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Abstract

The study of the different sleep stages of a patient using his/her recorded EEG signals

falls in the area of signal classification. In general, this involves extracting from the

EEG signals, a signal feature on which the classification is performed. In this thesis,

we apply the techniques of signal classification to the analysis of the sleep of a patient.

The feature we use is the power spectral density (PSD) matrices of a multi-channel

EEG signal. This not only allows us to examine the power spectrum contents of

each signal which complies with what clinical experts use in their visual judgement

of EEG signals, but also allows the correlation between the multi-channel signals to

be studied. To establish a metric facilitating the classification, we analyze the struc-

ture as well as exploit the specific geometric properties of the space of PSD matrices.

Specifically, we study this space from the viewpoint of Riemannian manifolds. We

apply a Riemannian metric and, with the aid of fibre bundle theory, develop intrinsic

(geodesic) distance measures for the PSD matrix manifold. To tilize such new dis-

tance measures effectively for EEG signal classification, we need to find a suitable

weighting matrix for the PSD matrices so that the distances between similar features

are minimized while those between dissimilar features are maximized. A closed form

of this weighting matrix is obtained by solving an equivalent convex optimization

problem. The effectiveness of using these novel weighted distance measures is verified

by applying them to the sleep pattern classification of a collection of recorded EEG
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signals using the k-nearest neighbor decision algorithm with excellent results.
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Chapter 1

Introduction

An electroencephalogram (EEG) is the measurement of electrical activities produced

by the brain. The measurement is carried out by placing electrodes on the scalp

recording the electrical potentials generated by synaptic fields in the cerebral cortex.

Although such an electrode would pick up the superposition of many different waves

emitted from various regions of the brain, rendering it more difficult to interpret

the data, EEG is still a valuable measure of the brain’s electrical function. EEGs

have been employed in many clinical areas such as administration of anaesthetics,

detection and prediction of epileptic seizures, recognition of pathological conditions

such as concussion, as well as analysis of depression, etc. [23,44,48]. In this thesis, we

study an important application of EEG to the determination of the level of sleep of a

patient. In particular, we determine the depth of a patient’s natural (no anaesthetics)

sleep by classifying the pattern of the recorded EEG signals.

The dependence of pattern classification on mathematics can be well character-

ized by the following quoting of the mathematical philosopher A. N. Whitehead: ”The

notion of the importance of patterns is as old as civilization. Every art is founded
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on the study of patterns. Mathematics is the most powerful technique for the un-

derstanding of patterns and for the analysis of the relationships of patterns.” [85].

However, mathematics being abstract, has no physical constraints. It is therefore a

challenging problem to choose the proper mathematical techniques and apply them

to the real-life pattern classification problems.

An EEG pattern is an entity indicating a specific state of the brain. EEG classifi-

cation is the study of how machines can process the EEG signals, learn to distinguish

EEG patterns in different brain states, and make reasonable decisions on the classes

of the patterns. In this chapter, we first present a brief overview of sleep staging based

on the contents of the different types of EEG signals. Then, we review some existing

EEG signal classification methods. Finally, we present a preview of our geometric

approach to EEG signal classification.

1.1 Sleep Staging by EEG Signals

The study of sleep is highly important in health care since sleep disorders affect the

well-being and productivity of many individuals. However, the sleep of a person

is not a homogenous state from the beginning to the end. Analysis of a patient’s

sleep history requires putting the patient in a sleep laboratory to acquire up to 8

hours of polysomnographic recordings which not only consists of recordings of EEG,

but often also includes ocularogram (EOG) as well as other physiological data such

as the activity of selected muscles, the electrocardiogram, oxygen concentration in

arterial blood SaO2, and breathing rate. In this thesis, our attention is focused on

the determination of the patient’s sleep stages using only the recorded EEG signals.

2
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1.1.1 Measurement of EEG signals

The recording of EEG is carried out by attaching electrodes to the scalp. A typical

international 10-20 electrode placement system is shown in Fig. 1.1. The hemispheric
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10%

10%

20%

20%

20%

20%

NASION

INION

20%

20%

10%

20%

20%

10%

20%20%10%

Fp1 Fp2Fpz

F7 F3 F4 F2Fz

Cz C4 T4
C3T3

T5 P3 P4 T6Pz

O1 O2
Oz
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Figure 1.1: A typical international 10-20 electrode placement system: A=Ear lobe,
C=Central, P=Parietal, F=Frontal, Fp=Frontal polar, and O=Occipital.

locations of the sensors are indicated by combinations of letters and numbers. The

letters Fp, F, C, P, O, T correspond to Front Polar, Frontal, Central, Parietal, Oc-

cipital, and Temporal. Locations on the right and left hemispheres are indicated by

even and odd numbers respectively while the letter Z shows electrode placements

along the centre line. According to this system, electrodes are placed at 10% and

20% of a semi-circumference measurement on the scalp (see Fig 1.1). Instead of

using the entire set of sensors, generally only M of the sensors are used for most

EEG studies. In our studies of EEG classification for sleep stage determination, a

differential understanding of EEG activity in the different regions of the brain is of

no great value. Therefore, our measurements are usually limited to a small number
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of sensors. Our decision for the placement of these sensors is based on the experi-

ence of other researchers who have carried out EEG signal measurements for sleep

stage decision. The manual published by Retschaffen and Kales [74] recommends

referential recording for single sensor EEG measurements (usually either C3 or C4,

referenced to an indifferent electrode placed on the ear lobe or contralateral mastoid

(A1 or A2). There are a number of advantages in using (C3−A2) or (C4−A1) signals.

Retschaffen and Kales state [74]: “On one hand the relatively large interelectrode

distance optimises EEG signal amplitudes for sleep analysis, and on the other hand

most sleep grapho-elements, sleep staging criteria (vertex sharp waves, K complexes

and spindles) are well visualised in these regions. Moreover, high-voltage NREM

slow waves seen maximally in frontal regions minimises the contamination of ocular

movements in REM sleep on EEG activity. By contrast, the alpha rhythm of relaxed

wakefulness is maximal over the occipital poles.” Since we are interested in all stages

of sleep including relaxed wakefulness, and, in addition, the correlation of the signals

at the various positions of the brain is also of importance to our studies, therefore,

we choose to have M = 4 sensors positioned at: C3, C4, O1, and O2, each referenced

to the earlobe sensor on the opposite side of the skull. Thus, our measurements will

all have four channels (C3 − A2), (C4 − A1), (O1 − A2), and (O2 − A1) connected

to a recording machine which displays the readings – each channel producing a time

series.

The EEG signals recorded represent the effects of the superimposition of diverse

processes in the brain and are often contaminated by noise and artifacts due to

eye blinking or other muscular activities. Even though it is, in general, a difficult

task to recognize and eliminate the artifacts in EEG recordings, it is essential to

do so for the development of practical automatic sleep staging systems. The aim of

artifacts removal should, on the one hand, minimize the amount of data that have
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to be eliminated and, on the other hand, ensure that the results obtained are not

influenced by undetected artifacts. In this thesis, we follow the usual practice of

removing noise and artifacts by suitably filtering of the EEG recordings.

After filtering and the artifacts have been removed, the EEG signal is then divided

into epochs of 30 seconds each. These are then examined by a trained clinical expert

who visually determines the stage of sleep from awake to deep sleep for each of the

epochs of the EEG data using the Rechtschaffen and Kales (R&K) [74] scoring system.

The expert’s decision is then labeled on the corresponding epoch.

1.1.2 EEG signals in sleep analysis

The different stages of the sleep process reflect the different states of the brain which

are characterized by the occurrence of different EEG signals. In general, EEG sig-

nals occupy the frequency range of 0 − 60 Hz which is usually separated into five

constituent physiological subbands, viz., δ (0− 4 Hz), θ (4− 7 Hz), α (8− 12 Hz),

β (13 − 30 Hz), and γ (30 − 60 Hz) [22]. Typical EEG patterns in these subbands

are shown in Figs. 1.2-1.6. Beside the occurrence of these more “stationary” pat-

Figure 1.2: δ wave

terns, during a patient’s sleep, there are other more transient signal patterns such

as the sleep spindles and the K-complexes. A sleep spindle consists of 12 − 16 Hz

waves that occur for 0.5−1.5 seconds. A K-complex consists of a brief negative high-

voltage peak followed by a slower positive complex. A K-complex occurs roughly
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Figure 1.3: θ wave

Figure 1.4: α wave

Figure 1.5: β wave

Figure 1.6: γ wave
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every 1.0 − 1.7 minutes and is often followed by bursts of sleep spindles. Figs. 1.7

depicts a K-complex followed by a sleep spindle.

Figure 1.7: K-complex

1.1.3 Classification of sleep stages

In 1953, Kleitman and Aserinsky [6] laid the foundation of sleep classification by

observing the existence of two different classes of sleep processes, viz., slow wave

sleep which is defined by the presence of delta activity having an amplitude of at

least 75µV in the EEG for more than 20% of the time, and rapid eye movement

(REM) sleep which refers to altered ocular motility during sleep. Further insight into

the significance of the REM stages prompted a new terminology of sleep stages that

emphasized the dichotomy of two distinct neurophysiological states of sleep: slow

sleep (non-REM sleep) and fast sleep (REM sleep). Non-REM sleep can be further

subdivided into 4 stages according to the depth of the sleep. Table 1.1 shows the

modern day classification of the various stages of sleep together with the associated

EEG activities [74].

The transition from stage to stage may be somewhat imprecise. The distinction
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Table 1.1: Sleep stages

Sleep stage Frequency range Wave patterns
1 4− 8Hz α, θ
2 8− 15Hz θ, spindles, K-complexes
3 2− 4Hz δ, θ
4 0.5− 2Hz δ, θ

REM > 12Hz β, γ
Awake 8− 12Hz or > 12Hz α, β, γ

between some stages needs quantitative measurements. For example, Stage 3 and

Stage 4 have similar rhythms. They can only be distinguished by measuring the

occupancy of delta activity.

Although the visual sleep scoring method of Rechtschaffen and Kales (R&K) [74]

has been used in clinics, it is sometimes very difficult for every electroencephalogra-

pher to note exact measures for EEG phenomena as spikes, sharp waves, or other

abnormal patterns. The experienced specialist is able to detect these EEG phenom-

ena only by “eyeballing”. This is a laborious and costly classification process, limiting

the availability of laboratory sleep analysis in current health care with inter-rater reli-

ability between two expert observers typically around 77% (Cohen’s Kappa: 0.68) [4].

Therefore, it is necessary to develop some computer-assisted systems for sleep-staging,

which is regarded as EEG signal classification.

To carry out EEG signal classification, filtering is first applied to remove interfering

components, and to extract the portion of signals of interest, i.e., features. This

is then followed by a signal classifier in which the signals are classified based on

similarity/dissimilarity measured between the features of the EEG signals. A typical

classification scheme is shown in Figure 1.8. Since the R&K manual was published,

numerous attempts to design and implement computer-based automatic sleep staging

8
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Filtering Classification
Decision

(OUtput)

Feature representation

EEG Signal

(Input)
Feature

     Extraction

Figure 1.8: A typical classification scheme

have been proposed [4].

It should be noted that sleep staging involves a rather fuzzy process of detection

and identification of EEG patterns such that it is not an easy task to perform a

computer-assisted analysis since the standards are not well defined. This may be

the reason why many algorithms developed in the past decades have not gained

wide acceptance in practice. In general, these approaches depend very much on the

population for which they were developed in the sense that the performance varies

from laboratory to laboratory.

1.2 Existing methods of EEG signal classification

1.2.1 Features and feature extractions of EEG signals

After filtering is applied to remove the artifacts, we begin the extraction of the signal

features. EEG signal features can be thought of as the characteristics of the EEG

signal suitable for the purpose of classification. The chosen feature could be the power

spectral densities (PSD), the auto regression coefficients, time frequency distributions

etc.

In the design and implement of automatic sleep staging, various features of EEG

9
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signal have been used. For example, Anderer et al [4] developed an automatic classi-

fication system based on one central EEG channel, two EOG channels and one chin

EMG channel that adheres to the R&K rules for visual scoring and includes a struc-

tured quality control procedure. They achieved an 80% (Cohen’s Kappa: 0.72) agree-

ment between automatic and visual epoch staging. Other researchers have studied

sleep stages using more analytic approaches such as ratios of power spectral densi-

ties measured with data from the different channels [28], inter and intra hemispheric

spectral coherence analysis [2], and spectral correlation coefficients between data from

the two hemispheres for each of the frequency bands [1]. Spectral power changes in

the EEG bands have also been noted during and after apnea/hypopnea events during

sleep [89]. Several researchers have reduced the number of channels of EEG in an

effort to reduce instrumentation and computational complexity. Berthomier et al [15]

validated an automatic sleep scoring system, ASEEGA, which uses spectral properties

determined by Fourier analysis or autoregressive (AR) modelling, plus recognition of

sleep features such as spindles, of single channel EEG and found agreement of 83%

between 5 state classification by 2 experts and ASEEGA. Virkalla et al [81] devel-

oped a scoring system based on the cross-correlation of low frequency bands in the

two channels of EOG, and found 72% agreement between full montage visual and

their automatic scoring. Other researchers developed a continuous marker for sleep

depth using the Short-time Fourier Transform and/or AR modelling [7]. Reduction of

feature space dimensionality has also been addressed using the minimal redundancy

method [23] or mutual information [71]. In the detection of seizures in epilepsy in

patients, wavelet decomposition and chaos analysis of EEG signals have been used to

provide features in which dimensionality has been reduced using Principal Component

Analysis [44].
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1.2.2 Recent EEG signal classification methods

After features have been selected and extracted from EEG signals, classification be-

gins. Classification algorithms can be divided into different categories based on dif-

ferent perspectives such as linear classifiers, nonlinear classifiers, and combinations of

classifiers [62].

The popular linear classifiers used in EEG signal classifications are linear discrim-

inate analysis (LDA) and linear support vector machines (SVM). LDA [33] assumes

that the data in each class has normal (Gaussian) distribution all having the same

covariance matrix. The separating hyperplane is constructed by seeking the projec-

tion that maximizes the distance between the means of two classes and minimizes the

variance of interclass. LDA classifier has a very low computational requirement which

makes it suitable as online applications [42]. The main drawback of LDA is that it

gives poor performance on complex nonlinear EEG data [41]. Linear SVM [33] aims

to find a hyperlane that maximizes the margins, i.e., the distance from the nearest

training points. Linear SVM has been successfully applied to synchronous brain com-

puter interface (BCI) problems [42]. By using “kernel trick” the linearity restriction

can be relaxed so that nonlinear decision boundaries can be created, with only a low

increase of the classifier’s complexity. The radial basis function (RBF) SVM also have

successful applications in EEG signal classification [42]. SVM has good generalization

properties due to the margin maximization and the regularization. It is insensitive to

overtraining. It overcomes the problem of “curse-of-dimensionality”. The drawback

is the low speed of execution.

The nonlinear classifiers mostly used in EEG signal classification are the Nonlinear

Bayesian classifiers [56]. Another choice is the Hidden Markov model (HMM) classi-

fiers because it is not necessary to extract feature vectors from EEG signals for the

classification. HMM has been used successfully in BCI [69,70] and sleep staging [32].

11
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A neural network can be viewed as universal approximator of continuous functions.

Thus, it can produce nonlinear decision boundaries when used in classification [19].

However, the universality makes the classifiers sensitive to overtraining, especially

with noisy and non-stationary data. Therefore, one must be careful to select the

architecture and regularization [52]. Multilayer perceptron (MLP), together with

linear classifiers, are the neural networks mostly used in EEG signal classifications [49,

9, 82]. Other neural network architectures have also been applied to EEG signal

classifications [65].

The k-Nearest neighbor classifiers are the simplest and among the most effective

nonlinear classifiers. The idea is to assign a feature vector to a class according to

its nearest neighbors. The neighbors can be feature vectors from the training set

if a distance measure is defined between feature vectors [20], or class prototypes if

Mahalanobis distance is used [25]. The performance of a k-nearest neighbor classifier

can be equal to that of a neural network classifier in the automatic scoring of human

sleep recordings [11]. A more detailed introduction of k-nearest neighbor classifier

will be given in Chapter 5.

There are others who suggested the use of several classifiers in cascade, each

classifier focusing on the errors committed by the previous ones [33, 52]. However,

the complexity of the classification will also dramatically increase.

As introduced in the above, if EEG signals can be represented by feature vectors

of appropriate size in the sense of low dimensionality, then there are various choices

of classifiers to carry out the classification [33]. However, feature extraction is not

a trivial problem in the sense there is no way to guarantee that features extracted

from EEG observations are good for classification. Furthermore, based on the same

feature space, different classifiers often give very different classification performance.

Examples of such difference in performance can be found in [44].

12
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The above approaches of automatic EEG classification for sleep state determina-

tion have limited success rate and have thus not been widely used. At present, the

common practice is still to have the EEG signals determined by sleep experts whose

judgments are based mainly on the frequency and amplitude of the recorded EEG

signals which are governing factors of the power distribution of the signal. Since

modern EEG and polysomnography systems (e.g. Xltek, Oakville, Ontario, Canada)

are computer-based, EEG data that have already been classified by expert clinicians

are now readily available to test new approaches.

1.3 A new outlook on EEG signal classification

Signal classification is essentially a process of measuring the similarity and dissimi-

larity of the feature of a signal from different known feature sets. The measure of

similarity/dissimilarity is generally based on the concept of distance. The most com-

monly used approaches to the problem is from a vector space point of view [36,73] in

which the selected features of the different classes of signals are treated as entities in

a vector space prescribed with a distance measure. Here in this section, we will give

an introduction to our outlook on the geometry of this vector space which forms the

basis of the thesis. First, let us examine a feature of the EEG signal which may be

attractive for practical sleep classification.

1.3.1 PSD – an EEG signal feature for sleep assessment

In the previous section, we mentioned that at present, the common practice of deter-

mining a patient’s sleep stage is still by having sleep experts to visually inspect the

EEG signals and to make judgments based mainly on the frequency and amplitude of

the recorded EEG signals. These are the governing factors of the power distribution

13
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of the signals. That classification of sleep stages can be carried out by inspecting
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subject A
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(c) Power spectral densities of the EEG signals S(1) and s(2)

Figure 1.9: Example 1

the amount of power in certain frequency ranges can be illustrated by studying the

power spectral densities of EEG signals in the following examples. Figure 1.9 shows

the case of two EEG signals and their power spectral densities from one class, and

Figure 1.10 shows the case of two EEG signals and their power spectral densities from

a different class. To compare these power spectral densities we put them in one figure

as shown in Figure 1.11.

It can be seen that EEG signals from the same class have similar power spectral

densities and signals from different classes have obvious different power spectral den-

sities in the sense of their shapes. Therefore, we conclude that the judgements of the

sleep experts have sound basis and that it is reasonable to represent EEG signals by
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(b) s(4): An EEG signal from sleep state 3 of
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(c) Power spectral densities of the EEG signals s(3) and s(4)

Figure 1.10: Example 2

0 5 10 15 20 25 30
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

pow
er

frequency (Hz)

 

 

psd of S(1)

Psd of S(2)

psd of S(3)

Psd of S(4)

Figure 1.11: Comparison of the spectral densities of the EEG signals s(1), s(2), s(3),
and s(4)
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their power spectral densities for sleep classification purposes. Since it is essential for

our results of the automatic EEG classification to have meanings which concur with

judgements of the clinical experts, in our studies, we have chosen the PSD of the EEG

signals as the selected feature. In particular, since the EEG signals are collected from

multi-channel measurements, we use the PSD matrices of the multi-channel EEG sig-

nals as our features. This will not only provide us with the power density distribution

information of the signals, but will also provide us with the information of the cross

power density distributions between the signals from the different channels. The use

of the PSD matrix as the chosen feature can further be justified by noting that the

EEG signals are generally considered to be wide-sense stationary (WSS) processes,

and therefore, can be represented by their second order moments, or equivalently,

their PSD matrices (see Chapter 2).

1.3.2 Distance measures for signal classification

Let us turn to the process of classification. Supervised signal classification is a com-

parison of similarity/dissimilarity between a signal and a standard group of signals

so that a decision can be made. To this end, we define a distance between a pair of

signals. Now, the set of signals itself begins to take on a geometric character called a

signal space [36]. (A more detailed discussion of this concept is given in Chapter 2).

The extracted features of the signals can also form a signal space on which a distance

can also be defined for the purpose of classification. For example, suppose the signals

(or their features) are represented by the set Rn (or Cn) of ordered sequences of n

real (or complex) numbers (n-tuple) such that x = [x1, · · · , xn]. Then, the totality

of n-tuples of values of {x1, · · · , xn} constitutes a real (or complex) signal space of

n-dimensions. Each of the n-tuples is called a point in the space. There are many

ways of defining the distance between two points in a signal space, each providing the

16



Ph.D. Thesis Yili Li McMaster - Electrical & Computer Engineering

space with different geometric characteristics and application advantages [77]. Some

examples of such measures will be discussed in Chapter 3. A standard metric in this

n-dimensional signal space is the Euclidean distance such that

d2(x,y) =

√√√√
n∑

i=1

|xi − yi|2 (1.1)

This metric is used in a majority of engineering measurements due to the many

important physical quantities it can represent.

However, while the Euclidean metric is very useful in most physical applications, it

may not be the most appropriate measure for some. In our case of EEG signal classifi-

cation, we use the PSD matrices of the EEG signals as features. These PSD matrices

form different points in the signal space in which our classification is performed. Now,

if we examine these PSD matrices, we observe that they are: 1) Hermitian symmetric,

and 2) positive definite. These common properties of the PSD matrices describe a

hyper-surface, called a manifold, in the signal space on which these points of PSD

matrices are located. More specifically, these PSD matrices describe a Riemannian

manifold [40], which is a particular kind of differentiable manifold (for further details,

see in Appendix B). Now, if measurement of the distance between two points is to

be carried out for the purpose of classification, a reasonable way is to measure the

distance along the shortest path on the manifold between the points. This is analo-

gous to finding the distance between two cities on a globe in which case the shortest

path between two points on the globe surface has to be established and measured.

The Euclidean distance which measures the straight line joining the two points may

be neither appropriate nor informative. The following example further reinforces this

idea:

Suppose that we have some data points which are distributed on a curved surface

in R3 as shown in Figure 1.12. Now, consider the three points A,B, and C. Here,
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Figure 1.12: Data on a curved surface

the Euclidean distance between two points is measured in terms of the length of the

straight line between them. Thus, the Euclidean distance between A and B is shorter

than the Euclidean distance between A and C. On the other hand, if we measure

the distance in terms of the shortest length along the curved surface joining the two

points (called the intrinsic distance), then clearly, the distance between points A and

B is much longer than the distance between points A and C. For this given data

set, the use of the intrinsic metric to measure similarity/dissimilarity may yield more

appropriate results than the use of Euclidean distance in practice.

Therefore, in this thesis, we explore the geometry of the Riemannian manifold of

the EEG PSD matrices. By considering the tangent space at a point on the feature

manifold, we can develop a suitable Riemannian metric from which a geodesic (the

curve of minimum distance) between two points on the manifold can be established.

The direct evaluation of the Riemannian (geodesic) distance may, in general, be very

complicated or even untractable. However, with the help of fibre bundle theory, a

straightforward derivation of the distance can be obtained.
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Furthermore, even though we have seen that the PSD matrices may be a reason-

able choice of a signal feature for EEG classification in the determination of sleep

levels, there is no guarantee that this choice will yield the optimum separability

between different signal classes. We therefore propose to weight the Riemannian dis-

tance so that the distinction between similar and dissimilar signal groups may be

enhanced. To this end, we seek an optimum weighting matrix for the features using

convex optimization techniques. A closed form of the weighting matrix can then be

obtained.

Using the optimally weighted Riemannian distance, we can employ a classifier

to carry out the EEG classification. We use the k-nearest neighbor classifier in this

thesis due to its relative simplicity. The effectiveness of our new geometrical approach

to EEG classification can then be thoroughly tested.

1.4 Main features of the thesis

The following are the main features of this thesis:

1. The PSD matrix is chosen as the feature representing an EEG signal for clas-

sification purpose. Therefore, EEG epochs are represented as curves on the

manifold of PSD matrices.

2. Geodesic distances are developed with chosen Riemannian metrics endowed

to the manifold by using elementary Riemannian geometry. Applying fibre

bundle theory, complex computation is avoided in the evaluation of the geodesic

distance by establishing an isometric horizontal subspace of the tangent space

at the image of the point considered on the manifold.

3. The similarity/dissimilarity measure between two EEG signals is defined in
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terms of the geodesic distances.

4. A general distance metric learning problem is proposed. In particular, an opti-

mum weighting matrix for the geodesic distance on the manifold of PSD matri-

ces is found in a closed form.

5. k-nearest neighbor classification rule is applied. To reduce the computational

load for the Riemannian distances between a large number of points in the case

of very large training sets, a multi-mean representation of classes is proposed

and applied.

6. Experimental results show the power of the discrimination of the classification

method developed.

Features listed in Items 2, 3, and 4 are considered major research contributions of

this thesis.
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Chapter 2

EEG Signals – Pre-Processing,

Feature Extraction and

Mathematical Representations

For efficient classification, the EEG signals have to be reasonably free from artifacts

and other interference so that the signal and its feature characteristics can be deter-

mined accurately. In this chapter, we examine the collected EEG signals which are in

segments of 30-sec epochs with a sampling frequency of 200Hz. The pre-processing

of the EEG signals collected from the patient is first carried out so that artifacts are

removed and additive noise reduced. Then, we examine the properties of the PSD as

a feature of the EEG signal and describe how this feature can be extracted from the

collected signals. We then present a general mathematical method of representing

the EEG signals and their PSD matrices.
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2.1 Pre-processing of EEG signals

As mentioned in Chapter 1, EEG signal measurements are subject to the interference

of noise and other internal and external artifacts. The effects of these interference may

often lead to the degradation of the classification performance. Therefore, before the

process of classification, the EEG signals must first be pre-processed so as to remove

the artifacts and reduce the noise in the signals.

