X)

∂=T

)
(A.7)

Here in our problem, f(T) = log det(A + THBT) where T is an M × N matrix, B

is an M × M Hermitian matrix, and A is an N × N Hermitian matrix. Applying

the formula of derivative of scalar functions of a matrix with respect to the matrix

defined in [?], we can first obtain

∂ log det(A + THBT)

∂<T

=
1

det(A + THBT)

∂ det(A + THBT)

∂<T

=
1

det(A + THBT)

∑
ij

Eij
∂ det(A + THBT)

∂<tij
(A.8)

where Eij denotes the N×M elementary matrix which has a unity in the ijth position

and all the other elements are zero. By using the general form of the derivative of

a determinant with respect to a scalar that is stated in [?], we can further expand

Eq. (A.8) into

1

det(A + THBT)

∑
ij

Eij det(A + THBT)tr

[
(A + THBT)−1∂(A + THBT)

∂<tij

]

=
∑
ij

Eijtr

[
(A + THBT)−1∂(THBT)

∂<tij

]

Let Y = (A + THBT). Then the above equation can be written as

∑
ij

Eijtr

[
(A + THBT)−1∂(THBT)

∂<tij

]

=
∑
ij

Eijtr
[
Y−1(EH

ijBT + THBEij)
]

(A.9)
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If A and B are both Hermitian , then Y is also a Hermitian matrix, i.e., YH = Y.

If we denote C = EH
ijBT, then THBEij = CH . Hence Eq. (A.9) can be rewritten as

∑
ij

Eijtr
[
Y−1(EH

ijBT + THBEij)
]

=
∑
ij

Eijtr
[
Y−1C + Y−1CH

]

=
∑
ij

Eij

[
tr(CY−1) + tr(Y−1CH)

]

According to the definition of trace, we have

tr(CY−1) =
N∑

k=1

(Ck·Y−1
·k )

tr(Y−1CH) =
N∑

k=1

(Y−1
k· (C·k)H)

with Ck· and Y−1
k· denotes the kth row of the matrix C and Y−1, Y−1

·k and CH
·k denotes

the kth column of the matrix Y−1 and CH , respectively. Since

C = EH
ijBT =




0
...

(BT)i·
...

0




CH = THBEij =
[
0 · · · (THB)·i · · · 0

]
(A.10)

the only non-zero row in matrix C is the jth row which is the ith row of matrix BT

and the only non-zero column in CH is the jth column which is nothing but the ith

column in THB . Thus Ck·Y−1
·k and Y−1

k· C·k are not zero when k = j, and

∑
ij

Eij

[
tr(CY−1) + tr(Y−1CH)

]

=
∑
ij

Eij(BT)i·Y−1
·j +

∑
ij

EijY
−1
j· (THB)·i

= BTY−1 + [Y−1THB]T

= BT(A + THBT)−1 + [(A + THBT)−1THB]T (A.11)
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That is to say,

∂ log det(A + THBT)

∂<T
= BT(A + THBT)−1 + [(A + THBT)−1THB]T (A.12)

Similarly, we can find

∂ log det(A + THBT)

∂=T
= jBT(A + THBT)−1 − j[(A + THBT)−1THB]T (A.13)

Substituting Eq. (A.12) and Eq. (A.13) into equation (A.7), we can obtain that

∂log det(A + THBT)

∂T

= [(A + THBT)−1THB]T

=
[
BT(A + THBT)−1

]∗
(A.14)
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Appendix B

Proof of Lemmas and Properties in

Chapter 5

B.1 Proof of Lemma 5.1

We know from [?] that there exists a unitary matrix Q such that matrix G1/2 can be

decomposed into G1/2 = QR, where R is a block triangular matrix; i.e.,

R =




R11 R12 . . . R1K

0 R22 . . . R2K

...
...

. . .
...

0 0 . . . RKK




.

Therefore, the (i, j)th block matrix (i ≤ j) of RHR is
∑i

k=1 RH
kiRkj. On the other

hand, the (i, j)th block matrix (i ≤ j) of G is HH
i Hj for i < j and I + HH

i Hi for

i = j. Hence, we have

i∑

k=1

RH
kiRkj =





I + HH
i Hi if i = j

HH
i Hj if i < j

(B.1)
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Now, we use mathematical induction on the row number of R to prove Eq. (5.17).