2.1.1 Artifact removal

Artifacts in EEG signals are usually caused by movements internal or external to

the patient. Artifacts removal is still one of the challenges in EEG signal processing.

The problem is that there is no definite shape or size or duration of the artifacts.

At present, the common practice of the clinical experts is to identify the artifacts by

visual inspection and then replace the artifact samples. Other methods have been pro-

posed to remove artifacts from EEG recordings including regression in time/frequency,

and linear decomposition and reconstruction, etc. [46, 86, 5, 92, 24, 76]. Since this is

not the main theme of the thesis, we will simply follow the common practice of visual

inspection. A brief description of our procedure is given in the following:

We notice that the amplitudes of artifacts in the collected EEG signals are usually

very large and very short in duration compared to that of the the normal EEG signals.

An example of such is shown in Figure 2.1 in which an EEG signal of sleep stage 1

contains an artifact during time interval 20− 20.1 seconds.

In the pre-processing of such artifact infested signals, we measure the mean µ and

standard deviation σ of the EEG signal epoch. Treating the distribution of the EEG

signal as if it is Gaussian, any sample which has an amplitude larger than |µ + 3σ|
will be removed [10] and replaced by random samples within the range of ±|µ + 3σ|.
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Figure 2.1: EEG signal with artifact

Figure 2.2 shows the EEG signal of Figure 2.1 after the artifact samples are removed.

2.1.2 Noise filtering

Since in our applications, all the EEG signals concentrate in the frequency range of

0 − 35 Hz, therefore, to reduce the additive noise in the recorded EEG signals, we

apply low-pass filtering to the signal epochs after the artifacts have been removed.

To ensure a relatively low distortion to the signal we choose the Butterworth filter

design since it has a maximally flat amplitude response and a relatively linear phase

response in the pass-band [18]. It should also have a relatively narrow transition

band. For these requirements, a tenth order low-pass Butterworth filter with the

cut-off frequency of 58Hz is chosen and is realized as an Infinite-duration Impulse

Response (IIR) digital filter [34]. The transfer function of such a filter is given by [34]

H(z) =
N(z)

D(z)
(2.1)
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Figure 2.2: EEG signal with artifact removed

where

N(z) = 0.0093z10 + 0.0932z9 + 0.4193z8 + 1.1180z7 + 1.9565z6 + 2.3478z5

+1.9565z4 + 1.1180z3 + 0.4193z2 + 0.0932z + 0.0093 (2.2)

and

D(z) = 1.0000z10 + 1.5938z9 + 2.4143z8 + 2.0262z7 + 1.4469z6 + 0.7003z5

+0.2712z4 + 0.0723z3 + 0.0139z2 + 0.0016z + 0.0001 (2.3)

The amplitude and phase response are shown in Figure 2.3.

It can be seen that the amplitude response is flat from 0 to 35 Hz (corresponding

to the normalized frequency of 2 × ω/ωs = 2 × 35/200 = 0.35, where ω is the fre-

quency in radians/second and ωs is the sampling frequency) and the phase response

is approximately linear in the range of 0− 35 Hz.

At the transition band, although the amplitude response rolls off relatively more

gently than some other designs (e.g., Chebychev, elliptic, etc.), this has insignificant
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Figure 2.3: The amplitude and phase response of the filter

effects on our purpose because the EEG signals have negligible amplitudes beyond

the frequency range of 35 Hz. The EEG signal of Figure 2.2 after passing through

the digital Butterworth IIR low-pass filter is shown in Figure 2.4.

2.1.3 EEG signal normalization and data collection

After the above clean-up procedures, we can now collect all the M channel measure-

ments for the ith patient and represent each of the preprocessed nth epoch of these

multi-channel data at time t as a vector:

s′(i)n (t) = [s′(i)n1(t), · · · , s′(i)nM(t)]T , t = 1, · · · , T (2.4)

Thus, the nth epoch measured data matrix (representing M channels of measured

data for a duration of T seconds) for the ith patient is given by

S′(i)n = [s′(i)n (1), · · · , s′(i)n (T )], n = 1, · · · , N (i) (2.5)
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Figure 2.4: The filtered EEG signal

Each epoch of measured EEG data is then normalized such that the normalized data

matrix is given by

S(i)
n =

S′(i)n

‖S′(i)n ‖F

=
S′(i)n∑M

i=1

∑T
j=1[S

′(i)
n ]ij

(2.6)

with [S′(i)n ]ij denoting the ijth element of S′(i)n . These normalized data matrices are

then carefully inspected and classified by several clinical experts and is labeled indi-

cating that it represents a particular state of sleep for the patient. Thus, for the ith

patient, we have the following labeled sample EEG signals:

D(i) =

{ 
 S

(i)
1

`
(i)
1


 , · · · ,


 S

(i)
n

`
(i)
n


 , · · · ,


 S

(i)

N(i)

`
(i)

N(i)




}
(2.7)

where

`(i)
n ∈ L = {1, 2, · · · , L} (2.8)

denotes the label of the nth epoch of the EEG signal belonging to any of the L states

of sleep. A library of these labeled sampled EEG signals from several patients are
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stored up such that D =
⋃

iD(i) having a total of N =
∑

i N
(i) epochs of data. Since

the goal of the research in this thesis is to derive a reliable classification method to

automatically determine the label `0 of a new normalized measured EEG data matrix

S0 without having to involve expert human judgement, this collection of data will

serve as a reference library as well as the supply of test data for formulating the

classification measure and testing the performance of the classification methods.

2.2 EEG signals – wide-sense stationarity

We now turn our attention to the feature characterization of the EEG signals. Since

there is no deterministic pattern of an EEG signal, it is usually regarded as stochastic.

Let us first review some basic properties of stochastic processes [72]. A stochastic

process s(t, ξ) can be viewed as a real (or complex) valued function of two variables

t and ξ. The domain of ξ is the set S of outcomes of an experiment and the time

domain of t is a set of real numbers. For a specific outcome ξi, s(t, ξi) signifies a single

time function. For a specific time ti, s(ti, ξ) is seen as a random variable. We usually

use s(t) to representation of a stochastic process with its dependence on ξ omitted.

For a real process s(t), the value s(t) at a specific t is a random variable. The

distribution of this random variable will depend on t in general, i.e., we have

F (s, t) = P (s(t) ≤ s) (2.9)

where P (·) denotes the probability of the event. Eq. (2.9) is called the first-order

distribution of the process s(t). In most situations, the distribution has a probability

density function which can be defined as

f(s, t) =
∂F (s, t)

∂s
(2.10)
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The joint distribution of s(t1) and s(t2) depends, in general, on t1 and t2, i.e.,

F (s1, s2, t1, t2) = P (s(t1) ≤ s1, s(t2) ≤ s2) (2.11)

which is called the second order distribution of the process s(t). The corresponding

density function is given by

f(s1, s2, t1, t2) =
∂2F (s1, s2, t1, t2)

∂s1∂s2

(2.12)

In general, it is costly to measure the distribution F (s, t) experimentally and the

computation of the probability density function f(s, t) is extremely difficult. They

are also too cumbersome to be used in practice. A simpler alternative to this form

of description is to compute a number of average characteristics of a process. In

other words, the moments of a probability distribution serve as simple numerical

characteristics of the distribution.

The mean µ(t) of a process s(t) is defined as the expected value of the random

variable s(t) (at a fixed t), i.e.,

µ(t) = E[s(t)] =

∫ ∞

−∞
sf(s, t)ds (2.13)

It is, in general, a function of t. The autocorrelation of s(t) is defined as the joint

moment of the random variable s(t1) and s(t2), i.e.,

r(t1, t2) , E[s(t1)s(t2)] =

∫ ∞

−∞
s1s2f(s1, s2, t1, t2)ds1ds2 (2.14)

and it is a function of t1 and t2. The autocovariance of s(t) is the covariance of the

random variable s(t1) and s(t2), i.e.,

c(t1, t2) , E[(s(t1)− µ(t1))(s(t2)− µ(t2))] (2.15a)

= r(t1, t2)− µ(t1)µ(t2) (2.15b)
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The relationship between autocorrelation and autocovariance in Eq. (2.15b) follow

directly from Eqs. (2.14) and (2.15a).

The cross-correlation of two processes s1(t) and s2(t) is defined as

rs1s2(t1, t2) , E[s1(t)s
H
2 (t)] (2.16)

and their cross-covariance as

cs1s2(t1, t2) = rs1s2(t1, t2)− µs1(t1)µ
H
s2

(t2) (2.17)

A process s(t) with distribution function F (s, t) is called a wide sense stationary

(WSS) process if it satisfies the following two conditions

(1) The mean value of s(t) is a constant, i.e.,

µ(t) = µ, a constant (2.18)

(2) The autocorrelation function depends only on the time difference τ = t1 − t2,

i.e.,

r(t1, t2) = r(t1 − t2) = r(τ) (2.19)

We say that two processes s1(t) and s2(t) are jointly stationary in the wide sense if

each of them is a WSS process and their cross-correlation depends only on the time

difference τ = t1 − t2:

rs1s2(τ) = E[s1(t + τ)s2(t)] (2.20)

These averages do not necessarily describe a stochastic signal completely, but

they may be very useful for a general description of signals such as EEG. In fact,

the statistical properties of EEG signals depend on both time and space. These

make EEG signals complex. The temporal characteristics show that EEG signals are

varying from time to time. However, each time series can be divided into epochs
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which have more or less time-invariant statistical properties [84]. It is thus commonly

assumeed that EEG epochs (awake condition or during sleep) of less than 32 seconds

are wide-sense stationary [64].

2.3 Power spectral density – A feature character-

ization of EEG signals

The power spectral density (also called power spectrum) function, p(ω), and the

autocorrelation, r(τ), of a WSS process s(t) form a Fourier transform pair (see [91]

for a rigorous treatment) such that , i.e.,

p(ω) =
1

2π

∫ ∞

−∞
r(τ)e−jωτdτ (2.21)

r(τ) =

∫ ∞

−∞
p(ω)ejωτdω (2.22)

whereas the cross-power spectral density, ps1s2(ω), and the cross-correlation, rs1s2(τ),

of two WSS processes also form a Fourier transform pair:

ps1s2(ω) =
1

2π

∫ ∞

−∞
rs1s2(τ)e−jωτdτ (2.23)

rs1s2(τ) =

∫ ∞

−∞
ps1s2(ω)ejωτdω (2.24)

The spectral representation of a univariate WSS process can be generalized to

multidimensional case in a straightforward way. Let us consider a WSS M channel

EEG signal

s(t) = [s1(t) s2(t) · · · sM(t)]T , t = 1, 2, · · · , T (2.25)
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It can be written in a matrix form as

S = [s(1), · · · , s(T )] =




s1(1) · · · s1(T )

s2(1) · · · s2(T )
...

. . .
...

sM(1) · · · sM(T )




(2.26)

We make an MT ×MT vector by stacking columns of S as

š = [s(1)T , s(2)T , · · · , s(T )T ]T . (2.27)

Then, this signal can be characterized by its mean and variance-covariance matrix,

i.e.,

µ̌ = E[̌s] (2.28)

and

Ř = E[(̌s− µ̌)T (̌s− µ̌)], (2.29)

which contains the M ×M matrices R(τ) = R(t1 − t2), t1, t2 = 1, · · · , T , specifically

Ř =




R(0) R(1) · · · R(T − 1)

R(−1) R(0) · · · R(T − 2)
...

...
...

...

R(1− T ) R(2− T ) · · · R(0)




, (2.30)

where

R(τ) = R(t1 − t2) =




r11(τ) r12(τ) · · · r1M(τ)

r21(τ) r22(τ) · · · r2M(τ)
...

...
...

...

rM1(τ) rM2(τ) · · · rMM(τ)




, (2.31)

where

rij(τ) = E[(si(t)− µi)(sj(t + τ)− µj)]. (2.32)
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Since the EEG signals we considered are real, we have

RH(τ) = R(−τ). (2.33)

Thus, the matrix Ř can be completely characterized by the 2T elements {R(1 −
T ), · · · ,R(−1),R(0),R(1), · · · ,R(T − 1)}.

The information contained in the covariances can be expressed equivalently in

terms of the power spectral density matrix, P(ω), of the signal which is the Fourier

transform of the autocorrelation of matrix such that

P(ω) =
1

2π

∫ ∞

−∞
R(τ)e−jωτdτ (2.34)

if ∫ ∞

−∞
‖R(τ)‖dτ < ∞. (2.35)

where ‖ · ‖ denotes the `1-norm of the matrix. Eq. (2.34) gives the power spectral

density for a continuous signal in terms of its autocorrelation function. For observed

signals in discrete time as is in the case of EEG signal measurements, we need to take

the discrete Fourier transform (DFT) of the signal autocorrelation so that

P(ω) =
∞∑

τ=−∞
e−jωτR(τ) (2.36)

In practice, the autocorrelation matrix is evaluated by taking the product of the

finite signal sequences at different time shifts. That the dDFT of this product indeed

converges to Eq. (2.36) can be seen using the following lemma [51]:

Lemma 2.1 Let ρn = a0 + · · · + an be the partial sum of a series
∑n

k=0 ak. Let

βn = (ρ0 + · · · + ρn−1)/n =
∑n−1

k=0(1 − k
n
)ak be the Cesàro mean (average sum). If

limn→∞ ρn = ρ, then limn→∞ βn = ρ.
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Assuming E[s(t)] = 0 without loss of generality, we consider

I(ω) =
1

2πT

[
T∑

t=1

s(t)e−jωt

][
T∑

t=1

s(t)e−jωt

]H

. (2.37)

Taking the expectation we have

E[I(ω)] =
1

2π

T−1∑
τ=−T+1

(
1− |τ |

T

)
e−jωτR(τ), (2.38)

which is a Cesàro mean of the series for

P(ω) =
∞∑

τ=−∞
e−jωτR(τ) (2.39)

By Lemma 2.1, the series (2.38) is convergent and

lim
T→∞

E[I(ω)] = P(ω) º 0 (2.40)

since E[I(ω)] º 0. The fact that P(ω) is Hermitian and positive semi-definite follows

from Equation (2.34) and RH(τ) = R(−τ).

The spectral density measures how the power of an EEG signal is distributed with

frequency and has been commonly used as a feature for EEG signal classification.

However, for most of the applications, either the power spectral information of a

single channel EEG signal or the collection of the power information of several single

channel EEG signals is used. The inter-channel information (cross-power spectrum)

which may be important for EEG signal classification has not been used. Furthermore,

if power spectral density is used as the feature for EEG signal classification, then

the geometrical structure of the space it describes is essential to the definition of

similarity/dissimilarity between EEG signals. For these reasons, we choose to employ

the power spectral density matrices as the feature characterizing the multi-channel

EEG signals. Examination and analysis of the geometry of the space of the power

spectral density matrices leads to novel and efficient similarity/dissimilarity measures

on the space for classification.
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2.4 Feature extraction – Estimation of the PSD

matrix

The power spectral density of a signal can be estimated using either non-parametric

methods or parametric modeling methods [55]. Non-parametric methods are simple,

but are in general, not consistent in the estimate of the power spectrum. Further-

more, they are limited in their ability to resolve closely spaced variations of frequency

response when the number of data samples is limited. The parametric modeling ap-

proaches usually give higher accuracy in the spectral estimation of signals if the model

is chosen appropriately. There are various choices of parametric modeling. Here, be-

cause of its relative simplicity, we use the vector auto-regression (VAR) model for the

estimation of EEG power spectral density, a brief outline of which is presented in the

following:

The autocorrelation function (ACF) of a spectrally white multichannel noise se-

quence n(t) satisfies

Rnn(τ) = E[nH(t)n(t− τ)] = Pnnδ(τ) (2.41)

where Pnn is a constant M ×M matrix. Thus its PSD matrix is a constant, i.e.,

Pnn(ω) = Pnn (2.42)

Now, the output signal of a q-th order vector auto-regression (VAR) model can be

described as

s(t) = −
q∑

τ=1

A(τ)s(t− τ) + n(t) (2.43)

where A(τ) are the M × M coefficient matrices and n(t) is the M × 1 vector of a

34



Ph.D. Thesis Yili Li McMaster - Electrical & Computer Engineering

spectrally white noise. Let A(0) = I. Then, the ACF of n(t) is

Rnn(τ) = E[n(t)nT (t + τ)]

= E
[ q∑

κ=0

q∑
ι=0

A(κ)s(t− κ)sT (t + κ− ι)AT (ι)
]

=

q∑
κ=0

q∑
ι=0

A(κ)Rss(τ + κ− ι)AT (ι) (2.44)

Taking the z-transform of Eq. (2.44), we have

Z[Rnn(τ)] =
∞∑

τ=−∞
Rnn(τ)z−τ

=
( q∑

κ=0

A(κ)zκ
)( ∞∑

τ=−∞
Rss(τ + κ− ι)z−(τ+κ−ι)

)( q∑
ι=0

AT (ι)z−ι
)

(2.45)

Let z = ejω and use Eq.(2.36), we have

Pnn(ω) =
( q∑

κ=0

A(κ)ejωκ
)
Pss(ω)

( q∑
ι=0

AT (ι)e−jωι
)

(2.46)

Therefore, we have

Pss(ω) =
( q∑

κ=0

A(κ)ejωκ
)−1

Pnn(ω)
( q∑

ι=0

AT (ι)e−jωι
)−1

=
( q∑

κ=0

A(κ)ejωκ
)−1

Pnn

( q∑
ι=0

AT (ι)e−jωι
)−1

(2.47)

by Eq. (2.42). Let

A(ω) =

q∑
τ=0

A(τ)e−jωτ (2.48)

Then

AT (ω) =

q∑
τ=0

AT (τ)e−jωτ (2.49)

Thus, the Eq.( 2.47) can be rewritten as

Pss(ω) = A−1(−ω)PnnA
−T (ω) (2.50)
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From Eq. (2.50) we see that to find the power spectral density matrices Pss(ω) of the

signal s(t) one need to estimate the coefficient matrices A(τ) in the VAR model of

Eq. (2.43). We employ the Nuttall-Strand algorithm [68] [79] which is a well-known

algorithm applying the observed signal sequence to estimate the coefficient matrices

A(ω) and the power spectral density Pnn of the spectrally white noise. The estimate

of P(ω) based on the VAR model is given by

P̂(ω) = Â−1(−ω)P̂nnÂ
−T (ω) (2.51)

where (̂·) denote estimated quantity. The detailed description of the algorithm is

shown in Appendix C. The estimated PSD matrix P̂(ω) so obtained will be used as

the feature for the classification of the EEG signals in our sleep analysis.

2.5 Representation of the PSD matrix in linear

vector spaces

Having collected all signals (or their features) exhibiting some common property into

a set, our attention naturally turns to examining the distinctive properties of elements

within the set. A particular signal is interesting only in relation to other signals in

the set. A general approach for studying the properties of the elements of a signal

set is to add some simple algebraic and geometric structures to the set. This can

be achieved through the concept of a signal space (normed linear vector space). In

this section we first review the concept of linear spaces [77] [87], in particular, an

inner product space and show how, in general, the feature of PSD matrices can be

represented in such a space.
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2.5.1 Inner product linear space

2.5.1.1 Metric spaces

A general approach for characterizing the difference between two elements of a signal

set is to assign to each pair of elements a positive, real number. This number will

be interpreted as the “distance” between the elements. The set, with a suitably

defined distance, will be referred to as a signal space. To define a distance, we need

a functional which maps all pairs of elements from the set into the real line. Such a

functional, d : {x, y} → R, is called a metric if it posses the following properties:

d(x, y) ≥ 0 and d(x, y) = 0 iff x = y

d(x, y) = d(y, x) (symmetry)

d(x, z) ≤ d(x, y) + d(y, z) (triangular inequality)





(2.52)

A set of elements X , together with a metric d, is called a metric space (X , d). It should

be noted that two different metrics, defined on the same set of elements, formed two

different metric spaces. For a given metric space (X , d), a sequence x1,x2,x3, . . . is

Cauchy if, for every positive real number ε > 0, there is a positive integer N such

that for all natural numbers m,n > N ,

d(xm,xn) ≤ ε (2.53)

A metric space (X , d) is complete if every Cauchy sequence in (X , d) has a limit that

is also in (X , d).

2.5.1.2 Normed linear spaces

A linear space is a set of elements called vectors with the following properties:

A. For each pair of vectors x and y in the set, there is a corresponding vector in

the set x + y called the sum of x and y, such that
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(1) Addition is commutative: x + y = y + x

(2) Addition is associative: x + (y + z) = (x + y) + z

(3) The set contains a unique vector 0 such that x + 0 = x ∀ x

(4) For each x, there is a unique vector (−x) such that x + (−x) = 0

B. There is a set of elements (called scalars) which form a field and an operation

(called scalar multiplication) such that for every scaler α and every vector x

there is a vector αx, and multiplication by scalars follows:

(1) α(β x) = α β x (associative law)

(2) 1x = x and 0x = 0 ∀ x

(3) α(x + y) = αx + αy (distributive law)

(4) (α + β)x = αx + β y (distributive law)

The scalars can be real or complex resulting in the linear space being a real or complex

linear space. Under the above vector addition and scalar multiplication, a vector

space is closed.1. The vector obtained by taking the sum of n particular vectors, each

multiplied by a scalar coefficient

x =
n∑

i=1

αi xi (2.54)

is called a linear combination. The set of all linear combinations of {x1,x2, . . . ,xn}
forms a linear space. Furthermore, if we take a subset of

{x1,x2, . . . ,xn}, e.g. {x1,x2, . . . ,xm}; m < n

then the set of linear combinations forms a linear space which is a subset of the linear

space form from linear combinations of {x1,x2, . . . ,xn}. Such a subset is called a

1The vector resulting from the operations of addition and scalar multiplication remains in the
vector space
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linear subspace. A set of vectors {xi; i = 1, 2 . . . , n} is said to be linearly independent

if the relation

n∑
i=1

αi xi = 0 (2.55)

can only be satisfied if each of the scalars αi is zero. In other words, a vector in a

linearly independent set cannot be expressed as a linear combination of the other vec-

tors in the set. Let X be the space of linear combinations of n linearly independently

vectors {xi, i = 1, 2, . . . n}. Each vector in X is a unique linear combination of the

{xi} (a unique set of scalar coefficients). X is said to be an “n-dimensional” linear

space. The set {xi} is called a basis for X , and X is said to be spanned by this basis.

Any set of n linearly independent vectors in X will serve as a basis for X ; hence a

linear space does not have a unique basis. Furthermore, if we take a subset of

{x1,x2, . . . ,xn}, e.g. {x1,x2, . . . ,xm}; m < n

then the set of linear combinations forms a linear space which is a subset of the linear

space form from linear combinations of {x1,x2, . . . ,xn}. Such a subset is called a

“linear subspace”.

Representation of Finite-Dimensional Vectors: Now letM be an arbitrary n-dimensional

linear space spanned by the basis {ui; i = 1, 2, . . . , n}. Any x ∈M can be expressed

uniquely by

x =
n∑

i=1

αi ui (2.56)

The ordered sequence of scalar coefficients {αi} can be interpreted as an n-tuple.

Thus there is a one-to-one correspondence between vectors in the arbitrary space M
and the space of n-tuples, and Rn or Cn can be used as a model for any real or

complex n-dimensional space. We say that the n-tuple α = {αi} is a representation

(in Rn or Cn) for x relative to the basis {ui}.
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We now combine the geometric concepts associated with metric spaces with the

algebraic concepts associated with linear spaces. This is accomplished by assigning

a real number reflecting the “size” of any element in a linear space. This number

is called the norm of a vector (denoted by ‖x‖) and can be defined in terms of

any mapping from the linear space into the real line which satisfies the following

properties:

a. ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0

b. ‖x + y‖ ≤ ‖x‖+ ‖y‖
c. ‖αx‖ = |α|‖x‖

(2.57)

Note that the norm of a vector is its distance from the origin. A normed linear space

which is also complete as a metric space is called a Banach Space.

2.5.1.3 Inner product spaces

The final step in the development of signal spaces is to supply additional geometric

structure in the form of an inner product relationship between pairs of vectors. We

shall henceforth deal with complex linear spaces, since the real spaces can always be

treated as a special case. The inner product is a mapping of ordered pairs of vectors

in the linear space into the complex plane. The mapping, with images denoted by

〈x,y〉 in C, satisfies the following properties:

〈x,y〉 = 〈y,x〉∗ (2.58a)

〈αx + β y, z〉 = α 〈x, z〉+ β 〈y, z〉 (2.58b)

〈x,x〉 ≥ 0 and 〈x,x〉 = 0 iff x = 0 (2.58c)

From (2.58a) and (2.58b) we see that 〈αx,y〉 = α〈x,y〉, 〈x, αy〉 = α∗〈x,y〉 and that

〈x,x〉 is real. An important consequence of the definition of the inner product is that

‖x‖ = 〈x,x〉1/2 (2.59)
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is a valid norm for the linear space. Furthermore, from the properties of Eqs. (2.57),

it is easy to show that

d(x,y) = ‖x− y‖ = 〈(x− y), (x− y)〉1/2 (2.60)

is a metric (2.52) and this metric is implied when we refer to the inner product linear

space. The inner product thus induces a norm which in turn induces a metric, by

(2.60), so that an inner product space is a metric space with a particular metric

implied. An inner product space which is also complete, as a metric space, is called

a Hilbert Space.

The following properties of inner product and norm are important:

For x,v ∈ X we have

(i) Cauchy-Schwarz inequality:

|〈x,y〉| ≤ ||x||||y|| (2.61)

with equality if and only if x = αy for some scalar α.

(ii) Parallelogram law:

||x + y||2 + ||x− y||2 = 2(||x||2 + ||y||2). (2.62)

(iii) Pythagorean theorem: If x ⊥ y then

||x + y||2 = ||x||2 + ||y||2. (2.63)

2.5.2 Representation of matrices in a linear vector space

The very successful development of signal theory and signal analysis has been, by

and large, based on the framework of normed linear vector spaces. The EEG signal
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classification problem is no exception, and most researchers have followed the same

steps by defining a normed linear vector space for the single-channel EEG signals

and their features and analysed their properties for classification. However, when the

multi-channel PSD matrix is chosen as the EEG feature, it is natural to try converting

the set of the PSD matrices into a corresponding set of vectors. In the following, we

present several common ways of the such vectorization methods.

1. We can represent an M ×M matrix P as a vector by having [45]:

vPa = vec(P) (2.64)

where vec(P) is a vector of complex dimension M2 formed by stacking up the

columns of P upon each other.

2. Since P is Hermitian symmetric, its ijth element is simply the complex con-

jugate of the jith element. Therefore, stacking up the elements renders the

dimension of vec(P) unnecessarily high containing a lot of redundant informa-

tion. To eliminate the redundancy, we can stack up all the elements of only the

upper (or lower) triangular part of P forming a vector vPb having M2 elements

of real numbers [80].

3. Since P is Hermitian and is positive semi-definite, its eigenvalues {λm} are real

and positive semi-definite, and its eigenvectors {um} form an orthonormal set

such that

P =
M∑

m=1

λmumuH
m; 〈um,un〉 = δmn =





1 m,

0 m 6= n
(2.65)

where (·)H denotes the Hermitian conjugate of a vector or matrix. Since the

PSD matrix represents the average cross-power between signals from different
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sensors, it can be conceived that a random vector that produce this averaged

cross-power is given by

x =
M∑

m=1

bmum (2.66)

where bm is a random scalar such that

E[bmb∗n] = 0, m 6= n; E[|bm|2] = λm (2.67)

The expansion of a random vector as a linear combination of the eigen-vectors of

P with orthogonal random coefficients as in Eq. (2.66) is called the Karhunen-

Loève expansion [72]. Since the vector x has average power λm in its component

um, therefore, it is reasonable to represent the matrix P as a power vector having

power components {λm} in a linear combination of the eigenvectors such that

vPc =
M∑

m=1

λmum (2.68)

We note that for a Hermitian matrix P, the inner products of vPa and vPc are

identical since

〈vPa,vPa〉 =
M∑

m=1

|pij|2 = Tr[PPH ] =
M∑

m=1

λ2
m (2.69a)

〈vPc,vPc〉 =
M∑

m=1

λ2
m (2.69b)

None of the above representations of P as a vector is particularly satisfactory

because some of the important structures, e.g., Hermitian symmetry, of the PSD

matrix are not preserved. We now take a new look at the representation of PSD

matrices.
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2.5.3 Representation of PSD matrices in a linear space – Lie

algebra

Here, we introduce a method to represent each M ×M PSD matrix by a vector so

that the vector representation preserves the properties of PSD matrices. This can be

accomplished by building a one-to-one correspondence betweenM and another metric

space N such that each point in M has a unique vector representation in N and vice

versa. Then we can compare two points in M by comparing their correspondence in

N , i.e., we define the Euclidean distance between two vectors in N as the distance

between the corresponding PSD matrices in M.

We now show that the space N exists and is in fact a product space of χ and

Ũ , i.e., N = χ × Ũ , where χ is the space of all M -dimensional positive vectors (i.e.,

each element of the vector is positive) and Ũ is the space spanned by a set of basis

matrices {Ei}M2−1
i=1 . Let the eigen decomposition of an M ×M PSD matrix P be

P = UΛU−1 (2.70)

where Λ = diag[λ1, · · · , λM ]. Let

U = VΣV−1 (2.71)

be the eigen decomposition of the eigenvector matrix U with Σ = diag[σ1, · · · , σM ].

Since U is unitary, we can rewrite the matrix Σ as

Σ =




ejθ1 · · · 0
...

. . .
...

0 · · · ejθM


 (2.72)

where the real number θm is the phase of σm, m = 1, · · · ,M , i.e., the eigenvalues of
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U are all of modulus unity 2. We form a matrix Θ such that

Θ =




θ1 · · · 0
...

. . .
...

0 · · · θM


 (2.73)

Then, we have

ejΘ = I + jΘ +
(jΘ)2

2!
+ · · ·

=




1 + jθ1 + (jθ1)2

2!
+ · · · · · · 0

...
. . .

...

0 · · · 1 + jθM + (jθM )2

2!
+ · · ·




=




ejθ1 · · · 0
...

. . .
...

0 · · · ejθM


 = Σ (2.74)

Now, we create another matrix Ũ using the eigenvectors U and eigenvalues θ1 so that

Ũ = VΘV−1, (2.75)

Then, since V is unitary, we have

U = VΣV−1 = VejΘV−1

= I + jV(Θ)V−1 +
(jVΘV−1)2

2!
+ · · ·

= ejVΘV−1

= ejŨ. (2.76)

Therefore, the matrices U and Ũ can be directly related with each other. Since U is

unitary, we have

UHU = (ejŨ)HejŨ = e(jŨ)H

ejŨ = e(jŨ)H+jŨ = I. (2.77)

2Let Uu = σu. Then, we have 1 = (Uu)H(Uu) = σ∗σuHu = |σ|2 since the eigenvectors of U
are orthonormal. Thus, the modulus of σ is 1, i.e., |σ| = 1
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Thus, (jŨ)H + jŨ = 0, i.e., jŨ is skew-Hermitian. Now,

(jŨ)H = −jŨH = −jŨ (2.78)

Thus, ŨH = Ũ. On the other hand, since Ũ is Hermitian we have

Tr[(jŨ)H − jŨ] = Tr[−jŨH − jŨ] = −2jTrŨ (2.79)

and

Tr[(jŨ)H − jŨ] = −2=[TrjŨ] = −2<[TrŨ] = −2TrŨ (2.80)

where <(·) and =(·) denote the real part and imaginary part respectively. Therefore

we should have 2TrŨ = 2jTrŨ, which implies TrŨ = 0. Therefore, Ũ is Hermitian

and null trace. In mathematics we say that Ũ belongs to the Lie algebra of the

group of unitary matrices with unit determinant (see Appendix B for definition of Lie

algebra and Lie group).There are methods to construct a matrix-form basis {Ei}M2−1
i=1

for the Lie algebra of the group of unitary matrices with unit determinant [31] [26].

For example, if M = 4, then Ei can be chosen as the modified Dirac matrices with

M2 − 1 = 15 as shown in Table 2.1.

Note that the modified Dirac matrices satisfy the following properties [83]

(1) EiEk + EkEi = 2δikI.

(2) E2
i = I.

(3) |Ei| = 1.

(4) Ei = EH
i .

(5) TrEi = 0.

(6) {Ei} are linearly independent.
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Table 2.1: Modified Dirac matrices

E1 =




0 1 0 0
1 0 0 0
0 0 0 j
0 0 −j 0


 E2 =




0 0 1 0
0 0 0 −j
1 0 0 0
0 j 0 0


 E3 =




0 0 0 1
0 0 j 0
0 −j 0 0
1 0 0 0




E4 =




0 1 0 0
1 0 0 0
0 0 0 −j
0 0 j 0


 E5 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 E6 =




0 0 0 −j
0 0 1 0
0 1 0 0
j 0 0 0




E7 =




0 0 j 0
0 0 0 1
−j 0 0 j
0 1 0 0


 E8 =




0 0 1 0
0 0 0 j
1 0 0 0
0 −j 0 0


 E9 =




0 0 0 j
0 0 1 0
0 1 0 0
−j 0 0 0




E10 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 E11 =




0 −j 0 0
j 0 0 0
0 0 0 1
0 0 1 0


 E12 =




0 0 0 1
0 0 −j 0
0 j 0 0
1 0 0 0




E13 =




0 0 −j 0
0 0 0 1
j 0 0 0
0 1 0 0


 E14 =




0 j 0 0
−j 0 0 0
0 0 0 1
0 0 1 0


 E15 =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1
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We note that Ũ can be expanded as a linear combination of the basis matrices

such that

Ũ =
M2−1∑
i=1

αiEi (2.81)

where

αi =
1

4
TrŨEi. (2.82)

That the dimension of Ũ is M2 − 1 in Eq. (2.81) is clear from the fact that there

are M real parameters on its diagonal, 1
2
M(M − 1) complex parameters on each

of the lower and upper triangular part of the matrix (being conjugates), and the

trace of the matrix is zero. Thus, the total degrees of freedom for the matrix is

{M + 2× 1
2
M(M − 1)− 1} = (M2 − 1). That all αi are real can be easily seen from

taking the Hermitian conjugate of Eq. (2.81) and using Hermitian properties of Ũ

and Ei, we have

Ũ =
M2−1∑
i=1

α∗i Ei (2.83)

Subtracting Eq. (2.83) from Eq. (2.81), we have

M2−1∑
i=1

(α− α∗i )Ei = 0 (2.84)

Since Ei are all linearly independent, then, α = α∗i .

From the linear combination in Eqs. (2.70) and (2.81), we see that we can represent

P as a vector such that

vPL
= [λ, α]T , (2.85)

where λ = [λ1, · · · , λM ] and α = [α1, · · · , αM2−1]. This representation of P is desig-

nated Lie vector in this thesis and is illustrated in Fig. 2.5.

It can be seen that the vector λ is the representation of P in the eigen space

(spanned by the eigenvectors of P) and the vector α is the representation of the

eigen space in the space spanned by the basis {Ei}. In other words, we can represent
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Figure 2.5: Illustrate of vector representation

the PSD matrix P by a vector vPL
= [λ, α]T and characterize completely the P in

the sense that the eigenvalues λ represent the structure of the eigenvectors and the

parameters α characterize the structure of the unitary matrix U. Furthermore, α

are invariant under complete unitary transformations and therefore are true invariant

descriptors of the system. For all power spectral density matrices, α are located

in the same space which makes the comparison between two power spectral density

matrices in terms of their vector representations reasonable. In the sequel we adopt

this representation as our vector representation of power spectral density matrices.

Let vPL1 = [λ1,α1] and vPL2 = [λ2,α2] be the vector representations of P1 and

P2. Then, the distance between P1 and P2 can be defined as

d(P1,P2) = d(vPL1,vPL2) =

√√√√
M∑

m=1

(λ1m − λ2m)2 +
M2−1∑

`=1

(α1` − α2`)2 (2.86)
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2.6 Vector space of Hermitian matrices and man-

ifold of PSD matrices

Since the PSD matrices of the EEG signal has been chosen to be the feature for

classification and PSD matrices are a subset of Hermitian matrices, it is imperative

for us to examine the structure of the vector space of these matrices. Let us first

examine the vector space of Hermitian matrices.

Let MM be the set of all the M ×M complex matrices. Let HH and M denote

respectively the set of all Hermitian matrices and the set of positive definite Hermitian

matrices, i.e.,

HH = {A ∈MM : AH = A} (2.87a)

M = {P ∈ HH : P Â 0} (2.87b)

Thus, we have M⊂ HH ⊂MM . We have the following proposition:

Proposition 2.1 HH is a real linear vector space. It is isomorphic to the Euclidean

space RM×M .

Proof: We note that for an M × M Hermitian matrix H and a complex scalar c,

cH /∈ HH in general since cH may no longer be Hermitian. Therefore, HH is closed

only for real scalar field. Furthermore, H can be represented as a linear combination

of a set of basis Hermitian matrices {Ẽij; i, j = 1, · · · ,M} with all coefficients being

real such that

H =
M∑

m=1

M∑
n=1

hmnẼmn (2.88)

where H = HH , Ẽij = ẼH
ij and hij = h∗ij. This is because the matrix H is Hermitian,

therefore there are M real elements on the diagonal and 1
2
M(M−1) complex elements

above and below the diagonal, respectively which are complex conjugates. Thus, the
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number of real degrees of freedom is M + 1
2
M(M−1)+ 1

2
M(M−1) = M2. Therefore,

the total degrees of freedom for the set of Hermitian matrices is M2 and thus, there

exist M2 linearly independent and orthonormal Hermitian matrices Ẽ11, · · · , ẼMM

forming the basis of the space resulting in the linear combination of Eq. (2.88). That

the coefficients hij in Eq. (2.88) are all real follows exactly the same argument as

those for Eq. (2.81). These orthonormal Hermitian basis matrices can be obtained

by having

Ẽmm =




0 0 · · · 0 0
...

. . .
...

. . .
...

0 · · · 1(mm) · · · 0
...

. . .
...

. . .
...

0 0 · · · 0 0




(2.89a)

Ẽmn =




0 · · · 0 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 1(mn) · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 1(nm) · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 0




(2.89b)

Ẽnm =




0 · · · 0 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · j(mn) · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · −j(nm) · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 0




(2.89c)
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where the subscripts in parentheses denote the positions of the non-zero elements

in the M × M matrix. The linear combination of Eq. (2.88) with real coefficients

is a reminiscence of the representation of a vector as an n-tuple in Rn as shown in

Eq. (2.56), i.e., here we can represent an M ×M Hermitian matrix as an (M ×M)-

tuple {hmn; m,n = 1, · · · ,M} in a real (M×M)-dimensional space RM×M . Since the

basis matrices {Ẽmn} in Eq. (2.88) are all orthonormal, the inner product 〈H1,H2〉
in HH is also real since

〈H1,H2〉 =
M∑
i=1

M∑
j=1

h1ijh2ij (2.90)

Henceforth, we refer to HH as a real vector space.

To show that HH and RM×M are isomorphic, we need to find a mapping φ : HH →
RM×M such that

φ(H1 + H2) = φ(H1) + φ(H2) (2.91a)

φ(kH) = kφ(H) (2.91b)

where k is a real number, and H,H1,H2 ∈ HH . If we let

φ(H) =




h11 h12 · · · h1M

h21 h22 · · · h2M

...
...

...

hM1 hM2 · · · hMM




(2.92)

then, it is easy to see that the mapping φ satisfy Eqs. (2.91). This shows that HH

and RM×M are isomorphic, denoted by HH
∼= RM×M . ¤

Let us now consider the PSD matrices which are the features for EEG signal

classification and are positive definite Hermitian. Therefore, we can likewise represent

the PSD matrices as a linear combination with real coefficients {pmn} such that

P =
M∑

m=1

M∑
n=1

pmnẼmn (2.93)
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However, we cannot find a subspace in RM×M in which an n-tuple representation for

these positive definite PSD matrices can be defined. Now, the set of PSD matrices is

a subset of the set of all the Hermitian matrices, i.e.,

P ∈M ⊂ HH (2.94)

Therefore, we may conceive that the PSD matrices form a manifold 3 M in HH , the

space of all Hermitian matrices. We now show that the manifold described by the

PSD matrices is real:

Lemma 2.2 [39] The exponential mapping

eA : HH →M (2.95)

is a bijection. In other words, if A ∈ HH , then eA ∈M; if P ∈M, then there exists

a unique A ∈ HH such that P = eA.

Theorem 2.1 M is a real manifold.

Proof. Due to Lemma 2.2, for any matrix X ∈ HH we can define a map R →M
by

f(t) = etX+A (2.96)

such that f(0) = eA = P ∈M and X,A ∈ HH , i.e., f(t) is a path on M through P.

Since tX and A are Hermitian matrices, we have

f(t) = etX+A = eA+tX = etXeA = eAetX (2.97)

3For now, a manifold can be looked upon as [35]: “An n-dimensional manifold is a space which
is not necessarily a Euclidean space nor is it a domain in a Euclidean space, but which, from the
viewpoint of a short-sighted observer living in the space, looks just like such a domain of Euclidean
space.”
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Let TM(P) be the tangent space formed by the set of vectors which are tangent to

M at P. Then, the derivative of f(t) at t = 0 is

ḟ(t)
∣∣∣
t=0

= XetX
∣∣∣
t=0

eA = eAetXX
∣∣∣
t=0

∈ TM(P) (2.98)

Thus, we have

ḟ(t)
∣∣∣
t=0

= XP = PX ∈ TM(P) (2.99)

i.e., any element of TM(P) is the product of P and any Hermitian matrix X, and the

product is commutative. Since P−1 ∈M, we can also write

XP−1 = P−1X (2.100)

Let Y = P−1X. Then, using Eq. (2.100) we have

YH = (P−1X)H = XP−1 = P−1X = Y (2.101)

i.e., Y ∈ HH . Therefore, PY = X ∈ TM(P). Thus, we have HH ⊆ TM(P).

On the other hand, for any XP ∈ TM(P) we have

(XP)H = PHXH = PX = XP (2.102)

i.e., XP ∈ HH . Thus, TM(P) ⊆ HH .

Therefore, we conclude that the tangent space of M at P, TM(P) = HH , i.e.,

it contains all the Hermitian matrices. By Proposition 2.1, we then have TM(P) ∼=
RM×M . Therefore, M is a real manifold. ¤

The result in Theorem 2.1 is important in the development of distance measures in

the manifold of PSD matrices. This is because we only have to consider real analysis

of the geometry.

In sleep classification, we characterize an epoch of multichannel EEG signal matrix

S by its feature PSD matrices P(ω) in a frequency range [ω1, ω2], therefore, we can
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regard the PSD matrix as represented by a series of points forming a curve on M
parameterized by the frequency variable ω, i.e.,

P(ω) : [ω1, ω2] →M (2.103)

This concept is shown in Fig. 2.6.

  EEG signal                                                               Curve on Manifold

i

minωP(        ) ωmaxP(         )

ω
M

P(     )

Figure 2.6: EEG signal representation

55



Chapter 3

Distance Measures for EEG Signal

Classification

In the previous chapter, we have seen how the measured EEG signal can be collected

and cleaned up, and how its PSD feature can be extracted and calculated. We have

also seen that these PSD matrices can be represented as vectors and treated as points

in a linear space, or the matrices themselves can be looked upon as points on a

manifold in a linear space. For analysis of the these features, the linear space usually

have certain geometric structures. These features of the collected EEG signals may

then be used for classification purposes.

Now, EEG signal classification is a matter of examining the similarity/dissimilarity

between the features of the signals. Similarity/dissimilarity can be quantified ac-

cording to a specific measure which may not necessarily be a metric in the strict

mathematical sense. The only requirement is that it quantifies the similarity or com-

monality between two EEG signals by taking on small values for two similar EEG

signals and large values for two distinct EEG signals. However, since we have shown

that the set of all the PSD matrices is a real manifold which is a mathematical space,
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it is our opinion that the similarity/dissimilarity between EEG signals should take on

a mathematical measure.

Intuitively two points in a mathematical space are similar if they are close to each

other with respect to the metric endowed to the space, and vice verse. From the

geometric point of view, the dissimilarity between two points in a space is naturally

measured by some kind of distance function, or distance for short. The similarity

can then be defined as a function of the dissimilarity. For example, one can define

the similarity as the inverse a distance function. Therefore, it is not necessary to

distinguish dissimilarity and distance. The appropriate measure of distance depends

on the structure of the space. Here in this chapter, we will study the geometric

structures of these linear spaces and the various metrics used to measure distances. In

particular, we will examine the space of Hermitian matrices and the the Riemannian

manifold in it formed by the PSD matrices of the EEG signals. From this, we will

derive metrics on the Riemannian manifold and arrive at suitable distance measures

suitable for the classification of EEG signals.

3.1 Distance measures in an n-dimensional inner

product vector spaces

In the previous chapter, we have introduced the inner product vector space in which

the distance between two vectors x and y is given by d(x,y) = ‖x− y‖. For two

vectors x and y in the n-dimensional Euclidean space Cn in which the inner product

is defined as

〈x,y〉 =
n∑

i=1

xiy
∗
i (3.1)

57



Ph.D. Thesis Yili Li McMaster - Electrical & Computer Engineering

We now present some common measures of distance induced by the inner product

norm.1

3.1.1 Distance measures between vectors induced by the in-

ner product

The following are commonly used distance measures in an n-dimensional inner prod-

uct vector space:

1. Euclidean Distance This well-known distance measure mentioned in Eq. (1.1)

is induced by the inner product norm such that:

dE(x,y) =
√
〈(x− y), (x− y)〉 =

√√√√
n∑

i=1

(xi − yi). (3.2)

This metric coincides with the usual concept of distance in a three-dimensional

space and, due to the many important physical quantities it can represent, the

Euclidean distance is a powerful measure used in the study of signals [36] [73].

2. Correlation Distance From Chapter 2, we see that the Cauchy-Schwarz in-

equality can be written as
∣∣〈x,y〉∣∣ ≤ ‖x‖ ‖y‖, we can define a real angle θ

between x and y as

cos θ =
|〈x,y〉|
‖x‖ ‖y‖ (3.3)

We say that x and y are “orthogonal” if, and only if, 〈x,y〉 = 0 for which the

distance between the two vectors is the greatest.2 Thus, the angle between two

1There are other distance measures not induced by the inner product norm which are commonly
found in engineering applications. These include the Minkowski distance defined as dM(x,y) =
[
∑n

i=1 |xi − yi|r]1/r and the Chebyshev distance defined as dCh(x,y) = maxi=1,··· ,n |xi − yi|.
2The difficulty with (3.3) applied to complex space is apparent since we would not generate

second- and third-quadrant angles. On the other hand, if we replace
∣∣〈x,y〉∣∣ with Re〈x,y〉, we could

have θ = ±π/2 with 〈x,y〉 6= 0.
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vectors can be used as distance measures. For finite-dimensional real normalized

vectors X such that X = {x ∈ Rn :
∑n

i=1 xi = 1, xi > 0}, the Fisher-Rao

distance [12] between x,y ∈ X , is defined as

dFR(x,y) = 2 arccos
( n∑

i=1

√
xiyi

)
(3.4)

For two finite-dimensional complex vectors x,y ∈ Cn the Fubini-Study dis-

tance [57] between x and y is defined as

dFS(x,y) = arccos
|〈x,y〉|√
〈x,x〉〈y,y〉 (3.5)

We may also define a Correlation distance measure in terms of the angle between

two vectors such that the smaller is the angle, the closer is the distance

dC(x,y) = 1−
( |∑n

i=1 xiy
∗
i |

‖x‖‖y‖
)

(3.6)

We note that the second term in Eq. (3.6) can refer to the argument in either

dFR(x,y) or dFS(x,y) as the case of real or complex vectors may be.

Weighted Euclidean distance: Often in different applications, the Euclidean

distance can also be weighted allowing certain parts of the signal to be accentuated.

The weighted Euclidean distance between x and y is defined as

dWE =
〈
W

1
2 (x− y),W

1
2 (x− y)

〉 1
2

=
√

(x− y)HW(x− y) (3.7)

where W is a positive definite matrix. The choice of W depends on the data struc-

ture. Often, the best choice of the weighting matrix may be obtained by solving an

optimization problem with a certain objective function and constraints. The following

example shows how W is chosen according to the structure of the data:
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Example: (Mahalanobis Distance) This distance is developed to fit the measure-

ment of Gaussian data. Let x and y be two complex IID Gaussian vectors on di-

mension n with mean µ and covariance Σ. Then the Mahalanobis distance is defined

as

dM(x,y) =
√

(detΣ)1/n(x− y)HΣ−1(x− y) (3.8)

Comparing Eqs. (3.7) and (3.8), we note that the Mahalanobis distance is a weighted

Euclidean distance with W = (detΣ)1/nΣ−1 and is particularly suitable for mea-

suring distances between Gaussian random vectors of the same distribution. This

can be illustrated as follows: Suppose we have three sets of real zero-mean bivari-

ate Gaussian data such that µ = [0 0]T , Σ1 =


 1 0.7

0.7 1


, Σ2 =


 1 0

0 1


, and

Σ3 =


 1 −0.7

−0.7 1


. The data are distributed as shown in Figure 3.1 respectively.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(a) µ, Σ1

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(b) µ, Σ2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(c) µ, Σ3

Figure 3.1: The geometries of bivariate normally distributed points with zero means
and different covariance matrices.

If unweighted Euclidean distance is adopted, as shown in Figure 3.2, the data

distribution structure and the distance between two points relative to the distribu-

tion cannot be reflected in each of the cases. However, if Mahalanobis distance is
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employed, the distances relative to the data distribution in each of the cases is com-

pletely characterized as shown in Figure 3.3.
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(c)

Figure 3.2: Euclidean distances (solid circles) of 1, 2, and 3 from the origin, respec-
tively.
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Figure 3.3: Mahalanobis distances (solid circles and ellipses) of 1, 2, and 3 from the
origin, respectively.

.

Here, it can be seen that points at a constant unweighted Euclidean distance from a

reference point are located on the hypersphere (a circle in two dimensions), and points

at a constant Mahalanobis distance to the center are located on a hyperellipsoid (an

ellipse in two dimensions) following the distribution of the data. ¤
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The above example uses the data distribution to arrive at different weighting

matrices which provides us with a distance inversely proportional to the correlation

of the data. This weighted Euclidean distance (Mahalanobis distance) fits very well

to the Gaussian distributed data if the first- and second-order statistics are known.

However, in many of the practical applications including our study of EEG signal

classification, the data distribution and data structure may not be known. In that

case, an optimization problem with appropriate constraints suitable to our problem

may have to be defined and solved to arrive at a suitable weighting matrix. This

particular problem will be considered in Chapter 4.