Therefore, RH
11R11 = I + HH

1 H1, from which we get

R11 =
(
I + HH

1 H1

)1/2
. (B.2)

As a result, we have

R1j =
(
I + HH

1 H1

)−1/2
HH

1 Hj for j = 2, 3, · · · , N (B.3)

Therefore, for the first row, Statement in Eq. (5.17) is true. We now assume that

Statement in Eq. (5.17) is true for i < L; i.e.,

Rij =





G
1/2
i if i = j

G
−1/2
i HH

i Σ−1
i Hj if i < j

(B.4)

In the following, we are going to prove that this statement is also true for i = L.

From Eq. (B.1) with i = j = L and using the induction assumption in Eq. (B.4) we

have

RH
LLRLL = I + HH

L HL −
L−1∑
i=1

RH
iLRiL

= I + HH
L HL −HH

L

(
L−1∑
i=1

Σ−1
i HiG

−1
i HH

i Σ−1
i

)
HL (B.5)

Using the Matrix Inverse Lemma (H+CB−1D)−1 = H−1−H−1C(B+DH−1C)−1DH−1 [?],

we have

Σ
−1/2
i HiG

−1
i HH

i Σ
−1/2
i = Σ

−1/2
i Hi

(
I + HH

i Σ−1
i Hi

)−1
HH

i Σ
−1/2
i

= I−
(
I + Σ

−1/2
i HiH

H
i Σ

−1/2
i

)−1

(B.6)

Substituting Eq. (B.6) into Eq. (B.5) yields

RH
LLRLL = I + HH

L HL −HH
L

L−1∑
i=1

(Σ−1
i −Σ−1

i+1)HL

= I + HH
L Σ−1

L HL = GL (B.7)
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Similarly, from Eq. (B.1) with i = L < j and using the induction assumption in

Eq. (B.4) we have

RH
LLRLj = HH

L Hj −
L−1∑

k=1

RH
kLRkj

= HH
L Hj −HH

L

L−1∑

k=1

Σ−1
k HkG

−1
k HH

k Σ−1
k Hj

= HH
L Σ−1

L Hj (B.8)

Combining Eq. (B.8) with Eq. (B.7), we have shown that Statement in Eq. (5.17) is

true for i = L.

B.2 Proof of Property 5.3

We first note that

HHH = (G− I)

Now consider two different signal vectors: x = [x1, x2, · · · , xN ]T and x′ = [x′1, x
′
2, · · · , x′N ]T .

If xk = x′k for k = 2, · · · , N , but x1 6= x′1. Then

(x− x′)HHHH(x− x′) =
(
(x− x′)HG(x− x′)− |x1 − x′1|2

)

= ([R]21 − 1)|x1 − x′1|2 (B.9)

Hence, by taking the minima of both sides of Eq. (B.9), we obtain

d2
free(H) ≤ min

x1,x′1∈X ,x1 6=x′1
([R]21 − 1) · |x1 − x′1|2 = (2I − 1) · d2

min(X )

which leads to

d2
free(H) ≤ (2I − 1) · d2

min(X ) (B.10)

On the other hand, we note that

(x− x′)HHHH(x− x′) =
(
(x− x′)HG(x− x′)− ‖x− x′‖2

)

=




N∑
i=1

∣∣∣∣∣
N∑

j=i

[R]ij · (xj − x′j)

∣∣∣∣∣

2

− ‖x− x′‖2


 (B.11)
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Assume x 6= x′. Let k be an integer such that xi = x′i, for i > k, but xk 6= x′k. Then,

from Eq. (B.11), using the upper triangularity of R, we have

(x− x′)HHHH(x− x′) =




k∑
i=1

∣∣∣∣∣
k∑

j=i

[R]ij(xj − x′j)

∣∣∣∣∣

2

− ‖x− x′‖2




≥ (
([R]21 − 1)|xk − x′k|2 − ‖x− x′‖2

)

≥ (
(2I − 1) · d2

min(X )− ‖x− x′‖2
)

(B.12)

Taking the minima of both sides of Eq. (B.12) yields

d2
free(H) ≥ (

(2I − 1) · dmin(X )− ‖x− x′‖2
max

)
(B.13)

Since constellation X is finite, quantity ‖x‖2
max is bounded and as a result, we can

obtain from Eq. (B.13) that

lim
I→∞

dfree(H)

2I − 1
≥ dmin(X ) (B.14)

Combining (B.10) with (B.14), we complete the proof of (5.24). Moreover, we know

from [?] that

lim
snr→∞

ln PMLD(snr)

ln Q
(√

snr dfree(H)
2

) = 1 (B.15)
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