3.1.2 Distance measures between matrices

In Chapter 2, we have seen several ways of representing a matrix as a vector. There-

fore, the above distance measures between vectors can all be applied as distance

measures between matrices. For the space M of M ×M matrices, a commonly used

measure of distance between the matrices A = [aij] and B = [bij] is defined as

dFo(A,B) =

√√√√
M∑
i=1

M∑
j=1

|aij − bij|2 =
√

Tr[(A−B)(A−B)H ] (3.9)

which is called the Frobenius distance. From Eq. (2.69a), we see that this distance is

induced by the inner product of 〈(A − B), (A − B)〉. Thus, the Frobenius distance

can be considered as the Euclidean distance between A and B since dFo(A,B) =

dE(vec(A), vec(B)). The spaces M and Cn are thus isometric.

In general, if vP ∈ Cn is the vector representation of P ∈M, then the Euclidean

distance between vP1 and vP2 in Cn is the induced Euclidean distance between P1

and P2 in M, i.e.,

dIE(P1,P2) = dE(vP1 ,vP2) (3.10)
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In the same way as for vectors, we can define the weighted distance between two

matrices since we have converted the distance between two matrices as the distance

between two vectors. For example, for the Frobenius distance of Eq. (3.9) between

two M ×M matrices, similar to Eq. (3.7), we can attach a weighting matrix W to

the distance so that

dWFo(A,B) =
√

[(A−B)W(A−B)H ] (3.11)

3.2 Some other interesting distances

In this section, we introduce some other distance measures which may be of interest

to the application of EEG signal classification even though they are not induced by

the inner product.

3.2.1 Fréchet distance

The Fréchet distance is defined for the measurement between two probability distri-

butions. Specifically, for two random vectors x and y have distributions f and g

respectively, the Fréchet distance is defined as [37]

d(f, g) =
√

min
x,y

E[‖ x− y ‖2] (3.12)

For two Gaussian vectors x and y having means µx,µy and covariance matrices

Rx,Ry respectively, it can be shown [?] that the Fréchet distance is given by

d(f, g) =
√
‖µx − µy‖2 + Tr[Rx + Ry − 2(RxRy)1/2] (3.13)

In the case of zero-mean Gaussian vectors, then the Fréchet distance between the

distributions becomes the Fréchet distance between the covariances Rx and Ry such

that

d(Rx,Ry) =
√

Tr[Rx + Ry − 2(RxRy)1/2] (3.14)
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As shown in the previous chapter, for EEG classification, our choice of the signal

feature is the PSD matrices which has been shown to be the Fourier transform of

the covariance matrix. Therefore, the distance in Eq. (3.14) will be of interest to our

application in EEG classification.

3.2.2 Kullback-Leibler (KL) divergence and KL distance

For probability density functions f1(x) and f2(x), the KL divergence, also known as

the relative entropy, is defined as [59]

DKL(f1||f2) =

∫
f1(x) log

f1(x)

f2(x)
dx (3.15)

The KL divergence is commonly used in statistics as a measure of similarity between

two distributions. It satisfies the following properties

(a) Self-similarity: DKL(f ||f) = 0;

(b) Self-identification: DKL(f1||f2) = 0 if f1 = f2;

(c) Positivity: DKL(f1||f2) ≥ 0 ∀ f1 and f2.

Properties (a) and (b) are obvious. Property (c) can be shown by letting φ(f) =

− log f2(x)
f1(x)

, which is convex. Thus, by Jensen’s inequality [47], E[φ(f)] ≥ φ[E(f)], i.e.,
∫

f1(x) log f1(x)
f2(x)

dx ≥ − log
∫

f1(x)f2(x)
f1(x)

dx = 0.

For two Gaussian vectors x and y having means µx,µy and covariance matrices

Rx,Ry respectively, the KL divergence is found to be [58]

DKL((µ1,R1), (µ2,R2)) =
1

2

[
log

det(R2)

det(R1)
+Tr(R−1

2 R1)+Tr(µ1−µ2)
TR−1

2 (µ1−µ2)−M
]

(3.16)

where M is the dimension of the two random vectors. In the case of the means being

zero, this simplifies to

DKL(R1,R2) =
1

2

[
log

det(R2)

det(R1)
+ Tr(R−1

2 R1)−M
]

(3.17)

64



Ph.D. Thesis Yili Li McMaster - Electrical & Computer Engineering

The KL divergence does not define a distance on the space of covariance matrices as it

is neither symmetric with respect to its two arguments nor does it satisfy the triangle

inequality. Its symmetrized form (also called symmetrized divergence) is defined as

DKLs(R1,R2) = DKL(R1,R2) + DKL(R2,R1) (3.18)

which can be expressed as

DKLs(R1,R2) =
1

2
Tr(R1R

−1
2 + R−1

1 R2 − 2I) (3.19)

We define the KL distance between two covariance matrices as

dKL(R1,R2) =
√

DKLs(R1,R2) (3.20)

Eq. (3.20) does not satisfy the axioms of distance measure [3] since the triangular

inequality is still not satisfied. In spite of this, dKL(R1,R2) is still called the “KL

distance” by convention.

As mentioned before, the PSD matrix is the Fourier transform of the covariance

matrix. Therefore, we may replace R1 and R2 with P1 and P2 and define the KL

distance between two PSD matrices P1 and P2 such that

dKL(P1,P2) =
√

DKLs(P1,P2) =

√
1

2
Tr(P1P

−1
2 + P−1

1 P2 − 2I) (3.21)

Clearly, Eq. (3.21) can also be used for measuring the similarity and dissimilarity of

EEG signal features.

We note that dKL is weighting invariant. This is because, for a given W = ΩΩH Â 0

and weighted P1 and P2, P1W = ΩHP1Ω and P2W = ΩHP2Ω, we have

dKL(P1W ,P2W ) =

√
1

2
Tr[(ΩHP1Ω)(ΩHP2Ω)−1 + (ΩHP1Ω)−1(ΩHP2Ω)− 2I]

=

√
1

2
Tr[ΩHP1ΩΩ−1P2Ω

−H + Ω−1P−1
1 Ω−HΩHP2Ω− 2I]

=

√
1

2
Tr(P1P

−1
2 + P−1

1 P2 − 2I) = dKL(P1,P2) (3.22)
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3.3 The geometry of the space of PSD matrices

In Chapter 2, we mentioned that the positive definite Hermitian matrices P describe

a real manifold. Here, we introduce some of the concepts fundamental to the study of

the geometry of the manifold. Since an n-dimensional manifold is a generalized sur-

face, we will start by introducing some of the geometric concepts from the elementary

consideration of a surface in a three-dimensional Euclidean space.

3.3.1 Intrinsic distance

Consider a surface S in a three-dimensional Euclidean space R3. Let P and Q be two

points on S. We define the intrinsic distance from P to Q denoted by d(P,Q) to be the

infimum (greatest lower bound) of the length L(C) of all possible arcs C on S joining

P to Q. It is clear that the intrinsic distance between two points on a surface always

exists since the set of real numbers L(C) is not empty (S is connected and hence

arcwise connected) and is bounded from below by the Euclidean distance ‖P −Q‖.
It can easily be shown [61] that d(P,Q) satisfies all the properties (Eqs. (2.52)) of a

metric.

Given P and Q, if there exists a regular arc C joining P and Q whose length is

equal to the intrinsic distance between P and Q, then C is called an arc of minimum

length. In the plane, d(P,Q) is the Euclidean distance and the arc of minimum length

is unique and is the straight line segment between P and Q.

3.3.2 Manifold and Riemannian geometry

As mentioned above, the space M is an open subset of the real vector space of

Hermitian matrices. We will focus on the concepts of real manifold even though the

elements of Hermitian matrices are not necessarily real numbers.
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For an r times differentiable curve traced by a vector x(t) in the Euclidean space

R3, consideration of the elemental segment δs yields the length of an arc of the curve

to be [61]

s =

∫ b

a

[ 3∑
i=1

(dxi

dt

)]1/2

dt =

∫ b

a

√
〈ẋ, ẋ〉dt (3.23)

where x(t) = [x1(t), x2(t), x3(t)]
T and a ≤ t ≤ b. We rewrite Eq. (3.23) as

s(t) =

∫ t

t0

√
〈ẋ, ẋ〉dt (3.24)

where a ≤ t0 ≤ b. The function s(t) is called the arc length of the curve. Taking the

derivative of Eq. (3.24) with respect to t we obtain

(ṡ)2 = 〈ẋ, ẋ〉 (3.25)

Let {e1, e2, e3} be the coordinate basis of R3, i.e., e1 = [1, 0, 0]T , e1 = [0, 1, 0]T , and

e1 = [0, 0, 1]T . Then, we form a matrix G as follows

G =




〈e1, e1〉 〈e1, e2〉 〈e1, e3〉
〈e2, e1〉 〈e2, e2〉 〈e2, e3〉
〈e3, e1〉 〈e3, e2〉 〈e3, e3〉


 , (3.26)

where 〈·, ·〉 denotes inner product. Obviously G is an identity matrix. Thus, we can

write Eq. (3.25) symbolically as

ds2 = 〈dx, dx〉 = dxTGdx. (3.27)

We call the ds the line element of the arc.

Now we consider the curves on a surface in R3. A surface S in R3 can be expressed

as a function x(u, v) = [x1(u, v), x2(u, v), x3(u, v)]T of two real variables u and v, which

is defined in a simply-connected and bounded domain in the uv-plane. In other words,

the surface S in R3 is parameterized by two real variables u and v. Then, an r-time
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differentiable curve Cr, r ≥ 1 on the surface S can be determined by a parametric

representation as follows

x(t) = x(u(t), v(t)) (3.28)

where t is a parameter of a real variable, i.e., by varying t the function x(t) traced

a curve on S (Note that the parameters u and v are now functions of t). Then the

direction of the tangent to the curve C : x(u(t), v(t)) on the surface S is determined

by the vector

ẋ =
dx

dt
=

∂x

∂u

du

dt
+

∂x

∂v

dv

dt
(3.29)

i.e., the vector ẋ is a linear combination of the vectors ∂x
∂u

and ∂x
∂v

which are tangential

to the coordinate curves passing through a point on S under consideration. The

Eq. (3.29) can be written symbolically as

dx =
∂x

∂u
du +

∂x

∂v
dv (3.30)

Therefore, we find

ds2 = 〈dx, dx〉 =
〈∂x

∂u
du +

∂x

∂v
dv,

∂x

∂u
du +

∂x

∂v
dv

〉

=
〈∂x

∂u
,
∂x

∂u

〉
(du)2 + 2

〈∂x

∂u
,
∂x

∂v

〉
dudv +

〈∂x

∂v
,
∂x

∂v

〉
(dv)2 (3.31)

Let
〈

∂x
∂u

, ∂x
∂u

〉
= g11,

〈
∂x
∂u

, ∂x
∂v

〉
= g12,

〈
∂x
∂v

, ∂x
∂u

〉
= g21, and

〈
∂x
∂v

, ∂x
∂v

〉
= g22 and let

G =


 g11 g12

g21 g22


 (3.32)

Then we have

ds2 =
2∑

i,j=1

gijdudv = [du, dv]TG[du, dv] (3.33)

If G = I in Eq. (3.32), then the surface S is a two-dimensional plane. Thus, we see

that the matrix G is determined by the space, conversely, the matrix G reflects the
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nature of the space. The matrix G is also the key to calculate the line element ds2

of a curve in the space considered. With line element ds2 given we can calculate the

length of any smooth curve as well as the area of a bounded region in D ⊂ R2.

Now, let us turn our attention to the manifold generated by the PSD matrices.

A manifold [35] is a topological space M which locally “looks” like a Euclidean

space. If the Euclidean space is real, then the manifold is called a real manifold.

Correspondingly, if the Euclidean space is complex, then the manifold is called a

complex manifold. In other words, each point on M can be referred to by an element

of the real or complex Euclidean space. Therefore, it is possible to characterize

M by mapping neighboring points of M on neighboring points of Rn if it is real,

or Cn if it is complex. In the case of the manifold being linear, then the manifold

coincides with the Euclidean subspace. Since we have shown in Chapter 2 that all the

M ×M PSD matrices describe a real manifold in the real Euclidean space RM×M of

all Hermitian matrices, henceforth, we will focus only on real manifolds. The concept

of real manifold is roughly shown in Figure 3.4. More precisely, that a topological

space locally looks like a Euclidean space means that the tangent space at every

point (say x) on the manifold (denoted by TM(x)) is isomorphic to Rn, denoted by

TM(x) ∼= Rn. 3

The study of manifolds can be from an extrinsic point of view, in which the

manifolds are considered as lying in a high dimensional Euclidean space (as introduced

above), or from an intrinsic point of view which started from the work of Riemann

in which the manifolds are considered as given in a free-standing way.

From an extrinsic point of view, the manifold M can be thought of as a subset

of the Euclidean space Rn, then the distance on M can be defined as the induced

3TM(x) ∼= Rn means that there is a bijective map φ from TM(x) to Rn such that both φ and
its inverse φ−1 are homomorphisms, i.e., φ satisfies φ(a + b) = φ(a) + φ(b) and φ(ka) = kφ(a) for
a, b ∈ TM(x) and k ∈ R.

69



Ph.D. Thesis Yili Li McMaster - Electrical & Computer Engineering
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Figure 3.4: Distance on manifold

Euclidean distance. For example, the Euclidean distance between x and y of the

sphere Sn−1 = {x ∈ Rn :
∑n

i=1 x2
i = 1} is the cord joining x and y. However, if

M is a smooth connected submanifold in Rn then, one has the induced Riemannian

distance, which is defined as the infimum of lengths of curves contained in M and

joining x and y. To see this, let (x1, · · · , xn) be the coordinate system in Rn and M
embedded in Rn be parameterized in terms of coordinates q = (q1, · · · , qk), k ≤ n as

xi = xi(q1, · · · , qk), i = 1, · · · , n. Then the Riemannian metric gM on M is defined

from the Euclidean length element according to

ds2 =
n∑

i=1

(dxi)
2 =

n∑
i=1

( k∑
m=1

∂xi

∂qm

dqm

)2

=
k∑

m,n=1

gmndqmdqn (3.34)

As a specific example, we consider a two-dimensional (k = 2) sphere x2+y2+z2 = 1

embedded in R3 with coordinates (x, y, z) and length element ds2 = (dx)2 + (dy)2 +

(dz)2. Let the parameterization of the points on the sphere be in terms of spherical

coordinates (φ, θ) as

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π (3.35)
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Then we have

ds2 = r2(dθ)2 + r2 sin2 θ(dφ)2. (3.36)

Comparing Equations (3.34) and (3.36) we obtain the matrix elements of the metric

gM such that g11 = r2, g12 = g21 = 0, and g22 = r2 sin2 θ.

Riemann [78] started the study of manifold from an intrinsic point of view by using

a quadratic formula for the infinitesimal change in distance ds. Such a structure is

called a Riemannian metric. A manifold on which a Riemannian metric is defined is

called a Riemannian manifold.

Specifically, a Riemannian manifold is a differentiable manifold in which each

tangent space4 is equipped with an inner product 〈·, ·〉 in a manner which varies

smoothly from point to point, i.e., a Riemannian metric is a family of positive definite

inner products5 defined by

gp : TM(p)× TM(p) → R, p ∈M (3.37)

where TM(p) denotes the tangent space of M at the point p ∈ M. The function

defined in Eq. (3.37) is called a Riemannian metric on M and is a differentiable

function from point to point on the Riemannian manifold M.

With a Riemannian metric defined, the line element of a curve on the manifold is

given by

ds2 =
n∑

i,j=1

gij(x)dxidxj, (3.38)

if (x1, · · · , xn) are local coordinates of class C∞ in an open subset O of M at each

p ∈ O.

4Some elementary notions of Riemannian geometry and the formal definitions of these terms in
italics are given in Appendix B

5An interesting and important question is: “What is the best Riemannian structure on the
manifold?” [13]. Even though we are not involved in seeking the answer to this question in this
thesis, we still have to make a choice if several Riemannian metrics are available. This choice
depends on the application. Results of applying different Riemannian distances to EEG signal
classification will be presented in subsequent chapters.
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3.4 Riemannian distances for matrix quantities

Having established the concept of Riemannian metric, we now develop some Rie-

mannian distances on the manifold M of the PSD matrices {P} for the use in the

classification of EEG signals. To achieve that, we must first endow the manifold M
with a Riemannian metric g [40] which, as mentioned in the last section, is defined

as an inner product on the tangent space TM(P), of each point P on M. Thus,

we obtain a Riemannian manifold (M, g). Since there are infinitely many possible

Riemannian metrics on a differentiable manifold, a suitable one for our purpose of

signal classification has to be chosen.

3.4.1 Riemannian distance dR1

Let (M, gP ) be the Riemannian manifold M with the Riemannian metric gP . Let

[θ1, θ2] be a closed interval in R, and let Γ(θ) : [θ1, θ2] →M be a sufficiently smooth

curve on M such that Γ(θ1) = P1 and Γ(θ2) = P2. The length of the curve Γ(θ) is

defined as [40]

l(Γ) =

∫ θ2

θ1

‖ Γ̇(θ) ‖ dθ (3.39)

where Γ̇(θ) = dΓ(θ)
dθ

. With the use of the given Riemannian metric gP , Eq. (3.39) can

be written as

l(Γ) =

∫ θ2

θ1

√
gΓ(θ)(Γ̇(θ), Γ̇(θ))dθ (3.40)

Then, the global Riemannian distance between the two points P1 and P2 on the

Riemannian manifold (M, gP ) is defined as the shortest length of curves connecting

the two points such that

dR1(P1,P2) , min
Γ:[θ1,θ2]→M

{l(Γ)} (3.41)
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However, since this usually leads to a set of nonlinear differential equations which is

difficult to solve (see Appendix B), it is not easy to find a closed form formula for the

Riemannian distance directly from Eq. (3.41). To overcome this difficulty, we resort

to the theory of fiber bundles [53]. The basic idea is introduced in the following and

more details can be found in Appendix B.

First, let us introduce a lemma for the representation of a point P in the manifold

in a Hilbert space.

Lemma 3.1 For a point P ∈ M, there exists a P̃ in a Hilbert space HM such that

P = P̃P̃H .

The proof of this Lemma is presented in Appendix C. ¤

Lemma 3.1 has important implications. It shows that for every PSD matrix P,

there exists another matrix P̃ ∈ HM which though is not unique, can be viewed as a

representation of P in the Hilbert space. (Henceforth, we will use the notation that

X̃ denote the representation in HM of the matrix X ∈M.)

Let the space H̃ be defined as

H̃ = {P̃ : P̃P̃H = P ∈M} (3.42)

The space H̃ can be considered as a subset of HM , i.e., H̃ ⊂ HM . At any point

P̃ ∈ H̃, the tangent space, denoted by TH̃(P̃), is the collection of vectors tangent to

any smooth curve passing through P̃. Since there are an infinite number of smooth

curve that can be drawn through P̃, the tangent space at P̃ is therefore just the Hilbert

space local to the neighborhood of P̃. Now, let TH̃(P̃) be resolved into its horizontal

and vertical subspaces UH̃(P̃) and VH̃(P̃) respectively, i.e., TH̃(P̃) = UH̃(P̃)⊕VH̃(P̃).

We endow TH̃(P̃) with a real-valued inner product such that for Ṽ1, Ṽ2 ∈ TH̃(P̃),

〈Ṽ1, Ṽ2〉TH̃(P̃) =
1

2
Tr(ṼH

1 Ṽ2 + ṼH
2 Ṽ1) (3.43)
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Then, for any two M ×M complex matrices Ã, B̃ ∈ UH̃(P̃), we have

〈Ã, B̃〉TH̃(P̃) =
1

2
Tr(ÃHB̃ + B̃HÃ) (3.44)

with the induced norm being ‖Ã‖2 = Tr(ÃHÃ).

We now relate UH̃(P̃) to TM(P) by establishing an isometry between them so that

we can let the inner product defined on TM(P) equals 〈Ã, B̃〉 in Eq. (3.44) yielding

a natural Riemannian metric on M. We have the following lemma:

Lemma 3.2 Let P ∈ M be such that P = P̃P̃H and let A,B ∈ TM(P). If the

Riemannian metric on M is given by

gP(A,B) =
1

2
TrAK (3.45)

where K is a Hermitian matrix such that KP + PK = B, then TM(P) and UH̃(P̃)

are isometric. ¤

The proof of Lemma 3.2 is presented in Appendix D. ¤

Let ∆P be a vector on the tangent space TM(P) measured from P, then, the

squared distance between two very close points (say P and P′) in an infinitesimal

region on M can be approximated by the norm of ∆P, i.e.,

d2(P,P′) ' ‖∆P‖2 = gP(∆P, ∆P) =
1

2
Tr∆PK (3.46)

where KP + PK = ∆P. In other words, the infinitesimal norm induced by the

Riemannian metric in the Eq. (3.45) represents a measure of the distance between

two points in M being infinitesimally close to each other.

Basically, the manifold M and the space H̃ are considered as the base space

and the total space, respectively. The projection map π : H̃ → M associates each

point P ∈ M with π−1(P) ⊂ H̃ constituting the fiber above P ∈ M. (The rigorous
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definitions of italicized terms in this paragraph are given in Appendix B.) A connection

on the fiber bundle is a rule that pairs each smooth curve through a point P ∈ M
with a class of corresponding smooth curves in H̃, one through each point in the fiber

above P, known as its lifts. Let Γ(θ) : [θ1, θ2] →M with Γ(θ1) = P1 and Γ(θ2) = P2

be a smooth curve on M (i.e., Γ(θ) traces a curve on M with the varying of θ in

[θ1, θ2]). Let Γ̃(θ) : [θ1, θ2] → H, with Γ̃(θ1) = P̃1 and Γ̃(θ2) = P̃2, be a curve on

H̃ and P̃1, P̃2 ∈ H̃ being the representatives of P1 and P2 in the Hilbert space HM .

Then we say that Γ̃(θ) is a horizontal lift of Γ(θ) if Γ(θ) is the image of Γ̃(θ) under

π and the tangent vector to Γ̃(θ) always lies in the horizontal subspace UH̃(P̃) of the

tangent space TH̃(P̃) at each point along Γ̃(θ). The concept of the horizontal lift is

illustrated in Figure 3.5.

  H
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T   (P )i

~
H iU  (P )

M

~

~

v~

P1 P2

P1

P2

i i
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M

~

~ u

P

P

PP

Figure 3.5: Illustration of horizontal lift

Recall that a map π : H̃ → M is called a Riemannian submersion at P̃ ∈ H̃
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if the induced tangent map π∗ : UH̃(P̃) → TM(π(P̃)) is an isometry, where UH̃(P̃)

is the horizontal subspace of TH̃(P̃). That the map π : H̃ → M is a Riemannian

submersion is guaranteed by the following lemma:

Lemma 3.3 A fiber bundle with base space M, the total space H̃ and the projection

map π : H̃ →M defined by π(P̃) = P is a Riemannian submersion if the horizontal

subspace UH̃(P̃) is endowed with a metric defined in Eq. (3.44). ¤

The proof of Lemma 3.3 follows directly from the result of Lemma 3.2.

From the above we can now conclude that the curve Γ̃(θ) is the unique horizontal

lift of the curve Γ(θ) if we employ the map π : H̃ → M such that π(P̃) = P and

π−1(P) = P̃G with G being a unitary matrix. Furthermore, the induced tangent

map π∗|P̃ : UH̃(P̃) → TM(P) such that π∗|P̃( ˙̃P) = Ṗ, ˙̃P ∈ UH̃(P̃) and Ṗ ∈ TM(P), is

an isometry between UH̃(P̃) and TM(P). (In this way we have made π : H̃ → M a

principal G-bundle 6 and it is also a Riemannian submersion.)

Once the Riemannian submersion π : H̃ → M is established, we can endow

the horizontal subspace with the metric as defined in Eq. (3.44) so that if Γ(θ) is a

geodesic curve on M (i.e., it has the shortest length), then its horizontal lift Γ̃(θ)

is the corresponding geodesic curve on H̃. This is given by Lemma 3.4 [40] in the

following:

Lemma 3.4 Let π : H̃ → M be a Riemannian submersion. Let Γ̃(θ) : [0, 1] → H̃
be a geodesic of M with Γ̃(0) = P̃. If ˙̃Γ(0) is horizontal, i.e., it lies in UH̃(P̃), then

˙̃Γ(θ) is horizontal for any θ, and the curve π ◦ Γ̃(θ) is a geodesic of M, of same

length as Γ̃(θ). Conversely, let P̃ ∈ H̃ and Γ(θ) : [0, 1] →M be a geodesic of M with

Γ(0) = π(P̃). Then there exists a unique local horizontal lift Γ̃(θ) of Γ(θ), and Γ̃(θ)

6Let G be a Lie group acting on H̃ such that (P̃) is mapped to P̃G and P̃G 6= P̃ for G 6= I. A
surjective submersion π : H̃ →M is said to be a principal G-bundle if {P̃G : G ∈ G} = π−1(π(P̃))
for any P̃ ∈ H̃
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is also a geodesic of H̃. Finally, the completeness of H̃ implies the completeness of

M. ¤

With the above results, we can now establish the geodesic distance between two

points P1,P2 ∈M by evaluating the geodesic distance in M with the corresponding

geodesic distance between two point P̃1 and P̃1 on H̃. Thus, we have the following

theorem7:

Theorem 3.1 For P1,P2 ∈M the geodesic distance between P1 and P2 is given by

dR1(P1,P2) =

√
TrP1 + TrP2 − 2Tr(P

1/2
1 P2P

1/2
1 )1/2 (3.47)

¤

Proof: Let Γ(θ) : [θ1, θ2] →M with Γ(θ1) = P1 ∈ M and Γ(θ2) = P2 ∈ M be the

geodesic connecting P1 and P2 on M. Let Γ̃(θ) : [θ1, θ2] → H̃ with Γ̃(θ1) = P̃1 ∈ H̃
and Γ̃(θ2) = P̃2 ∈ H̃ be the horizontal lift of Γ(θ). The fact that π : H̃ → M is a

Riemannian submersion means that the length of Γ̃(θ) depends only on the metric

associated with the horizontal subspace UH̃(Γ̃(θ)). Since TM(Γ(θ)) and UH̃(Γ̃(θ)) are

isometric we must have l(Γ) = l(Γ̃). Thus, the minimum of l(Γ) can be achieved by

finding the minimum of l(Γ̃).

From our construction of the space H̃, we immediately have TH̃(Γ(θ)) = THM
(Γ(θ)).

Furthermore, the metric endowed to TH̃(Γ(θ)) is the unique real metric endowed to

THM
(Γ(θ)) if the HM is endowed with the Hilbert-Schmidt inner product. Thus, the

shortest curve (geodesic) connecting two points P̃1 and P̃2 in the space H̃ must the

7Bures [21] had proposed a similar distance measure for the space of positive definite matrices
with unity traces which is not applicable to EEG classification since PSD matrices of EEG signals
are not under such a constraint. The Riemannian distance dR1 developed in this thesis places no
constraint on the trace.
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straight line segment connecting P̃1 and P̃2 in the Hilbert space HM . Therefore, we

must have

min
Γ̃

l(Γ̃) = min
P1=P̃1P̃H

1

P2=P̃2P̃H
2

‖ P̃1 − P̃2 ‖= min
P1=P̃1P̃H

1

P2=P̃2P̃H
2

[Tr(P̃1 − P̃2)
H(P̃1 − P̃2)]

1/2 (3.48)

Thus, writing P̃1 = P
1/2
1 U1 and P̃2 = P

1/2
2 U2 with U1 and U2 being unitary ma-

trices [14], we can define the squared geodesic distance between P1 and P2 on the

manifold M as

d2
R1

(P1,P2) = min
U1,U2

‖ P̃1 − P̃2 ‖2

= min
U1,U2

Tr((P̃1 − P̃2)
H(P̃1 − P̃2))

= min
U1,U2

[TrP1 + TrP2 − 2<(TrU2U
H
1 P

1/2
1 P

1/2
2 )] (3.49)

where <(·) denotes the real part of a complex quantity. Minimization of Eq. (3.52)

is equivalent to the maximization of the quantity <(TrU2U
H
1 P

1/2
2 P

1/2
1 ) with respect

to the unitary matrices U1 and U2. The result of this is well-known [50]

maxU1,U2<(TrU2U
H
1 P

1/2
2 P

1/2
1 ) = Tr(P

1/2
1 P2P

1/2
1 )1/2 (3.50)

if U2U
H
1 = V2V

H
1 where P

1/2
2 P

1/2
1 = V1ΣVH

2 with Σ being the singular value ma-

trix, and V1 and V2 being the left and right singular vector matrices of P
1/2
2 P

1/2
1

respectively. ¤

Theorem 3.1 establishes a Riemannian distance between two points in M suitable

for the measurement of distance of EEG signals represented by their power spectral

density matrices. However, in applying this Riemannian distance to the classification

of EEG signals, it is often desirable to weight the measured power spectral density

matrices to enhance their similarity/dissimilarity. To do that, we incorporate a pos-

itive definite Hermitian weighting matrix W to the power spectral density matrices

and obtain the following corollary:
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Corollary 3.1 Let W be a positive definite Hermitian matrix which can be written as

W = ΩΩH . Let P1,P2 ∈ M and let ΩHP1Ω and ΩHP2Ω be the weighted matrices

of P1 and P2, respectively. Then the weighted geodesic distance between P1 and P2

is given by

dR1W (P1,P2) =

√
TrWP1 + TrWP2 − 2Tr(P

1/2
2 WP1WP

1/2
2 )1/2 (3.51)

¤

Proof: If we denote the weighted matrices of P1 and P2 by P1W = ΩHP1Ω and

P2W = ΩHP2Ω respectively, then it is easy to see that P1W and P2W are positive

definite Hermitian matrices, i.e., P1W ,P2W ∈ M. Let P̃1 = P
1/2
1 U1 and P̃2 =

P
1/2
2 U2, where U1 and U2 are unitary matrices. Let P̃1W = ΩHP̃1 and P̃2W = ΩHP̃2.

Then P1W = P̃1W P̃H
1W and P2W = P̃2W P̃H

2W and we have,

d2
R1W (P1,P2) = min

U1,U2

‖P̃1W − P̃2W‖2

= min
U1,U2

[TrP1 + TrP2 − 2<(TrU2U
H
1 P

1/2
1 WP

1/2
2 )] (3.52)

Proceeding as in the derivation of Theorem 3.1, the result of Corollary 3.1 follows. ¤

We will use both geodesic distances in Eqs. (3.47) and (3.51) for classifying the EEG

signals in the ensuing sections.

In the following we will show that the Riemannian distance developed is a true

distance, i.e., it satisfies all axioms of the definition of distance function. We first

introduce a well-known inequality: Let λm(A) denote the mth eigenvalue of an M×M

positive semidefinite A. We define the the p-norm of A as

‖A‖p =

(
M∑

m=1

λp
m(A)

)1/p

(3.53)

We note that for p = 2, this is the same as the Frobenius norm induced by the inner

product 〈A,A〉 = Tr[AAH ]. It is well-known [50] that

‖AB‖1 ≤ ‖A‖2‖B‖2 (3.54)
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Theorem 3.2 The geodesic distance given by Eq. (3.47) is a true distance, i.e., it

satisfies nonnegativity, symmetry and triangle inequality.

Proof. We need to show the nonnegativity, symmetry, and triangular inequality

according to the definition of distance.

a) Nonnegativity: Let A =
√

P1, B =
√

P2 and F (P1,P2) = Tr(P
1/2
1 P2P

1/2
1 )1/2.

Then Since P1 and P2 are Hermitian, by Eq. (3.53), we have

‖P1‖2 = (TrP1)
1/2 and ‖P2‖2 = (TrP2)

1/2 (3.55)

and

F (P1,P2) =
∥∥∥
√

P1

√
P2

∥∥∥
1
. (3.56)

By applying Eq. (3.54) we obtain

∥∥∥
√

P1

√
P2

∥∥∥
1
≤

∥∥∥
√

P1

∥∥∥
2

∥∥∥
√

P2

∥∥∥
2
. (3.57)

By using Eqs. (3.55) and (3.56) we have

d2
R1

(P1,P2) ≥ TrP1 + TrP2 − 2(TrP1)
1/2(TrP2)

1/2 ≥ 0. (3.58)

Therefore, dR1 must be a nonnegative number.

b) Symmetry: Let vm and λm be an eigenvector and eigenvalue pair of P
1/2
1 P2P

1/2
1 .

Then we have

λm(P
1/2
2 P

1/2
1 vm) = P

1/2
2 P

1/2
1 (λmvm)

= P
1/2
2 P

1/2
1 (P

1/2
1 P2P

1/2
1 )vm

= (P
1/2
2 P1P

1/2
2 )(P

1/2
2 P

1/2
1 vm). (3.59)
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Thus, λm is also an eigenvalue of P
1/2
2 P1P

1/2
2 . Thus we have

F (P1,P2) = Tr(P
1/2
1 P2P

1/2
1 )1/2

=
∑

λ1/2
m

= Tr(P
1/2
2 P1P

1/2
2 )1/2

= F (P2,P1). (3.60)

Therefore, dR1(P1,P2) is symmetric.

c) Triangle inequality: Let P1, P2 and P3 be three points in M such that P2 is

not on the geodesic curve c3 connecting P1 and P3. Let c1 be a curve connecting

P1 and P2 on M, and c2 be a curve connecting P2 and P3 on M, respectively,

as is illustrated in Figure 3.6. Then the composite curve c1c2 must be different

3

M

p
p

p

1

2

3c

c c1 2

Figure 3.6: Illustration of triangle inequality

from c3 and must connect P1 to P2 and then P2 to P3 on M. Therefore, the

length of c1c2 must equal to the sum of the lengths of c1 and c2. Now, since c3

is the geodesic curve connecting P1 and P3, its length is the minimum between
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P1 and P3 on M. Let l(·) denote the length of a curve on M. Then we have

dR1(P1,P3) = l(c)

≤ min
c1c2

l(c1c2)

= min
c1

l(c1) + min
c2

l(c2)

= dR1(P1,P2) + dR1(P2,P3) (3.61)

Similarly, we can show that dR1W of Eq. (3.52) is also a true distance measure. ¤

3.4.2 The Riemannian distance dR1
in the special case of sin-

gle sensor measurements

In the case when only one channel of the EEG signals is available, then the normalized

power spectrum (at n frequency points) is usually adopted as the characterization of

the EEG signals. Consider the set of normalized power spectrum in the form:

P =
{
p ∈ Rn :

n∑
i=1

pi = 1, pi > 0
}

(3.62)

We can apply the Riemannian distance dR1 to measure the dissimilarity between two

normalized power spectral densities p,q ∈ P .

• Case 1: Let

M =
{
P : P = diag[p1, · · · , pn],p = [p1, · · · , pn]T ∈ P

}
(3.63)

For another power spectrum q ∈ P , we similarly form Q ∈ M. Then, the

Riemannian distance between P and Q is given by

dR1(P,Q) =

√
2− 2Tr

√
P1/2QP1/2

=

√√√√2− 2
n∑

i=1

√
piqi (3.64)
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• Case 2: Let

M =
{
P : P = ppT ,p ∈ P

}
(3.65)

Then,

P1/2 = (ppT )1/2 = (ppTppT )1/2 = ppT = P (3.66)

Thus, we have

Tr(P1/2) = Tr(P) = pTp = 1 (3.67)

For another power spectrum q ∈ P , we similarly form Q ∈M and we have

Q1/2 = Q and Tr(Q1/2) = 1. (3.68)

Thus, the Riemannian distance between P and Q is given by Similarly

dR1(P,Q) =

√
2− 2Tr(P1/2QP1/2)1/2

=
√

2− 2Tr(PQP)1/2

=
√

2− 2Tr(ppTqqTppT )1/2

=
√

2− 2|pTq|Tr(P1/2)

=
√

2− 2|pTq|. (3.69)

We noted that for Case 1, the second term under the square-root sign in Eq. (3.64)

is the argument of the Fisher-Rao distance in Eq. (3.4), and that for Case 2, the second

term under the square-root sign in Eq. (3.69) is the argument of the normalized

Fubini-Study distance in Eq. (3.5). Indeed, the distance measures in both Eqs. (3.64)

and (3.69) are of the same form as the correlation distance in Eq. (3.6). Thus, the

Riemannian distance dR1 can be viewed as a generalization of the correlation distance

established for single-channel measurements.
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3.4.3 Alternative derivation of the Riemannian distance dR1

In Section 3.2.1, we have introduced the Fréchet distance between two probability

distributions, more especially, for two zero-mean Gaussian distributions with covari-

ance matrices R1 and R2. In this section, we start from an analog of the Fréchet

distance and apply to two PSD matrices, we obtain the following result:

Theorem 3.3 The Fréchet distance between two PSD matrices P1 and P2 is

dFe(P1,P2) =
√

Tr(P1 + P2 − 2(P1P2)1/2) (3.70)

Proof. Since P1 and P1 are nonnegative, we have

P1 =
M∑
i=1

v1iv
H
1i (3.71)

and

P2 =
M∑
i=1

v2iv
H
2i (3.72)

for some vectors v1i and v2i. Now, following the definition of the Fréchet distance in

Eq. (3.12), we define the distance between P1 and P2 as

dFe(P1,P2) =

√√√√ min
v1i,v2i

M∑
i=1

‖ v1i − v2i ‖2 (3.73)

Let

P12 =
M∑
i=1

v1iv
H
2i (3.74)

Since

min
v1i,v2i

M∑
i=1

‖ v1i − v2i ‖2 = min
v1i,v2i

M∑
i=1

(v1i − v2i)
H(v1i − v2i)

= min
v1i,v2i

M∑
i=1

Tr(v1i − v2i)(v1i − v2i)
H

= min
v1i,v2i

Tr(P1 + P2 −P12 −P21)

= Tr(P1 + P2)− max
v1i,v2i

Tr(P12 + P21) (3.75)
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therefore, we need to solve the following problem

max
v1i,v2i

Tr(P12 + P21) = Tr
M∑
i=1

(v1iv
H
2i + v2iv

H
1i)

s.t. P1 =
M∑
i=1

v1iv
H
1i

P2 =
M∑
i=1

v2iv
H
2i (3.76)

The Lagrangian for the above maximization problem is given by

L = Tr
M∑
i=1

(v1iv
H
2i + v2iv

H
1i) + Tr

[( M∑
i=1

v1iv
H
1i

)
Λ1

]
+ Tr

[( M∑
i=1

v2iv
H
2i

)
Λ2

]
(3.77)

where Λ1 and Λ2 are the Lagrange multipliers. Taking derivatives and let the result

equal to zero, we have

v1i = Λ2v2i and v2i = Λ1v1i (3.78)

Noting that Λ1 is Hermitian, we have

P2 =
M∑
i=1

v2iv
H
2i =

M∑
i=1

Λ1v1iv
H
1iΛ1 = Λ1P1Λ1 (3.79)

and

P12 =
M∑
i=1

v1iv
H
2i =

M∑
i=1

v1iv
H
1iΛ1 = P1Λ1 (3.80)

Thus,

P2
12 = P1(Λ1P1Λ1) = P1P2 (3.81)

Clearly P1P2 is nonnegative definite since P1 and P2 are nonnegative definite. There-

fore its square root exits and is nonnegative definite, i.e.,

P12 = (P1P2)
1/2 (3.82)

We also note that P21 = PH
12. Thus

max Tr
M∑
i=1

(v1iv
H
2i + v2iv

H
1i) = 2Tr(P1P2)

1/2 (3.83)
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Putting this in Eq. (3.75) and taking the square root we obtain the Fréchet distance

of Eq. (3.70). ¤

It is interesting that the distance developed in Theorem 3.3 is exactly the same

as the Riemannian distance dR1 , i.e., we have the following equivalence:

Assertion 3.1 The Riemannian distance dR1 of Eq. (3.47) and the Fréchet distance

dFe of Eq. (3.70) are the same.

Proof. Comparing Eqs. (3.47) and (3.70), clearly, it is sufficient to show that

Tr(P
1/2
1 P2P

1/2
1 ) = Tr(P1P2) (3.84)

In other words, we only need to show that P
1/2
1 P2P

1/2
1 and P1P2 have the same

eigenvalues since the trace of a positive-definite Hermitian matrix is equal to the sum

of its eigenvalues. Let λi and ui be the eigenvalue and eigenvector pair of P
1/2
1 P2P

1/2
1 .

Then we have

P
1/2
1 P2P

1/2
1 ui = λiui (3.85)

Multiplying by P
1/2
1 on both sides we have

P1P2(P
1/2
1 ui) = λi(P

1/2
1 ui) (3.86)

Therefore, P
1/2
1 P2P

1/2
1 and P1P2 have the same eigenvalues, and Eqs. (3.47) and

(3.70) are equal. ¤

Remarks: Even though it is possible that the Riemannian distance dR1 can be ob-

tained by mimicking the Fréchet distance between covariance matrices, the derivation

does not show that it is an intrinsic distance on the manifold M. More importantly,

this alternative derivation of dR1 cannot be used to develop other Riemannian dis-

tances. By considering Riemannian metrics on the manifold as developed in Sec-

tion 3.4.1, different Riemannian distances can be developed as shown in the ensuing

sections.
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3.4.4 Riemannian distance dR2

In this section, we employ a parallel procedure to that described in the previous

section and develop another type of Riemannian distances.8 By endowing a different

Riemannian metric, we are able to arrive at a different Riemannian distance for the

manifold of PSD matrices M. First, let HH = {P : PH = P,P ∈ MM}. we endow

HH with an inner product 〈X̃, Ỹ〉 = Tr(X̃Ỹ), X̃, X̃ ∈ HH (Note that this is the

induced inner product by restriction of the inner product endowed to HM), so that

HH is a Hilbert space denoted by (HH , 〈·, ·〉). Let H̃ = {P̃ : P̃2 = P ∈M}. Then, we

have H̃ ⊂ HM . Since any P ∈ M is positive definite Hermitian, the corresponding

P̃ ∈ H̃ is also positive definite Hermitian. 9 Then, we have the following theorem:

Theorem 3.4 Let (M, gP ) be the Riemannian manifold having a Riemannian metric

given by

gP (A,B) = 〈A,K〉 (3.87)

such that

PK + KP + 2P̃KP̃ = B (3.88)

where P̃2 = P ∈ M, A,B ∈ TM(P). Then the geodesic distance between P1 and P2

on M is

dR2(P1,P2) =

√
Tr(P̃1 − P̃2)2 (3.89)

where P1 = P̃2
1 and P2 = P̃2

2.

8The distance dR2 was initially a conjecture proposed by Dr. K.M. Wong. Here we show that it
is also a Riemannian distance.

9The space H̃ here is in fact the same as M equipped with an inner product. Indeed, for P = P̃2,
P and P̃ are in the same space since both are positive definite Hermitian matrices. Here, we show
that the Euclidian distance between P̃1 and P̃2 in M is equal to the Riemannian distance between
P1 and P2 in the same space.
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Proof. Let Γ(r) : (−ε, ε) →M be a curve in M such that Γ(0) = P ∈ M and

Γ̃(r) : (−ε, ε) → H̃ be a curve in H̃ such that Γ̃(0) = P̃ ∈ H̃ with

Γ(r) = Γ̃(r)Γ̃(r) (3.90)

Taking the derivative of Eq. (3.90) with respect to r on both sides, we have

Γ̇(r) = ˙̃Γ(r)Γ̃(r) + Γ̃(r) ˙̃Γ(r) (3.91)

Let Ṗ = Γ̇(r)
∣∣
r=0

and ˙̃P = ˙̃Γ(r)
∣∣
r=0

. Then, at r = 0 we have

Ṗ = ˙̃PP̃ + P̃ ˙̃P (3.92)

Since Ṗ ∈ TM(P) and ˙̃P ∈ TH̃(P̃), for A,B ∈ TM(P) and the corresponding Ã, B̃ ∈
TH̃(P̃) we have

A = ÃP̃ + P̃Ã (3.93)

and

B = B̃P̃ + P̃B̃ (3.94)

by applying Eq. (3.92).

For a given P̃ ∈ H̃, we define an operator XP̃ on TH̃(P̃) as

XP̃Ã = ÃP̃ + P̃Ã (3.95)

where Ã ∈ TH̃(P̃). Then Eq. (3.93) and Eq. (3.94) can be rewritten as

A = XP̃Ã (3.96)

and

B = XP̃B̃ (3.97)
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For any P̃ ∈ H̃, THH
(P̃) = TH̃(P̃) and the unique metric endowed to TH(P̃ ) is the

same inner product endowed to HH . Since P̃ is Hermitian, the operator XP̃ must be

Hermitian, so is its inverse X−1

P̃
. Thus, we have

〈Ã, B̃〉 = 〈X−1

P̃
A, X−1

P̃
B〉 = 〈A, X−2

P̃
B〉 = 〈A,K〉 (3.98)

where X−1

P̃
is the inverse of XP̃, and K = X−2

P̃
B.

On the other hand, we have

B = X2
P̃
K = XP̃(XP̃K) = XP̃(KP̃ + P̃K)

= (KP̃ + P̃K)P̃ + P̃(KP̃ + P̃K)

= PK + KP + 2P̃KP̃ (3.99)

Therefore, the metrics for TM(P) and TH̃(P̃) are the same, i.e., TM(P) and TH̃(P̃)

are isometric. Thus, the mapping π : H̃ → M such that π(P̃) = P is an isometry

between H̃ and M. As a result, the length of a geodesic connecting P1 and P2 in M
has the same length of the geodesic connecting P̃1 and P̃2 in H̃ (it is also the geodesic

in HH). Since the geodesic for two points in HH is measured along the straight line

between the two points, we have

dR2(P1,P2) =
∥∥∥P̃1 − P̃2

∥∥∥
2

=

√
Tr(P̃1 − P̃2)2 (3.100)

Since the PSD matrices P are positive definite Hermitian, P̃ =
√

P for P ∈M. Then

Eq. (3.100) can be written as:

dR2(P1,P2) =

√
TrP1 + TrP2 − 2Tr

√
P1

√
P2 (3.101)

¤
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If desired, it is straightforward to bestow a weighting for the Riemannian distance

dR2 such that the weighted distance is

dR2W (P1,P2) =

√
Tr

(√
P1 −

√
P2

)
W

(√
P1 −

√
P2

)

=

√
TrWP1 + WP2 − TrW

√
P1

√
P2 − TrW

√
P2

√
P1

(3.102)

where W = ΩHΩ Â 0 be a real positive definite weighting matrix.

The above Riemannian distances dR1 and dR2 have been developed from the isom-

etry of two spaces for the classification of EEG signals. As we mentioned before, there

exist possibly an infinite number of Riemannian metrics. Some Riemannian metrics

may similarly lead to explicit formulas for the Riemannian distances. The following

is another well-known example [17]. Since the original development of the measure

does not follow the geometric view proposed in this thesis, we include our own proof

in Appendix F.

3.4.5 Riemannian distance dR3

Theorem 3.5 Let M be the space of positive definite Hermitian matrices. If it is

endowed with a Riemannian metric

gP (A,B) = TrP−1APP−1BP, (3.103)

where AP,BP ∈ TM(P), then the geodesic distance between P1 and P2 in M is

dR3(P1,P2) = =

√
Tr(log P

−1/2
1 P2P

−1/2
1 )2

=

√√√√
n∑

i=1

log2 λi (3.104)

where λi are the eigenvalues of P−1
1 P2.

Proof. See Appendix F. ¤
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The distance axioms can be verified easily for dR3 . We omit the verifications. An im-

portant properties of this distance is that it is weighting invariant, i.e., dR3(P1,P2) =

dR3W (P1,P2) if P1 and P2 are weighted as in the previous sections. This fact has

been shown in the proof of the theorem. Therefore, for enhancement of similarity and

dissimilarity in EEG classification, dR3 is not an appropriate choice.

3.4.6 Summary on the Riemannian distances

The development of the Riemannian distances dR1 , dR2 , dR3 in Sections 3.4.1, 3.4.4

and 3.4.5 follow a common course which can be summarized as follows:

1. We start with the space HM (or HH), the Hilbert space formed by all the

M ×M complex matrices (or the M ×M Hermitian matrices) equipped with

the Hilbert-Schmidt inner product, and M, a subset of HM (or HH), containing

all the PSD matrices {Pi}.

2. We create a mapping π(P̃) = P ∈ M which maps the subset {P̃} ∈ HM (or

{P̃} ∈ HH) to M. We denote the subset {P̃} by H̃. Note that H̃ is equipped

with the Hilbert-Schmidt inner product and is a subset of HM (or HH) not

necessarily a complete space on its own.

3. Since the mappings created in the three cases are different, the resulting subsets

H̃ are also different. Specifically,

(i) The mapping π for dR1 results in a Riemannian submersion such that a

one-to-one mapping emerges from the horizontal lift of the tangent space

TM(P) on M to the tangent space TH̃(P̃) on H̃ and an isometry between

the two is established.
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(ii) The mapping π for dR2 results in a subset H̃ which is the same subset

as M of PSD matrices since P̃ =
√

P is also positive definite. Here, the

inverse mapping π−1 is unique, and P̃ remains in M, we need not apply

“the horizontal lift”. Furthermore, H̃, equipped with the Hilbert-Schmidt

inner product, is directly isometric to M.

(iii) The mapping π for dR3 results in a subset H̃ different from, but isometric

to M. The image P̃ of P in π−1 is also unique.

4. In each of the three case, the subset H̃ resulted from the mapping π is either

a Riemannian submersion or is isometric to M. This greatly facilitates the

evaluation of the geodesic between two points in M since the geodesic between

two points P1 and P2 can be evaluated by the equivalent Euclidean distance

between the two image points P̃1 and P̃2. This procedure establishes the three

Riemannian distances and is illustrated in Figs. 3.7, 3.8 and 3.9 where c1 is the

geodesic curve connecting two points P1 and P2 in M, and c2 is the Euclidean

distance connecting P̃1 and P̃2 in H̃, where P̃1 and P̃2 are the lifts of P1 and

P2 through π−1 respectively.

M

p p
1

2
c1

p
1

~ p~
2c2

π −1 π −1

H

M
~
H

Figure 3.7: Illustration of geodesics in M and H̃ for dR1
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H

p p
1

2
c1

c2
2

p~~p
1

π −1−1π

H

MH =
~

HM

Figure 3.8: Illustration of geodesics in M and H̃ for dR2

p p
1

2
c1

p
1

~ p~
2c2

π −1 π −1

MH

M

H
~

= HH

Figure 3.9: Illustration of geodesics in M and H̃ for dR3
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3.5 Dissimilarity measures

After representing EEG signals as curves on Riemannian manifold, we are ready to de-

fine dissimilarity measure with the use of Riemannian distances (geodesic distances):

Power spectral density is a function of the frequency ω. With the variation of

ω, the PSD matrix describes a curve on the Riemannian manifold M. Therefore,

similarity/dissimilarity between two curves of PSD matrices corresponding to two

multi-channel EEG signals must be established. Now, in the previous sections, we

have established geodesic functions dG between two points for the manifold M. For

two curves on the manifold described by two power density functions P1(ω) and

P2(ω), due to variation of the frequency variable ω, dG can be thought of as a non-

negative real valued function of ω measuring the distance between the two curves at

the frequency ω, i.e.,

dG(ω) = dG(P1(ω),P2(ω)) (3.105)

At each frequency ωk it measures the dissimilarity between the two corresponding

power spectral density matrices P1(ωk) and P2(ωk) on the manifold M. As the

frequency ω varies, we can define the distance between the curves P1(ω) and P2(ω)

as the integral of dG with respect to ω such that

d(P1(ω),P2(ω)) =

∫ ω2

ω1

dG(ω)dω (3.106)

It is easy to show this Riemann integral satisfies the axioms of a distance function,

and can be approximated as

d(P1(ω),P2(ω)) ≈
∑

i

dG(ωi)∆ωi

=
∑

i

dG(P1(ωi),P2(ωi))∆ωi (3.107)

If equal frequency increment is used, i.e., ∆ωi = c, a constant, then without loss of
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generality we can define the dissimilarity between the two PSD curves as

d(P1(ω),P2(ω)) =
∑

i

dG(P1(ωi),P2(ωi)) (3.108)

Figure 3.10 is an illustration of the geodesic distance between any two points P1 and

P2 on the manifold M. Figure 3.11 illustrates the dissimilarity measure between two

curves corresponding two EEG signals. Clearly, different geodesic distance dG gives

1

P2

P

M

(geodesic distance)

Γ(θ)

Shortest path

Figure 3.10: Geodesic distance between two power spectral density matrices

ωP (        )2

ωi2
ω2 maxP (         )

i1

ω1 maxP (         )

Γ(θ)

M

minωP (        )1

ω

min

P (     )

P (     )

Shortest path between
two PSDs at same
frequency

Figure 3.11: Dissimilarity measure between two EEG signals

rise to different dissimilarity measures between PSD matrices.
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Chapter 4

Optimally Weighted Distances for

Similarity/Dissimilarity

In Chapters 2 and 3, we have seen that the EEG signals and their features can

be treated as vectors in a linear space fitted with certain structure and a distance

measure to describe the relationship between them. In particular, the PSD matrices

which are the selected feature of the EEG signals, can be looked upon as describing

a Riemannian manifold on which the geodesic is the distance measure. We have also

seen that there are various approaches in formulating both the distance in a vector

space and the geodesic on a manifold, resulting in different distance measures and

geodesics. Furthermore, these distances, whether they measure the distance in a

linear space or the distance on a Riemannian manifold, may be weighted to enhance

certain characteristics of the data so as to facilitate EEG signal classification. Here

in the present chapter, we will examine the various ways of obtaining the weighting

matrix to serve the final goal of classification.
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4.1 Distance metric learning

If the representation of an EEG signal is treated as an abstract object such as a

point in a space, then a simple illustration of class separation is shown in Figure 4.1.

The idea is that one might expect that the set of points representing different events

d(p, x  )

C 1 C 2

x
y

i
j

p

i

d(p, y  )j

Figure 4.1: Illustration of class separation

that belong to the same class would cluster in the space in the sense that distance

between members of the same class would be small, and that members of another

class would also cluster, but that the two clusters representing the two classes would

remain separated from one another. Distance metric learning [67] essentially is the

term given to the learning of a distance that brings similar points closer together

while staying far from the dissimilar points.

To facilitate the process of EEG signal classification, we have to establish a mea-

sure which leads to a short distance between similar power spectral densities (i.e.,

EEG signals of same state of sleep) and a large distance between dissimilar power

spectral densities (i.e., EEG signals of different states of sleep). For data in the sim-

ilar class, since the distance metric characterizes how the like data are clustered, the

mean-square distance between members of the class is a measure of the size of the
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cluster so formed. For classification, such a mean-square distance should be as small

as possible. There are various methods of choosing a metric, most involve a transfor-

mation of the data, that minimizes the size of the cluster [75]. Figure 4.2 illustrates

how a transformation applied to the data may change the distribution. On the other

hand, distance as dissimilarity measure is also beneficial for data classification. How-

ever, in some cases because of the variations of the data may be large, the inclusion

of the direct dissimilarity distance may not be too helpful in the classification. Again,

suitable data transformation will enable the process of classification to be enhance by

using the dissimilarity measure.

T

Figure 4.2: Illustration of class separation by transformation

Linear data transformation can be achieved by incorporating a positive definite

weighting matrix in the distance measures. An optimally weighted distance could

be obtained by optimizing a criterion of which the weighted distance is a factor. In

the following, we examine the different criteria which concurrently apply both the

similarity and dissimilarity measures. We also examine how each of these criteria

can be optimized so that both the similarity and dissimilarity measures are jointly

employed for optimal classification of EEG signal. Since we have been treating the

EEG signals as both vectors in a linear space or as points on a Riemannian manifold,

we will examine optimal distance weighting in both cases.

98



Ph.D. Thesis Yili Li McMaster - Electrical & Computer Engineering

4.2 Optimally weighted Euclidean distance for simi-

alrity/dissimilary

Optimally weighted distances in a vector space [36] [66] have been studied for many

years. An earlier treatment of finding an optimally weighted distance can be found

in [75]. In this section, however, we would like to focus our attention on a more

recent development of optimally weighted distance directly for similarity/dissimilarity

proposed by Xing, Ng, and Jordan [90]. We first review the idea in this section:

Given a set of points {xi}I0
i=1 ⊆ RM , one may form a set of pairs of similar points S =

{(xi,xj) : xi ∼ xj}, and a set of pairs of dissimilar points D = {(xi,xj) : xi � xj}.
The distance metric learning is then to learn a weighted Euclidean distance (weighted

L2 distance) of the form

dW(x,y) = ‖x− y‖W =
√

(x− y)TW(x− y) (4.1)

where W is an M×M positive semi-definite matrix. According to the idea mentioned

before, i.e., the weighted distance should minimize the distance between similar points

and meanwhile maximize the distance between dissimilar points. For this purpose,

one may formulate an optimization problem as:

max
W

∑

(xi,xj)∈D
‖xi − xj‖2

W

s.t
∑

(xi,xj)∈S
‖xi − xj‖2

W ≤ 1 (4.2)

W º 0

Although this optimization problem has a closed form solution, the solution always

gives rank-one weighting matrix W. This can be shown as follows:
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First, we formulate an optimization problem equivalent to Problem (4.2) so that

max
W

∑
(xi,xj)∈D ‖xi − xj‖2

W∑
(xi,xj)∈S ‖xi − xj‖2

W

s.t W º 0 (4.3)

Let us sum the correlation matrices of the difference vectors within the similar and

dissimilar sets forming two M ×M matrices such that

MD =
∑

(xi,xj)∈D
(xi − xj)(xi − xj)

T (4.4)

and

MS =
∑

(xi,xj)∈S
(xi − xj)(xi − xj)

T (4.5)

Then we can rewrite the Problem (4.3) as

max
W

Tr(WMD)

Tr(WMS)

s.t W º 0

which is equivalent to

max
W

Tr(WMD)

s.t Tr(WMS) = 1 (4.6)

W º 0

Since W º 0, we can decompose W as

W = ΩΩT (4.7)

where Ω is an M ×M square matrix. Thus Problem (4.6) becomes

max
Ω

Tr(ΩTMDΩ)

s.t Tr(ΩTMSΩ) = 1 (4.8)
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To solve Problem (4.8), we use the Lagrange multiplier method and form the auxiliary

function such that

φ(Ω, λ) = Tr(ΩTMDΩ)− λ[Tr(ΩTMSΩ)− 1] (4.9)

Taking derivative with respect to Ω and setting the result equal to 0, we obtain an

eigen-equation

MDΩ = λMSΩ (4.10)

Let Ω = [υ1, · · · ,υM ]. Since λ is fixed, we must have υ1 = υ2 = · · · = υM . Let us

denote these υi as υ. Then we have

W = ΩΩT = MυυT , (4.11)

which is a rank one matrix and will not serve the purpose of a weighting matrix for

enhancing certain aspects of the data.

The X-N-J Optimum Weighting:

To overcome the rank one problem, Xing, et. al. [90] proposed to modify the constraint

of the original optimization problem from 2-norm in (4.2) to 1-norm such that

min
W

∑

(xi,xj)∈S
‖xi − xj‖2

W

s.t.
∑

(xi,xj)∈D
‖xi − xj‖W ≥ 1 (4.12)

W º 0

Or, equivalently,

max
W

f(W) =
∑

(xi,xj)∈D
‖xi − xj‖W

s.t g(W) =
∑

(xi,xj)∈S
‖xi − xj‖2

W ≤ 1 (4.13)

W º 0.
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This is a convex problem [29] which can be solved numerically: Let ∇Wg(W) be the

gradient of g(W) and (∇Wf(W))⊥∇Wg(W) be the projection of ∇Wf(W) onto the

orthogonal subspace of ∇Wg(W). Let C1 = {W :
∑

(xi,xj)∈S ‖xi − xj‖2
W ≤ 1} and

C2 = {W : W º 0}. Then, denoting by ‖ · ‖F the Frobenius norm, the gradient

ascent + iterative projection algorithm for solving the above optimization problem is

shown in Table 4.1.

Table 4.1: The gradient ascent + iterative projection algorithm

(1) Initialize W(0) := I, n := 0

(2) Iterate

(a) Project W(n) onto C1 and C2:

(I) Initialize W
(0)
P := W(n), m := 0

(J) Iterate

(i) W
(m+1)
P := arg minW1{‖W1 −W

(m)
P ‖F : W1 ∈ C1}

(j) W
(m+1)
P := arg minW2{‖W2 −W

(m+1)
P ‖F : W2 ∈ C2}

(k) m := m + 1

(K) Until WP converges

(b) W(n) := WP

(c) W(n+1) := W(n) + α(∇W(n)f(W(n)))⊥∇W(n)g(W(n))

(d) n : +1

(3) Until W converges

The optimum weighting matrix so obtained is designated the X-N-J optimum

weighting (X, N, and J being the first letters of the last names of the authors). The

X-N-J algorithm leads us to a numerical global optimum solution of W. However, it

does not find a closed form solution for the Problem (4.12) (or the Problem (4.13)). In

the following section, we are going to generalize the Problem (4.2) so that some closed

forms of weighted distances can be achieved. The generalization involves putting
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W = ΩΩT and allowing the factor Ω in the weighting matrix to be a full column-

rank “tall” matrix.

4.3 Generalization of optimally weighted Euclidean

distance

Let MK be the set of all K × K matrices over the field C. Recall that [60], for

B ∈MK and κ = 0, · · · , K, the function EK−κ(B) (sometimes called the (K − κ)th

trace of B) is defined as the sum of the (K − κ)th order principal minors of B, i.e.,

EK−κ(B) =
∑

℘

det[Bi1,··· ,iκ ] (4.14)

where det[·] denotes determinant and Bi1,··· ,iκ is the principal submatrix of B formed

by deleting the i1th, i2th,· · · , iκth rows and columns of B, and ℘ denotes the combi-

nation set of {i1, · · · , iκ}. We note that E0(B) = 0, E1(B) = Tr(B), and EK(B) =

det[B]. As an example, let

B =




b11 b12 b13

b21 b22 b23

b31 b32 b33


 (4.15)
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Then, we have

E1(B) =
∑

1≤i1,i2≤3

det[Bi1,i2 ] = det[b11] + det[b22] + det[b33]

= b11 + b22 + b33 = Tr(B) (4.16)

E2(B) =
∑

1≤i1≤3

det[Bi1 ]

= det


 b11 b12

b21 b22


 + det


 b11 b13

b31 b33


 + det


 b22 b23

b32 b33




= (b11b22 − b12b21) + (b11b33 − b13b31) + (b22b33 − b23b32) (4.17)

and E3(B) = det[B] (4.18)

We can also write EK−κ(B) in terms of the eigenvalues λ1, · · · , λK of B, i.e.,

EK−κ(B) =
∑
K−κ

(∏
λi

)
(4.19)

where
∑

K−κ (
∏

λi) denotes the sum of the products of the eigenvalues of B taken

(K − κ) at a time.

We now apply the function1 EK−κ(B) as defined above to our problem of finding

the optimum weighting for similarity/dissimilarity distance. Again, let

MD =
∑

(xi,xj)∈D
(xi − xj)(xi − xj)

H (4.20)

and

MS =
∑

(xi,xj)∈S
(xi − xj)(xi − xj)

H (4.21)

Let Ω ∈ MM×K where MM×K is the set of all M × K matrices with K ≤ M .

Since the purpose of a weighting matrix is to enhance certain parts of the data and

de-emphasize other parts, often, we require Ω) to be orthonormal so that the total

1The function has been applied in array signal processing for locating the direction of arrival of
target signals [88]
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energy after transformation is unchanged. Thus, if EK−κ(Ω
HMSΩ) 6= 0, then we can

define the following generalized optimization problem:

max
Ω

EK−κ(Ω
HMDΩ)

EK−κ(Ω
HMSΩ)

s.t. ΩHΩ = IK (4.22)

with IK being a K ×K identity matrix.

Let us examine the geometric meaning [88] of the objective function in Eq. (4.22).

We see that both the numerator and the denominator are of the form EK−κ(Ω
HM0Ω)

where M0 is an M ×M Hermitian matrix representing either MD or MS . Let

ΩHM0Ω = [η1 η2 · · · ηK ]H [η1 η2 · · · ηK ] (4.23)

where ηi is a K-dimensional vector. Then, it can be easily seen [16] that each of

its (K − κ)-dimensional principal minors (formed by deleting κ of the corresponding

rows and columns) is equal to the square of the volume of the (K − κ)-dimensional

parallelepiped whose edges are the K−κ vectors {ηi} involved in the principal minor.

Therefore, the maximization of the term EK−κ(Ω
HM0Ω) can be interpreted as the

maximization of the sum of the square of the volumes of all the parallelepipeds whose

edges are formed by taking all the possible combinations of K − κ of the vectors

{ηi}, i = 1, · · · , K. Since the volume of a parallelepiped not only depends on the

length of the vectors forming its edges, but also on the angles between them, we can

see that the maximization of EK−κ(Ω
HM0Ω) is to find a weighting matrix which also

maximizes the angles between the vectors, that is minimizes the correlations.

From the above geometric interpretation, we can see that maximization of the

objective function Fobj = max
(

EK−κ(ΩHMDΩ)

EK−κ(ΩHMSΩ)

)
amounts to finding a weighting matrix

that can minimize the correlation between the dissimilar vectors while concurrently

can maximize the correlation between the similar vectors. This “ideal” weighting
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matrix may be difficult to find. Hence, very often, instead of optimizing “the quotient

of the functions”, we may choose to approximate the objective function by “the

function of the quotient” such that Fobj ≈ max EK−κ

(
[ΩHMSΩ]−1[ΩHMDΩ]

)
where

of course, the “quotient” here is the inverse of the denominator matrix multiplied by

the numerator matrix. While other values of K − κ may also yield very interesting

results, in the following, we only limit our examination of the optimization problems

to the two special cases of K−κ = 1 and K−κ = K in which the function EK−κ(B)

gives us respectively a trace quotient problem and a Rayleigh quotient problem.

4.3.1 Case I: K − κ = 1

As seen in the discussion of the function EK−κ(B), for K − κ = 1, E1(·) is the trace

of the matrix, in which case, our problem becomes:

max
Ω

Tr(ΩHMDΩ)

Tr(ΩHMSΩ)

s.t. ΩHΩ = IK (4.24)

which is also difficult to solve. However, as discussed above, we can form an approx-

imation to this problem such that

max
Ω

Tr[(ΩHMSΩ)−1ΩHMDΩ]

s.t. ΩHΩ = IK (4.25)

To solve this Problem 4.25, we need the following lemma [63]:

Lemma 4.1 Let P be an M×M positive definite matrix with eigenvalues λ1 ≥ · · · ≥
λM and associated orthonormal eigenvectors v1, · · · ,vM . Then the problem

max
Ω

Tr(QHPQ)

s.t. QHQ = IK (4.26)
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has the solution
∑K

i=1 λi with the optimizing matrix

Qopt = [v1, · · · ,vK ]T (4.27)

¤

Now, let A ∈MM×K and let

M′
D = AHMDA (4.28)

and

M′
S = AHMSA (4.29)

Let Θ and Φ be the eigenvalue and eigenvector matrices of M′
S . Then we have

M′
SΦ = ΦΘ (4.30)

Let Λ and Ψ be the eigenvalue and eigenvector matrices of Θ−1/2ΦHM′
DΦΘ−1/2. Let

B = ΦΘ−1/2Ψ (Note that B is a nonsingular K × K matrix). Then, it is easy to

verify that

BHM′
DB = Λ (4.31)

and

BHM′
SB = IK (4.32)

Then, we have

max
A

Tr(AHMSA)−1(AHMDA) = max
A

Tr(BHAHMSAB)−1(BHAHMDAB) (4.33)

Let Ω = AB. Then, the Problems (4.25) has been transformed to the following

problem

max
Ω

TrΩHMDΩ

s.t. ΩHMSΩ = IK (4.34)
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Let MS = HHH and Y = HHΩ. Then,

Ω = H−HY, (4.35)

and

ΩHMDΩ = YHH−1MDH−HY = YHM̃DY, (4.36)

where M̃D = H−1MDH−H . Thus, Problem (4.34) becomes

max
Y

Tr(YTM̃DY)

s.t. YHY = IK (4.37)

By Lemma 4.1, if λ1 ≥ · · · ≥ λK are the eigenvalues of M̃D associated with orthonor-

mal eigenvectors v1, · · · ,vK , then the maximizing matrix is Yopt = [v1, · · · ,vK ].

Note that if Λ = diag[λ1, · · · , λK ], then

H−1MDH−HYopt = YoptΛ (4.38)

Since Yopt = HHΩopt, we have

H−1MDH−HHHΩopt = HHΩoptΛ (4.39)

and

H−HH−1MDΩopt = ΩoptΛ (4.40)

Finally, since MS = HHH , we have

M−1
S MDΩopt = ΩoptΛ. (4.41)

Therefore, Ωopt is composed of the first K eigenvectors corresponding to the first K

largest eigenvalues of M−1
S MD, i.e.,

Ωopt = [u1, · · · ,uK ]T (4.42)
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where u1, · · · ,uK are the orthonormal eigenvectors corresponding to the eigenvalues

λ1 ≥ · · · ≥ λK of M−1
S MD. It can be observed from Eqs. (4.38) and (4.41) that

while M̃D and M−1
S MD both have the same eigenvalues {λi}, they have different

eigenvectors, being respectively given by {vi} and {ui}, i = 1, · · · ,M .

We also note that for K = M , Ωopt will incorporate all the eigenvectors of M−1
S MD

and Wopt = ΩoptΩ
H
opt = IM which will not do any weighting to the objective function.

This, however, is not equivalent to the original problem of Xing et al in Eq. (4.8)

since the constraints in the two cases are different.

4.3.2 Case II: K − κ = K

From the discussion of the function EK−κ(B), for K−κ = K, EK(·) is the determinant

of the matrix. In this case, the problem is reduced to a Rayleigh quotient problem:

max
Ω

det[ΩHMDΩ]

det[ΩHMSΩ]

s.t. Ω ∈MM×K (4.43)

The solution of Problem (4.43) necessitates the following lemma [63]:

Lemma 4.2 Let P be an M×M positive definite matrix with eigenvalues λ1 ≥ · · · ≥
λM and associated orthonormal eigenvectors v1, · · · ,vM . Then the problem

max
Q

det[QHPQ]

s.t. QHQ = IK (4.44)

has the solution

Qopt = [v1, · · · ,vK ]T (4.45)

¤
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Let MS = LLH be the Cholesky decomposition of MS . Let Z be an M × K

matrix such that Z = ΥΣVH where Σ = diag(σ1, · · · σK) is a K × K diagonal

matrix consisting of the K singular values σ1 ≥ · · · ≥ σK , Υ = [υ1 · · · υK ] is

an M ×K matrix consisting of the first K left singular vectors corresponding to the

singular values of Z such that ΥHΥ = IK , and V = [v1 · · · vK ] is a K ×K matrix

consisting of the K right singular vectors of Z such that VHV = IK . Let Ω = L−HZ.

Then, we have

det[ΩHMDΩ]

det[ΩHMSΩ]
=

det[ZHL−1MDL−HZ]

det[ZHZ]

=
det[VΣΥHL−1MDL−HΥΣVH ]

det[VΣΣVH ]

= det[ΥHL−1MDL−HΥ] (4.46)

where we have used the fact that det(AB) = det(A) · det(B). Therefore, the Prob-

lem (4.43) can be transformed to the following equivalent problem:

max
Υ

det[ΥHL−1MDL−HΥ]

s.t. ΥHΥ = IK (4.47)

on which Lemma 4.2 can be directly applied. Let λ1 ≥ · · · ≥ λM be the ordered

eigenvalues of L−1MDL−H with the associated eigenvectors u1, · · · ,uM . Then, the

maximizing matrix to the Problem (4.47) is

Υopt = [u1, · · · ,uK ]T (4.48)

Therefore, the maximizing matrix to the problem (4.43) is

Ωopt = L−HΥoptΣVH (4.49)
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4.4 Optimum weighting for Riemannian distances

In Chapter 3, we have seen that the features of EEG signals describe a manifold

on which the distance between two points can best be measured by a Riemannian

distance. In Section 4.1, we have further seen that EEG signal classification consists of

characterizing each of the classes of signals and determining the class to which a new

signal belongs, and the aim of metric learning is to find the optimum weighting matrix

which minimizes the size of the cluster of similar signals while keeping the dissimilar

signals at a prescribed distance. In this section, we apply some of the results of

optimization introduced in the previous section to find the optimum weighting matrix

W for the Riemannian distance developed between two weighted PSD matrices.

4.4.1 Optimum weighting for dR1W

Let Pi(ω) and Pj(ω), ω ∈ [ωmin, ωmax], be two separate sample curves of PSD matrices

as the frequency ω varies. We say that Pi(ω) and Pj(ω) are similar if they belong

to the same class, and are dissimilar if they belong to different classes. Let Pik =

Pi(ωk) and Pjk = Pj(ωk) represent two separate PSD matrices from the two sample

curves measured at ω = ωk. Again, we denote the sets of similar and dissimilar PSD

matrices by S and D respectively such that the set of pairs of similar PSD matrices

is S = {(Pik,Pjk);Pi(ω),Pj(ω) ∈ C`}, whereas the set of pairs of dissimilar PSD

matrices is D = {(Pik,Pjk);Pi(ω) ∈ C`i
,Pj(ω) ∈ C`j

, `i 6= `j}. The optimum M ×M

weighting matrix W may be found by maximizing the ratio of the sum of squared

interclass distances and the sum of squared intraclass distances, i.e.,

max
W

∑
(Pik,Pjk)∈D d2

R1W (Pik,Pjk)∑
(Pik,Pjk)∈S d2

R1W (Pik,Pjk)
(4.50a)

s.t. W = WH Â 0 (4.50b)
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where, from Eq. (3.51),

d2
R1W (P1,P2) = Tr(WP1) + Tr(WP2)− 2Tr

(√
P

1/2
2 WP1WP

1/2
2

)
(4.51)

Direct optimization of the quantity in Eq. (4.50a) on the manifold M is difficult.

However, from Chapter 3, we can perform the optimization equivalently using the

inner product metric in the Hilbert space HM . To do this, we follow the steps in the

development of Theorem 3.1 by letting P
1/2
jk P

1/2
ik = Vij1ΣijV

H
ij2 be the singular-value

decomposition of P
1/2
jk P

1/2
ik where Vij1 and Vij2 are respectively the left and right

singular vectors, and let Uik and Ujk be two unitary matrices such that UjkU
H
ik =

Vij2V
H
ij1. Writing P̃ik = P

1/2
ik Uik and P̃jk = P

1/2
jk Ujk, let us now examine how P̃ik

and P̃jk can be optimally weighted:

Following the procedure of Corollary 3.1, we let W be a positive definite weighting

matrix so that W = ΩΩH and let P̃ikW = ΩHP̃ik and P̃jkW = ΩHP̃jk, then PikW =

P̃ikW P̃H
ikW and PjkW = P̃jkW P̃H

jkW . Since TM(P) and UH(P̃) are isometric, we have

d2
R1W (Pik,Pjk) = min ‖P̃ikW − P̃jkW‖2

= Tr
[
(P̃ikW − P̃jkW )H(P̃ikW − P̃jkW )

]

= Tr
[
(P̃ik − P̃jk)

HW(P̃ik − P̃jk)
]

= Tr
[
ΩH(P̃ik − P̃jk)(P̃ik − P̃jk)

HΩ
]

(4.52)

Let S̃1 = {(P̃ik, P̃jk);Pi(ω),Pj(ω) ∈ C`} and D̃1 = {(P̃ik, P̃jk);Pi(ω) ∈ C`i
,Pjk(ω) ∈

C`j
, `i 6= `j}. Then, writing

M̃S̃1
=

∑

(P̃ik,P̃jk)∈S̃1

(P̃ik − P̃jk)(P̃ik − P̃jk)
H (4.53)

and

M̃D̃1
=

∑

(P̃ik,P̃jk)∈D̃1

(P̃ik − P̃jk)(P̃ik − P̃jk)
H (4.54)
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and substituting into Eq. (4.50), the optimization problem becomes

max
Ω

Tr
(
ΩHM̃D̃1

Ω
)

Tr
(
ΩHM̃S̃1

Ω
)

s.t. ΩΩH Â 0 (4.55)

As discussed in the last section, this problem may be difficult to solve and we turn

to solve an approximation problem such that

max
Ω

Tr[(ΩHM̃S̃1
Ω)−1ΩHM̃D̃1

Ω]

s.t. Ω ∈MM×K (4.56)

which is in the same form as the Problem (4.25). Therefore,

Ωop1 = [ṽ1, · · · , ṽK ]T (4.57)

where ṽ1, · · · , ṽK are the orthonormal eigenvectors corresponding to the eigenvalues

λ̃1 ≥ · · · ≥ λ̃K of M̃−1

S̃1
M̃D̃1

. Thus, the optimum weighting matrix Wop1 is given by

Wop1 = Ωop1Ω
H
op1 (4.58)

4.4.2 Optimum weighting for dR2W

Let S̃2 = {(P1/2
ik ,P

1/2
jk );Pi(ω),Pj(ω) ∈ C`} and D̃2 = {(P1/2

ik ,P
1/2
jk );Pi(ω) ∈ C`i

,Pjk(ω) ∈
C`j

, `i 6= `j}. Then, writing

M̃Š2
=

∑

(P
1/2
ik ,P

1/2
jk )∈S̃2

(P
1/2
ik −P

1/2
jk )(P

1/2
ik −P

1/2
jk )H (4.59)

and

M̃Ď2
=

∑

(P
1/2
ik ,P

1/2
jk )∈D̃2

(P
1/2
ik −P

1/2
jk )(P

1/2
ik −P

1/2
jk )H (4.60)
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and using the same reasoning as the previous section we can find the optimum

Ωop2 = [ṽ1, · · · , ṽK ]T (4.61)

where ṽ1, · · · , ṽK are the orthonormal eigenvectors corresponding to the eigenvalues

λ̃1 ≥ · · · ≥ λ̃K of M̃−1
S2

M̌D2 . Thus, the optimum weighting matrix Wop2 is given by

Wop2 = Ωop2Ω
H
op2 (4.62)

In this chapter, we have examined the use of weighting in the signal classification.

The principle established here is that an optimum weighting matrix, while keeping

the data of dissimilarity to be as distant as possible, should keep the data of similarity

to be within the vicinity. Using this principle, we have derived approximate optimum

weightings for both dR1W and dR2W . (It has been shown that dR3 is weight invariant.)

In the ensuing chapter, we will apply both the weighted and unweighted distance

measures to the classification of EEG signals. The effects of optimum weighting will

be apparent from those results.
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Chapter 5

Geometric EEG signal

classification

In this Chapter, we apply the optimally weighted Riemannian distance derived in

Chapters 3 and 4 to the classification of EEG signals for the determination of a

patient’s sleep stage. Since our similarity/dissimilarity measure is defined by consid-

ering the geometric structure of the feature space, our classification method will be

called Geometric EEG Signal Classification to emphasize this aspect. Specifically, our

method is k-nearest neighbor (k-NN) rule coupled with the similarity/dissimilarity

measures based on (both unweighted and weighted) Riemannian distances. In the

following, we will describe each part of the classification method in details.

5.1 Nearest neighbor classification methods

As in any pattern classification problem, once the feature space has been determined,

there are various choices of classifiers as mentioned in Chapter 1. Conceptually,

the simplest classifier is perhaps the k-nearest-neighbor rule, which is a sub-optimal

115



Ph.D. Thesis Yili Li McMaster - Electrical & Computer Engineering

procedure. It only requires a finite reference sample of N (N > k) feature matrices

(feature vectors are special cases) labeled according to the pattern class of origin, and

a dissimilarity measure in the space of feature matrices. For a given input feature

matrix, the algorithm uses the given dissimilarity measure to first identify the k

feature matrices from the reference samples which are closest to the input matrix

and then assigns the input feature matrix to the pattern class that appears most

frequently amongst the k nearest neighbors.

5.1.1 k-nearest neighbor classification algorithm [20,25]

For our case of EEG signal classification, we take the feature PSD matrix of a test

signal epoch not being part of the library, and compare the Riemannian distance of

this test feature PSD matrix to its k nearest neighbors. Then we assign it to a class

according to majority decision among these k neighbor matrices. Fig. 5.1.1 shows

an example of 3-NN and an example of 5-NN in a two-class case. (In our case, the

neighbors are the feature PSD matrices from the library signal sets.)
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Figure 5.1: k-Nearest Neighbor Decision a) k = 3; b) k = 5

We can see that the assignment of the object x may vary with the choice of

different values of k, regardless of whether the distributions of the objects are similar

or different. However, there is no general rule to choose the best value of k in the
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k−nearest neighbor algorithm. If the sample size is infinite, the larger is k the better

is the performance of the k-nearest neighbor classifier. In fact, for infinitely large

sample-size, the performance of the k-nearest neighbor algorithm has been shown to

approach the optimum Bayesian classifier with k → ∞ and k/N → 0 (N being the

sample size) [30].

In our tests, we first set up a library of epochs of EEG signals and categorize them

into L = 6 classes, each representing a particular stage of sleep. Each epoch of EEG

signals has been examined by clinical experts and classification agreements have been

obtained. Using the procedure described in Section 2.4, the PSD matrices of these

signal epochs in each of the categories are evaluated at each frequency point within

the range ω ∈ [0Hz, 30Hz] forming different categories of curves (sequences of points),

{Pn(ω), n = 1, · · ·N}. These are the PSD matrix curves to which we apply the k-

nearest neighbor algorithm coupled with the Riemannian (or otherwise) distances for

classification of the EEG signals. Since our sample size is finite, we found that, by

choosing a small value of k, the results are very satisfactory. In the following, we

summarize the classification of EEG signals using the k-nearest neighbor algorithm

coupled with the weighted Riemannian distance dR1W . (For classification using the

k-nearest neighbor with other weighted or unweighted distances, the procedure will

be identical):

1. With all the PSD matrices of EEG signal epochs of the L states of sleep in the

library, the optimum weighting matrix W of similarity/dissimilarity is evaluated

for dR1W according the description in Section 4.4.1.

2. For the PSD matrix curve P0(ω) of a test EEG signal, we calculate the dissimi-

larity measures {dni = dR1W (P0(ωi),Pn(ωi)), n = 1, · · · , N} at each frequency

ωi according to Eqs. (4.52) and (4.57), and then calculate the total distance dn
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between the two curves according to Eq. (3.108). For a chosen value of k, the k

nearest neighbors of P0(ω) of the test signal (k PSD matrices at same ω having

shortest weighted distances from P0(ω)) are then identified.

3. P0(ω) is then assigned to class C`0 if `0 = maj(`1, · · · , `k) where `1, · · · , `k are

the class labels of the k-nearest neighbors of P0(ω) among the members of

the library, and maj(·) denotes the majority vote function, i.e., its value is the

element which has occurred most in {`1, · · · , `k}.

5.2 Q-fold cross-validation method

The above description outlines the procedure of applying the k-nearest neighbor al-

gorithm together with the Riemannian distance to classify an unknown signal to a

particular state of sleep. In this section, we will examine the performance of our

classification method. Ideally, the performance accuracy of our EEG classification

algorithm should be measured in terms of its probability of error which necessitates

the knowledge of the ground truth of the patient’s state of sleep. However, since the

ground truth of the state of sleep of a patient measured from the signal epoch is not

really known, we will therefore treat the library of signal epochs classified by clinical

experts as the ground truth. From the library of collected signal epochs, we will ran-

domly select some as training signals and some as test signals so that the validation

of our classification methods is carried out as follows:

i) For each of the classes C`, ` = 1, · · · , L, containing N` feature PSD matrix curves

(being functions of ω) of the same state of sleep, we randomly choose N`T matrix

curves as the test set and the rest (N` −N`T ) as the training (library) set.1

1In an actual clinical test in which a patient’s EEG signal is under examination, the number N`T

of test curves does not affect the test outcome since the epochs are tested one at a time against a
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ii) As described in the previous section, for all the L states of sleep, the weighting

matrix W is first evaluated using the training sets, each containing (N` −N`T )

selected feature matrix curves. For each member matrix curve of the test sets,

the dissimilarity measures from the library sets are calculated and its classifi-

cation is carried out according to the k-nearest neighbor algorithm.

iii) The above steps are repeated Q times (Q-fold cross-validation), each time choos-

ing different sets of training and test feature matrix curves in C`. The probability

of correct classification in each state can then be estimated by P̂c` = 1
Q

∑Q
q=1 P̂c`q

where P̂c`q denotes the estimated probability of correct classification of class `

at the qth trial, q = 1, · · · , Q, i.e. P̂c`q = Nc`

N`T
with N`c being the number of

correct classification for class C` at the qth trial.

5.3 Validation test results

We now perform some tests using the collected sleep data to validate our classification

algorithm employing the Riemannian distance developed in Chapter 3 and Chapter 4.

The test results are based on the data collected from five patients. For each patient, we

collect the multichannel recordings for each sleep state. The recordings were selected

from channels (C3 − A2), (C4 − A1), (O1 − A2), and (O2 − A1)
2 for all patients. As

described in the previous chapters, for our validation tests, the raw EEG recordings

were first pre-processed by removing the DC values, and the frequency components of

the signals were kept to within the range of 0.5−30Hz by using a bandpass filter. We

sectioned the recording length to 30s epochs. Each epoch was examined by clinical

library of reference signals. However, in our validation test here, taking away N`T signals from a
group results in a depletion of the library reference signals. For a finite number of reference signals,
the performance of the classification algorithm may well be affected by N`T as will be demonstrated
in the next section.

2Please refer to Section 1.1.1 for the positioning of these sensors.
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experts, and upon agreement, classified into one of six states. For each sleep state

we collected 75 epochs for a total of 450 epochs in all states and used them in the

verification of the methods. Also, the power spectral density matrix of each epoch was

estimated by the Nuttall-Strand algorithm [68,79]. In each trial, we randomly choose

N`T PSD matrices from each state as test signals while the remaining (75−N`T ) PSD

matrices form the training data set so that the total number of the training feature

signals in each trial is 6× (75−N`T ) for each trial.

The following are examples of the tests of the effectiveness of various dissimi-

larity measures in the classification of EEG signals we carried out under different

environments.

5.3.1 Example 5.1

We first examine the performance of our classification algorithm using either the

Riemannian distances dR1 and dR2 or the weighted Riemannian distances dR1W and

dR2W . Our experiments are carried out with N`T = 1, 5, and 15, for each of which

we employ the parameter k = 1, 3, 5, and 7 for the nearest neighbor tests. Each test

is repeated Q = 75 times. Fig. 5.2, Fig. 5.3 and Fig. 5.4 show the performance of

the methods using dR1 and dR1W under different parameter values. Comparing the

results in the three figures, clearly, the weighted Riemannian distance outperforms

the unweighted one by a margin of 8% to 10% in accuracy of classification. It is also

observed that the cases of having the number of nearest neighbors being k = 5 and

3 seem to have, on average, good performance in the three figures shown. As the

number of selected test signals N`T increases, we can see that the performance of all

the cases deteriorate. In the case of the weighted Riemannian distance, the accuracy

deteriorates from a high-90% for N`T = 1 to a low-90% using k = 5 for N`T = 15.

Other cases of k have similar drops in performance as N`T increases. This is because
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Figure 5.2: Classification results using dR1 (N`T = 1, k = 1, 3, 5, 7)
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Figure 5.3: Classification results using dR1 (N`T = 5, k = 1, 3, 5, 7)
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Figure 5.4: Classification results using dR1 (N`T = 15, k = 1, 3, 5, 7)

larger N`T depletes the size of the training (library) set and the ratio of k/N in the

nearest neighbor test is no longer small enough.

The performance using Riemannian distances dR2 and dR2W are shown in Fig. 5.5,

Fig. 5.6, and Fig. 5.7. We also tested the performance of the classification algorithm

using Riemannian distances dR3 . Since it has been shown in Appendix F that dR3

is weight-invariant, the performance using dR3W is omitted and the performance of

the classification using dR3 is shown in Fig. 5.8, Fig. 5.9, and Fig. 5.10 For these two

other Riemannian distances, similar observations as for dR1 and dR1W are noted.

We note that when the validation is performed in the cases with N`T > 1, the

classification is carried out on each individual member of the test signals, i.e., the clas-

sification is carried out as if N`T = 1. The only difference between the case of N`T > 1

and N`T = 1 is that the groups from which the test signals have been selected would

have fewer members left as library reference. Therefore, from the above observations
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Figure 5.5: Classification results using dR2 (N`T = 1, k = 1, 3, 5, 7)
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Figure 5.6: Classification results using dR2 (N`T = 5, k = 1, 3, 5, 7)
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Figure 5.7: Classification results using dR2 (N`T = 15, k = 1, 3, 5, 7)

Awake REM Stage 1 Stage 2 Stage 3 Stage 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sleep states

P
ro

ba
bi

lit
ie

s 
of

 c
or

re
ct

 c
la

ss
ifi

ca
tio

n

 

 

d
R

3

 with k=1

d
R

3

 with k=3

d
R

3

 with k=5

d
R

3

 with k=7

Figure 5.8: Classification results using dR3 (N`T = 1, k = 1, 3, 5, 7)
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Figure 5.9: Classification results using dR3 (N`T = 5, k = 1, 3, 5, 7)
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Figure 5.10: Classification results using dR3 (N`T = 15, k = 1, 3, 5, 7)
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on the performance of the classification algorithm using the different Riemannian dis-

tances, we can conclude that their performance are all similarly affected by the choice

of the ratio of the number of test signals to the number of reference signals, as well

as by the number of nearest neighbors. Increasing the number of test signals taken

from a class depletes the number of reference signals in that class and the evaluation

of similarity will be affected. As well, the increase of the number of nearest neighbors

in the algorithm may violate the condition k/N → 0 for good performance of the

algorithm. Since the performance using the different Riemannian distances are all

similarly affected, we can see that the performance of the algorithm under the effect

of choices in N`T and in k does not depend on the definition of the distance, rather

it depends on the relative size of N`T and k to the total library size. ¤

5.3.2 Example 5.2

In this example, we carry out a direct comparison between the performance of the

Riemannian distances dR1 , dR2 and dR3 and their weighted versions when applied

to the EEG signal classification problem. Due to its weight-invariant nature (see

Chapter 3), therefore, no weighting is needed for dR3 . Figs. 5.11, Fig. 5.12 and

Fig. 5.13 show the performance with different N`T and k. The test is repeated Q = 75

times. Also, since from the last example, the cases of k = 3 and 5 show good

performance for the Riemannian distances, we maintain the use of these two choices

of the number of nearest neighbors in our tests here. For the unweighted Riemannian

distances, we can see that dR1 and dR2 generally have better performance than dR3 .

Comparing the results in these figures, we can see that for N`T = 1, dR1 and dR2 have

similar performance, both having accuracies in the mid-80% to high-80% while dR3 is

generally around 3 to 5% lower. As N`T increases, all the Riemannian distances yield

deteriorated performance as observed in Example 4.1. Optimum weighting results in
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Figure 5.11: Performance of using Riemannian distances for N`T = 1: a) k = 3, b) k
= 5
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Figure 5.12: Performance of using Riemannian distances for N`T = 5: a) k = 3, b) k
= 5
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Figure 5.13: Performance of using Riemannian distances for N`T = 15: a) k = 3, b)
k =5
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dR1W and dR2W having much enhanced performance, having accuracies both in the

high 90% for N`T = 1, and deteriorated to around 90% when N`T increases.

5.3.3 Example 5.3

We now compare the performance of the classification algorithm using the unweighted

Riemannian distance measures to that using various other unweighted distances. For

comparison, we have chosen the following distance measures:

a) K-L divergence dKL – The K-L divergence has been introduced in Section 3.2.2.

We have seen that it does not satisfy the triangular inequality and is therefore

not a true distance. Furthermore, the “measure” is invariant to weighting.

However, it uses the power spectral density matrices as the feature and has

been applied to the classification of EEG signals. Here, we also include this

measure and examine its effectiveness in our study of EEG signal classification.

b) Euclidean distance dE1 – The distance measure used here is the unweighted

Euclidean distance between two vectors vPa1 and vPa2 generated as shown in

Eq. (2.64) by vectorizing the two PSD matrices P1 and P2 respectively.

c) Euclidean distance dE2 – The distance measure used here is the unweighted

Euclidean distance between two vectors vPL1 and vPL2 generated as shown in

Eq. (2.85) by utilizing the parameters of the Lie vectors of the two PSD matrices

P1 and P2 respectively.

The comparison of the performance of the classification algorithm employing the

unweighted Riemannian distances with those using the above distances are shown

in Fig. 5.14, Fig. 5.15, and Fig. 5.16 for various values of N`T and k. The test is

repeated Q = 75 times. It can be observed that while the performance using the
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Figure 5.14: Performance using various unweighted distances for N`T = 1: a) k = 3,
b) k = 5
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Figure 5.15: Performance using various unweighted distances for N`T = 5: a) k = 3,
b) k = 5
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Figure 5.16: Performance using various unweighted distances for N`T = 15: a) k = 3,
b) k =5
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other distance measures performs well and cluster around the low-80% mark, the

unweighted Euclidean distance dE1 is very much worse, its accuracy being around

the high-50%. The inferior performance of the algorithm using dE1 is apparent. dE1

measures the distance between two vectors formed by stacking up the elements of

the PSD matrices. In other words, the information of the relationship between the

elements is no longer available. In contrast, the other distance measures retain all the

information of the PSD matrix, not only the element values, but also the structure

and properties of the matrix.

As N`T increases and the number of reference signals in the library decreases, all

the performance deteriorate as in Examples 1 and 2. However, among the better

performance group of measures, dE2 appears to be more sensitive to the decrease of

reference signals. Its performance accuracy drops to around 70% for N`T = 5 and

further to around 60% for N`T = 15. Thus, the performance of the group using

distances directly expressed as functions of the PSD matrices seem to be more robust

against changes in statistical environments.

Apart from the information of the PSD matrix elements and structures, the Rieman-

nian distances also explore the geometry of the manifold that is described by the PSD

matrices. It is not surprising, therefore, to find the performance associated with these

distance measures to be superior to those without utilizing the manifold geometry.

However, we also observe that even though the K-L distance is not derived using the

manifold geometry, its performance is by and large, comparable to the performance

using the Riemannian distances. This should not be so surprising either since an

examination of the K-L distance in Eq. (3.21) shows the similar employment of the

traces of the matrices P1 and P2 as in dR1 and dR2 .

In spite of this similarity of using the traces of the PSD matrices as distance

measures, the K-L distance unfortunately cannot be weighted to enhance the measure
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of similarity and dissimilarity of different signal classes, making it not so useful in

this application.

5.3.4 Example 5.4

Optimally weighted distances, in general, have superior performance to the unweighted

ones in EEG signal classification. This has been clearly observed in the cases of

weighted and unweighted Riemannian distances in Examples 1 and 2. Here in this

example, we compare the performance of the optimally weighted Riemannian dis-

tances dR1W and dR2W derived in this thesis with other optimally weighted distances

for the purpose of EEG signal classification. Now, since optimum weighting in EEG

classification essentially enhances the measure of similarity/dissimilarity between the

groups of signals, we will examine the two approaches addressed in Chapter 4:

a) X-N-J optimum weighting of vectors [90] – This method of optimally weighting

a signal vector has been introduced in Chapter 4. Here, we apply the X-N-J

optimum weight obtained from Table 4.2 to vector representations of P as in

Example 4.3, i.e.,

(i) Euclidean distance between two vectors vPa1 and vPa2 generated as shown

in Eq. (2.64) by vectorizing the two PSD matrices P1 and P2 respectively.

(ii) Euclidean distance between two Lie vectors vPL1 and vPL2 of the two PSD

matrices P1 and P2 respectively.

b) Weighted Riemannian distances – These are the same weighted Riemannian

distances dR1W and dR2W which have been studied in Example 4.1.

Again, we apply the k-nearest neighbor algorithm through the Q-fold validation pro-

cess to all the tests. Our experiments are carried out with N`T = 1, 5, and 15 for all
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the methods and we choose Q = 75. We only show the performance comparison for

k = 3 and 5. Again, Figs 5.17, 5.18, and 5.19 show the comparison of performance of

the various methods under different parameter values.

It can be observed from the figures that the performance of all the methods are

greatly enhanced form that of their unweighted counter-parts in Example 4.3. For the

two Euclidian distances dE1 and dE2 , their performance have been elevated respec-

tively from high-50% to around 70% and from under 80% to around 85% for N`T = 1.

For the two Riemannian distances dR1 and dR2 , their performance have both been

elevated from around 85% to over 95% for N`T = 1. Judging from the results in

Example 4.3 and 4.4, we can say that the performance using the X-N-J weighted Lie

vector is only comparable to that of the unweighted Riemannian distances. On the

other hand, the optimally weighted Riemannian distances yield a performance clearly

superior to the optimally weighted dE2W by a margin of 8 to over 15% in accuracy of

classification, and by an even greater margin when compared to dE1W . As the number

of selected test signals N`T increases and the number of reference signals decreases,

we can see that the performance of all the methods deteriorate, however, the mar-

gin of superior performance for the weighted Riemannian distance over the optimally

weighted Euclidian distances still maintains. ¤

Many other examples with different parameters have also be tested and similar

observations have been noted.

5.4 k-NN classification for large size data library

The above experiments have been carried out when the available data is limited

and the reference library is relatively small. The effect of such limited data is quite

apparent from the deterioration of performance of all the methods when the number
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Figure 5.17: Performance using weighted distances for N`T = 1: a) k = 3, b) k = 5
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Figure 5.18: Performance using weighted distances for N`T = 5: a) k = 3, b) k = 5
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Figure 5.19: Performance using weighted distances for N`T = 15: a) k = 3, b) k =5
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of reference signals decreases and when the ratio of k/N increases. Under ideal

circumstances, we should have a very much larger library of signals which would

render the statistics of classification more stable. However, when the experiments are

performed using a large amount of library data, then in order to make a decision, the

k-nearest neighbor algorithm would have to use all of the library patterns of a class

as the class representation so that the distances between the pattern to be tested and

every pattern of the class has to be computed according to a dissimilarity measure.

Although the k-nearest neighbor algorithm is simple and reliable, when the sample

size of each class is large, the number of distances to be calculated is very large as

well. This leads to a fundamental problem of how to reasonably represent each class

of the data.

One way to overcome this difficulty is to divide the class of data into sub-classes

and the mean of each sub-class is computed and used to represent the original class.

In this way, the class can be reasonably characterized by its approximate data distri-

bution. We call this the multi-mean representation of classes.

Since our training data are matrices on a manifold measured by a weighted Rie-

mannian distance, the mean should take into account of the natural properties of the

manifold. Hence, the usual definition of “mean” using Euclidean distance may not

be appropriate. Instead, we may employ the Karcher mean [54] in our grouping of

the power density matrices, i.e., we should solve the following optimization problem

to find the Karcher mean of the sub-class S`j of the power spectral density matrices

belonging to C`:

arg minP∈S`j

∑
Pji∈S`j

d2
GW (P,Pji) (5.1)

Solving this problem, however, is not easy in general.

Instead of trying to solve this problem exactly we choose the element Pji0 in S`j
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such that

i0 = arg min
∑

k
k 6=i0, Pjk,Pji0

∈S`j

d2
GW (Pjk,Pji0) (5.2)

and let P̄`j = Pji0 indicate the approximate Karcher mean of the sub-class S`j.

The algorithm of finding the Karcher means in class C` consists of the following

steps: First, we randomly choose the elements Pj0; j = 1, · · · , J` from the class C`

to form an initial set G(0)
` of Karcher means of J` sub-classes of elements. Second,

each of these initial sub-classes S(0)
`1 , · · · S(0)

`J`
is assigned elements closest to the jth

Karcher mean Pj0 ∈ G(0)
` . Third, the approximate Karcher mean of each of the J`

sub-classes are recalculated from the elements assigned to that sub-class. Fourth,

the second and third steps are repeated until convergence occurs and the proper

sub-classes S`1, · · · S`J`
and the group G` of Karcher means are established.

We are now ready to carry out the classification using the k-nearest neighbour

rule. The procedure is given as follows:

1. For each of the classes C` containing N` patterns of power spectral density (being

functions of ω) of the same state of sleep, we randomly choose N`T patterns as

the training set, while the rest are chosen as the testing set.

2. For all of the N`T patterns representing the training sets of all the L states of

sleep, the weighting matrix W is first evaluated.

3. For each training set in class C`, we find the group G` of J` approximate Karcher

means using the weighted Riemannian distance.

4. For each pattern of the testing sets, we find the dissimilarity between its power

spectral density P0 and the Karcher means in all the groups G`, ` = 1, · · · , L,.

141



Ph.D. Thesis Yili Li McMaster - Electrical & Computer Engineering

5. Each P0 is then assigned to class C`0 if

`0 = maj(`1, · · · , `k) (5.3)

where `1, · · · , `k are the class labels of the k-nearest neighbors of P0 among the

Karcher means, and maj(·) denotes the majority vote function, i.e., its value is

the element which has occurred most in {`1, · · · , `k}.

For the same data set as introduced in the previous Section, the rudimentary

validation test results show that there are no significant deterioration in the the

classification performance when 30 approximate Karcher means are calculated for each

class as the class representatives. Therefore, this method has potential advantages in

the case of large data size.
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Chapter 6

Summary, Future Works, and

Conclusions

6.1 Summary of thesis

In this thesis, we examine the problem of the classification of sleep states of a patient

by analyzing his/her EEG signals. We focus on the geometrical aspects in signal

analysis and emphasize on the improvement of signal classification by exploitation of

the geometry of the signal space.

Following the practice of clinical experts whose judgements in sleep state classi-

fication are based essentially upon the power contents of the signals in the various

frequency ranges, we propose to employ the power spectral density (PSD) matrix as

the feature for the distinction between different classes of EEG signals. In so doing,

we not only examine the power spectrum contents of the signal from each channel, but

also utilize the the cross power spectra between signals collected from the different

channels. To facilitate the classification, we argue that since the PSD matrices are

positive definite and exhibit certain geometric properties in the signal feature space,
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the use of the most widely accepted Euclidean distance between the signal features

may not be the most appropriate for measuring their differences. Rather, we propose

that the geometric properties of the feature space be exploited and appropriate met-

rics on the manifold of the PSD matrices be developed using Riemannian geometry.

By characterizing EEG signals with their power spectral functions, the dissimilarity

measure is defined based on the geodesic distances on the manifold of positive definite

Hermitian matrices.

A general form of geodesic distance on the Riemannian manifold is then derived.

With the help of fibre bundle theory and a particular choice of the Riemannian

metric, we develop a closed form, dR1 , of the geodesic between two points on the

manifold. This new distance measure is then related to the Fisher-Rao and Fubini-

Study distances in special cases. We then show that this geodesic distance can also

be obtained by mimicking the Fréchet distance between two covariance matrices. In

addition, by another choice of the Riemannian metric, we show that a conjectured

distance dR2 is also a geodesic distance on the manifold. We further provide a new

proof following our own geometric interpretations for the geodesic distance dR3 which

has been in existence in the literature.

For the newly derived Riemannian distances, we also propose a weighting method

to facilitate the enhancement of certain parts of the features. To obtain a suitable

weighting so that the new metrics can be applied effectively to EEG signal classifi-

cation, we argue that the weighting should render the distances of similar features

minimized while the distances for dissimilar features maximized. Pursuing along this

line of thought, we develop a general formulation of the optimization problem of the

weighting matrix. Focusing on the special case of this generalized problem formula-

tion, closed forms of the weighting matrix for the Riemannian distances have been

obtained by solving an approximate convex optimization problem.
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Using the k-nearest neighbor decision, we test the effectiveness of these new met-

rics by applying them to a collection of recorded EEG signals for sleep pattern classi-

fication. The results are compared to those obtained by using other metrics, and it is

observed that the weighted Riemannian distances dR1W and dR2W yield an accuracy

of approximately 10% higher than methods using other metrics.

6.2 Further elaboration of work and future research

6.2.1 Elaboration of research results

To the best knowledge of the author, this thesis is a first attempt to exploit the

geometric properties of the signal feature manifold for improving the decision of sleep

state of a patient. On hindsight, there are parts of the research which could be

improved. Some of these may be due to the limitation of time and man-power, others

may be considered important but outside the focus of the thesis. These points, which

have not been carried out as perfectly as could be and which may be elaborated

further, are listed below:

E1. Artifacts removal: There are various sources from which artifacts arise in EEG

recordings. These include line interferences, EOG (electro-oculogram) record-

ing, ECG (electrocardiogram) recordings, etc. Artifacts, which are a kind of

interference, increase the difficulty in the analysis of the EEG signals and the

extraction of clinical information, and thereby deteriorate the sleep classification

performance. In this thesis, we have used a popular but rudimentary method

to remove the artifacts embedded in the EEG signals. Even though this may be

outside the scope of the thesis, to improve on the performance of any automatic

EEG signal classification, a more sophisticated signal processing algorithm has
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to be developed so that the artifacts are automatically recognized and removed.

E2. Estimation of the PSD matrix: In this work, we assume that the EEG signals

are samples of a wide sense stationary (WSS) process and estimate the power

spectral density functions with the use of a multi-channel auto-regression (AR)

model. Although this is an acceptable way to characterize observed time series,

the estimation accuracy of power spectral density functions depends on the

selected model. Therefore, even though this may lie outside the scope of the

present thesis, it is desirable to further explore the estimation of power spectral

density functions of multi-channel EEG signals so that the EEG samples can

be more accurately characterized by their power spectral density functions.

E3. Data collection for reference library: Due to the limitation of man-power,1 the

EEG sleep signals collected and the number of patients from whom the signals

are collected are quite limited. The shortage of “clinical experts” to judge on

the sleep state of the signals also raises doubt on the truth of the sleep state

represented by the signal. The shortage of collected signals results in only a

limited range of tests that can be carried out on the effectiveness of the k-

nearest neighbor decision algorithm. (k is only limited to 3 and 5 in our tests).

For a more thorough evaluation on the performance using the new metrics and

on the effectiveness of the decision algorithm(s), a greater amount of reliable

data have to be collected and tested.

6.2.2 Ideas for future research

Apart from improvements that can be done on the present research results, there are

issues raised during the course of the research which are worth pursuing. These may

1XLTEK, the company which agreed to supply us with test data has changed ownership in 2007
and their division designing machines for sleep tests has ceased to exist.
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be the foci for future research:

F1. The mapping π: In Chapter 3, we develop the two Riemannian distances dR1

and dR2 from two different mappings of π resulting in two different represen-

tation points P̃ of the PSD matrix P. The third Riemannian distance dR3 is

arrived at from yet another mapping π. While the performance of the classifi-

cation algorithm using dR1 and dR2 are generally similar, the use of dR3 yields

inferior results. We can immediately raise the following question: “How does

the choice of the mapping π affect the performance and what π will yield the

best results?”

F2. Refining the weighting matrices:

(i) In the thesis, we have derived the optimum weighting matrix by considering

the different classes of reference signals altogether and have applied the

same weighting matrix to all the different classes. Suppose we derive a

weighting matrix for each of the different classes of signals, would the

classification results be improved?

(ii) In Chapter 4, we have formulated the problem of optimizing the weighting

matrix in terms of a general (K−κ)th trace of a matrix, and we derive the

optimum matrices for the Riemaannian distances using only the simplest

trace, i.e., K − κ = 1. Is there any advantage if we derive the weighting

matrices using a different value of (K−κ)? How would the performance of

the corresponding classification algorithm be affected by a different choice

of (K − κ)?

F3. Application of different classifiers: In this thesis, we have employed the k-nearest

neighbor algorithm for classification of the EEG signals. There are other widely
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used classifiers such as neural network (NN), support vector machine (SVM),

Gaussian mixture model, etc. However, the practice thus far, employs these

classification algorithms based on Euclidean type of distance measures. With

the fundamental idea of thinking feature space as manifold rather than Eu-

clidean space, it deserves to explore the applications of using geodesic distances

to these classifiers.

F4. Quantifying the performance of EEG classification: In this thesis, we evaluate

the performance of the classification by experimentally testing the algorithms

on our clinically collected EEG data. A more challenging task is: “Can we

derive a theoretic evaluation of the performance by deriving an expression of

the probability of error of the algorithm?”

F5. Application to other signal classification problems: The thesis opens up a new

approach to the signal classification problem. It has shown that exploration

of the geometry of the features space may lead to more reliable classification

results. Many engineering problems involves signal classification similar to the

one tackled in this thesis such as the testing of EEG signals for epilepsy, for brain

damages, classification of ECG signals, or even signal classifications in radar and

sonar systems. We can apply this concept to other signal classification problems

each possibly having a different feature space.

6.3 Conclusion

In this thesis, we have proposed a new approach of exploiting the Riemannian geom-

etry in EEG signals and applying it to the determination of sleep state for a patient.
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The results obtained are very encouraging. This shows that such an approach de-

serves further exploration. In the previous section, we suggested a few ideas which

have arisen during the course of research. These are by no means exhaustive. Until

these areas are fully explored, the research on signal classification using Riemannian

geometry is far from complete, by which time, other ideas will certainly arise, and

the frontier of research on the subject will be pushed still further and our knowledge

in this area will yet be more sophisticated and refined.
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Appendix A

The Nuttall-Strand Algorithm

To describe the algorithm, we consider the forward and backward filters which are

multichannel AR models of order q, i.e.,

eq(t) = s(t) +

q∑

k=1

A(k)s(t− k) (A.1)

and

bq(t) = s(t) +

q∑

k=1

B(k)s(t + k), (A.2)

respectively. The optimum forward and backward filters can be obtained by minimiz-

ing the expected mean-square values of eq(t) and bq(t). The minimum of E[eT
q (t)eq(t)]

leads to the equation:

RfwF(q) = Vfw (A.3)

where

F(q) = [I,AT (1), · · · ,AT (q)]T , (A.4)

Rfw = [Rfw
ik ], where Rfw

ik = Rfw
k−i, i, k = 1, 2, · · · , q, and Vfw = [Pfw,0, · · · ,0]T with

Pfw = E[eq(t)e
T
q (t)]. Similarly, the minimum of E[bT

q (t)bq(t)] leads to the equation:

RbwB(q) = Vbw, (A.5)
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where

B(q) = [I,BT (1), · · · ,BT (q)]T , (A.6)

Rbw = [Rbw
ik ], where Rbw

ik = Rbw
k−i, i, k = 1, 2, · · · , q, and Vbw = [Pbw,0, · · · ,0]T

with Pbw = E[bq(t)b
T
q (t)]. To solve the Equation (A.3) and (A.5), the forward and

backward filters may be postulated as

F(q) =


 F(q − 1)

0


 +


 0

Bbw(q − 1)


Cfw(q) (A.7)

and

B(q) =


 F(q − 1)

0


Cbw(q) +


 0

Bbw(q − 1)


 , (A.8)

where Bbw(q − 1) = [BT (q − 1), · · · ,BT (1), I]T .

Let {st : t = 1, · · · , T} be a sample of T consecutive observations of the EEG

signal. Let

sk(q) = [sT
k+q, s

T
k+q−1, · · · , sT

k ]T (A.9)

for k = 1, 2, · · · , N − q, q = 0, 1, · · · , T − 1. Let

ek(q) = [(F(q − 1))T ,0]sk(q) (A.10)

and

bk(q) = [0, (Bbw(q − 1))T ]sk(q). (A.11)

Then, the algorithm is as follows:

Algorithm A.1 (Nuttall-Strand)

(1) Initialize the residual power matrices Pfw(0) and Pbw(0):

Pfw(0) = Pbw(0) =
1

T

T∑
t=1

sts
T
t (A.12)
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(2) Calculate the forward and backward residuals for k = 1, · · · , T − q:

– q = 1: ek(q) = sk+1, bk(q) = sk.

– q > 1: ek(q) = ek+1(q − 1) + (Cfw(q − 1))Tbk+1(q − 1), bk(q) = bk(q −
1) + (Cbw(q − 1))Tek(q − 1).

(3) Calculate

E =
1

T − q

T−q∑

k=1

ek(q)e
T
k (q) (A.13)

G =
1

T − q

T−q∑

k=1

bk(q)e
T
k (q) (A.14)

B =
1

T − q

T−q∑

k=1

bk(q)b
T
k (q). (A.15)

(4) Solve Cfw(q) from

BCfw(q) + Pbw(q − 1)Cfw(q)(Pfw(q − 1))−1E = −2G. (A.16)

(5) Compute Cbw(q) by

Cbw(q) = (Pfw(q − 1))−1CT (q)Pfw(q − 1). (A.17)

(6) Compute power matrices Pfw(q) and Pbw(q) by

Pfw(q) = Pfw(q − 1)− (Cfw(q))TPbw(q − 1)Cfw(1). (A.18)

and

Pbw(q) = Pbw(q − 1)− (Cbw(q))TPfw(q − 1)Cbw(q). (A.19)

(7) Update the filters coefficients using Equation (A.7) and (A.8).

(8) If ||Pfw(q)−Pbw(q)|| < ε, then go to (2).
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(9) Calculate the power spectral density matrix

P(ω) = A−1(−ω)Pfw(q)A−T (ω), (A.20)

where A(ω) = I + A(1)e−jω + · · ·+ A(q)e−jωq.

The algorithms only involve manipulations of M × M rather than MT × MT

matrices. For the detailed derivation of the algorithms and the implementation,

see [68] [79].
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Appendix B

Mathematical Background

In this appendix, we briefly introduce some related mathematical concepts which

may be helpful for the understanding of the development of geodesic distances in this

thesis. For more details, please refer to [40] [53].

B.1 Notations

For a manifold M, its tangent space at p ∈ M is usually denoted as TpM. The

coordinates at p ∈ M is denoted as x(p) = (x1, x2, · · · , xn). The Riemannian metric

is denoted as g, which some authors refer to the line element ds2. In this work,

we use notations TM(p) and x(p) = (x1, x2, · · · , xn) to denote tangent space and

coordinates, respectively. We use g to denote the inner product function defined on

the tangent space as the Riemannian metric and ds2 as the line element. The dual

basis of (x1, x2, · · · , xn) is denoted as (dx1, dx2, · · · , dxn).

The exponential map in Lie group theory is denoted by exp. We adopt e as the

exponential map.

154



Ph.D. Thesis Yili Li McMaster - Electrical & Computer Engineering

B.2 Riemannian geometry - Riemannian distance

A space is a set of points that satisfy a set of postulates. For example, the Euclidean

space En is the set of n-tuples, in which a notion of distance and angle is defined and

it has no origin or special choice of coordinates. After imposing a coordinate system

on En we identify it with Rn, the vector space of n-tuples of numbers. Our intuitive

understanding of space is the 3-dimensional Euclidean space R3. In R3, the distance

between two points is defined as the length of the straight line connecting them.

Since a space may not always be Euclidean in the sense that the distance could

be more reasonably defined rather than the length of the straight line connecting two

points (imaging the surface of a sphere), the concept of manifold, needs to be intro-

duced to study those curved spaces. A manifold is an abstract mathematical space in

which every point has a neighborhood which resembles Euclidean space, but in which

the global structure may be more complicated. In other words, manifolds allow more

complicated structures can be expressed and understood in terms of the relatively

well-understood properties of simpler spaces. Defining additional structures on man-

ifolds can lead to different kind of manifolds such as topological manifolds, differen-

tiable manifolds, Riemannian manifolds, symplectic manifolds, pseudo-Riemannian

manifolds to name a few. In this work, we are interested in the distance measure on

manifolds. Since we mainly consider the geometry of the real manifold of positive-

definite Hermitian matrices, we focus on the Riemannian geometry, which is the study

of differentiable manifold by endowing the manifold a Riemannian metric.

The key idea of investigation of surfaces presented by Gauss is that a point on a

surface in ordinary Euclidean space is determined by two coordinates x1 and x2, and

the arc element is expressed in terms of a given positive definite quadratic form in

the differentials of these coordinates, i.e., ds2 = g11(dx1)
2 + 2g12dx1dx2 + g22(dx2)

2,
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where g11, g12, and g22 are functions of the variables x1 and x2. In his famous lecture

at Göttingen in 1854 with the title ”On the hypotheses which underlie geometry”,

Riemann extended Gauss’s idea and developed a metric geometry of a manifold of

n dimensions, that is, a set of elements each of which is determined by n bits of

numerical data, its coordinates x1, x2, · · · , xn. Riemann’s idea is linked to the mode of

determination of the distance between two infinitely close elements (the arc element)

given by

ds = F (x1, · · · , xn, dx1, · · · , dxn) (B.1)

where the function F (x,y) is linearly homogeneous in y, i.e., F (x, αy) = αF (x,y),

where α is a constant. An important special case is when

ds2 = F 2(x, dx) =
n∑

i,j=1

gij(x)dxidxj (B.2)

It is important to note that this is not just an extension of Gauss’s formula to an n-

dimensional manifold. Rather, it introduces the completely new idea of determining

the metric on a manifold by specifying it in an infinitely small potion of that manifold.

B.2.1 Differentiable manifold

Roughly speaking, a differentiable manifold is a topological space with a differentiable

structure.

1. Topological space: A topological space is a set M together with a collection

of subsets of M, T , satisfying

– the empty set ∅ and M are in T .

– the union of any collection of sets in T is also in T .

– the intersection of any finite collection of sets in T is also in T .
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The collection T is called a topology on M.

2. Hausdorff space: A space M is said to be a Hausdorff space if for any x, y ∈
mathcalM with x 6= y, then there exist neighborhoods U and V of x and y

respectively such that U ∩ V = ∅, i.e., U and V are disjoint.

3. Continuous, Homeomorphism, and Diffeomorphism: A map f : N →
M between two topological spaces is said to be continuous if f−1(U) is open for

any open subset U of M. f is called a homeomorphism if it is a bijection and

both f and f−1 are continuous. f is called a diffeomorphism if, in addition, f

and f−1 are differentiable.

4. Dimension of a manifold: Let M be a Hausdorff space. If for any p ∈ M,

there exists a neighborhood U of p such that U is homeomorphic to an open

set in Rn, then M is called an n-dimensional topological manifold.

5. Coordinate charts and Atlas: Let I be an index set, whose elements is used

to index homeomorphisms. Let U ⊂ M. If xα : U → xα(U), where α ∈ I and

xα(U) is an open set in Rn, is a homeomorphism, then (U,xα) is a coordinate

chart of M. The coordinates of p ∈ U is the coordinates of x = xα(p) ∈ Rn,

i.e.,

x = (x1, · · · , xn) = ((xα(p))1, · · · , (xα(p))n) (B.3)

which called the local coordinates of the point p ∈ U . The collection of all the

coordinate charts forms an atlas A, i.e., A = {(Uα,xα)|α ∈ I}.

6. Differential structure: Suppose (U,xα) and (V,xβ) are two coordinate charts

of M. If U ∩ V 6= ∅, then xα(U ∩ V ) and xβ(U ∩ V ) are two nonempty open

sets in Rn, and the map

xβ ◦ x−1
α |xα(U∩V ) : xα(U ∩ V ) → xβ(U ∩ V ) (B.4)
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defines a homeomorphism between these two open sets, with inverse given by

xα ◦ x−1
β |xβ(U∩V ) : xβ(U ∩ V ) → xα(U ∩ V ) (B.5)

These are both maps between open sets in a Euclidean space. Expressed in

coordinates, xα ◦ x−1
β and xβ ◦ x−1

α each represents n-real valued functions on

an open set of a Euclidean space (see Figure B.1).

β

xα xβ
−1

U Vxα(          ) U Vxβ(           )

U V

M U

V

xβ

R Rnn xα

x x−1
α

Figure B.1: Differentiable manifold

The manifold M is called a differentiable manifold if for all α, β ∈ I the corre-

sponding transition maps

xβ ◦ x−1
α |xα(Uα∩Uβ) : xα(Uα ∩ Uβ) → Rn (B.6)

are differentiable.
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B.2.2 Riemannian manifold

A Riamannian manifold (M, g) is a differential manifold M in which each tangent

space is equipped with an inner product g in a manner which varies smoothly from

point to point. In other worlds, a Riemannian manifold is a differentiable manifold

in which the tangent space at each point is a finite-dimensional Hilbert space (inner

product space). The dimension of the manifold is the dimension of the tangent space

at each point on the manifold. A Riemannian metric on M allows one to measure

lengths of smooth paths in M and hence to define a distance function by taking the

infimum of the lengths of smooth paths between two points. This makes M a metric

space.

1. Vector field and Tangent space: A vector field V on a given manifold M
is an assignment to every point p ∈ M a tangent vector to M at p. That is,

for each p ∈M, we have a tangent vector v = V(p) in the space TM(p), which

is the tangent space of M at p. Figure B.2 shows the tangent space of M at

p. The tangent bundle TM is the disjoint union of the tangent spaces of the

points of M, i.e., TM =
⋃

p∈M TM(p). The collection of all the vector fields

on M is denoted by Γ(TM).

2. Riemannian metric: Let M be a differentiable manifold of dimension n. A

Riemannian metric on M is a family of inner products

g : TM(p)× TM(p) → R, p ∈M (B.7)

such that, for all differentiable vector fields X,Y ∈ Γ(TM), the application

M→ R, p 7→ g(X(p),Y(p)) (B.8)

is differentiable.

159



Ph.D. Thesis Yili Li McMaster - Electrical & Computer Engineering

Figure B.2: Tangent space TM(p) and a tangent vector v ∈ TM(p) along a curve
through p ∈M

In fact, Eq. (B.7) defines a metric tensor onM such that g(v,w), v,w ∈ TM(p),

produces a real number (scalar) in a way that generalizes the inner product of

vectors in Euclidean space.

Any differentiable manifold can be endowed with a Riemannian metric [53] .

Therefore, there are infinitely many Riemannian metric on M. A question

raised is that given a compact differentiable manifold, does it carry a best, or

a family of best, Riemannian structure? The most natural definition of a best

metric is the least curved one (with the smallest curvature). However, it is

generally difficult to find the Riemannian metrics best adapted to the given

manifold structure.

3. Differential maps: Let (M, gM) and (N , gN ) be two Riemannian manifolds.

If φ : M→N is a differentiable map from the manifold M to the manifold N ,
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the induced differential map φ∗ : TM(p) → TN (φ(p)) is called a push-forward

map if

φ∗(v)(f) = v(f ◦ φ), (B.9)

for v ∈ TM(p) and f ∈ C∞(N,R), where C∞(N ,R) denotes the class of smooth

functions from N to R.

Roughly speaking, the push-forward transforms the velocity vectors of a curve

γ : [0, 1] →M to the velocity vectors of the transformed curve φ(γ) in N .

A metric φ∗gN on M is called the pull-back metric if

(φ∗gN )(x,y) = gN (φ∗x, φ∗y), (B.10)

where x,y ∈ TM(p).

The map φ : M→N is said to be an isometry if the following holds

gM(x,y) = gN (φ∗(x), φ∗(y)), (B.11)

for all x,y ∈ TM.

Let (U, ζ) and (V, ξ) be charts for M and N around p and φ(p). The meaning of

the map between manifolds and the induced differential map can be seen from

the following diagrams [40].

U
φ - V TM(p)

φ∗ - TN (φ(p))

ζ(U)

ζ

? ξ ◦ φ ◦ ζ−1
- ξ(V )

ξ

?
Rn

θU,ζ,p

? Dζ(p)(ξ ◦ φ ◦ ζ−1)
- Rn

θV,ξ,φ(p)

?

Roughly speaking, by introducing local coordinates the operations on manifolds

can be done equivalently on the Euclidean spaces.
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The map φ : M→N is called a submersion at p ∈M if the induced tangential

map φ∗ : Tp(M) → TN (φ(p)) is a surjective linear map.

Let φ : M→N be a submersion. Let Tp(M) = Vp⊕Up, where Vp and Up are

the vertical and horizontal subspaces of Tp(M) at p ∈ M respectively. Then,

the map φ from M to N is a Riemannian submersion if

– φ is a smooth submersion

– For any p ∈M, Up and Tφ(p)(N ) are isometric

4. Line element: Let (U, (x1, · · · , xn)) be a chart of the manifold around p ∈M.

Then the coordinate vector fields
(

∂
∂x1

, · · · , ∂
∂xn

)
form a basis for the tangent

space TM(p). Let (dx1, · · · , dxn) be the basis of the dual space of TM(p), i.e.,

the cotangent space T ∗
M(p). Then we have

dxj

( ∂

∂xi

)
= δj

i =





1 i = j

0 j 6= j
(B.12)

Let

gij := g

(
∂

∂xi

,
∂

∂xj

)
=

〈 ∂

∂xi

,
∂

∂xj

〉
(B.13)

where 〈·, ·〉 denotes inner product. Let γ(t) : [a, b] → M be a parameterized

curve on M, then we have γ̇(t) ∈ TM(γ(t)). Suppose p = γ(c), a ≤ c ≤ b, and

let v = γ̇(c), then we have

v =
∑

i

αi
∂

∂xi

=
∑

i

dxi(v)
∂

∂xi

(B.14)

by Eq. (B.13). Thus,

ds2 = g(v,v) = 〈v,v〉 = g

( ∑
i

dxi(v)
∂

∂xi

,
∑

j

dxj(v)
∂

∂xj

)
=

∑
i,j

gijdxi ⊗ dxj

(B.15)
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where ⊗ denotes tensor product. In other worlds, the metric tensor gij de-

fines the differential metrical distance along any smooth curve in terms of

(dx1, · · · , dxn) according to

ds2 :=
∑
i,j

gijdxi ⊗ dxj, (B.16)

Let

dxidxj =
1

2
(dxi ⊗ dxj + dxj ⊗ dxi), (B.17)

then, Equation (B.16) can be shorten as

ds2 :=
∑
i,j

gijdxidxj. (B.18)

Eq. (B.18) is called the first fundamental form or element of arc length.

5. Distance: A connected Riemannian manifold carries the structure of a metric

space. Let γ : [0, 1] →M be a parameterized curve inM, which is differentiable

with velocity vector γ̇ = γ
dt

. The length of the curve γ is defined as

`(γ) =

∫

[0,1]

√
g(γ̇(t), γ̇(t))dt. (B.19)

The intrinsic distance d : M×M→ [0,∞) is defined by

d(p, q) = inf
γ

`(γ), (B.20)

where γ runs over all differentiable curves connecting p ∈M and q ∈M.

6. Geodesics:

(1) Connection: Let γ : [0, 1] →M be a smooth curve. A smooth vector field

along γ is a family {vt, t ∈ [0, 1]} of tangent vectors vt ∈ TM(γ(t)) such

that if (U, (x1, · · · , xn)) is a chart near γ(t0) and vt =
∑n

i=1 vi(t)
∂

∂xi
|γ(t),

for t in an interval around t0, then vi(t) are smooth functions.
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A linear connection in M is an operator ∇, which defines a vector field

∇XY for any two smooth vector fields X,Y on M such that

∗ ∇XY is smooth.

∗ ∇αX1+βX2Y = α∇X1Y + β∇X2Y, α, β ∈ R).

∗ ∇X(Y1 + Y2) = ∇XY1 +∇XY2.

∗ ∇X(fY) = f∇XY + X(f) ·Y, f ∈ C∞(M,R), where X(f) denotes

the directional directive of α in the direction of X.

(2) Covariant derivation: The operator defined in the set of vector fields

along a curve γ
DV

dt
= V̇ = ∇ γ

dt
(V) (B.21)

is called covariant derivation along γ.

(3) Parallel transportation: A vector field V along γ is called parallel if

DV
dt

= 0.

A connection provides a way of ”connecting” the tangent space at one point

by the tangent space at another point on a given manifold M. Given a

smooth curve γ : [0, 1] → M, γ(0) = p and γ(1) = q, a tangent vector

v ∈ TM(p) can be parallel transported to a vector in TM(q) along γ via a

parallel transportation.

(4) Geodesics: A C2 curve γ in a Riemannian manifoldM is called a geodesic

if the equation

∇γ̇(t)γ̇(t) = 0 (B.22)

is satisfied. This property reflects a property of straight lines in Eu-

clidean geometry. Let (U, x1, · · · , xn) be a chart of M. Let γ(t) =

(x1(t), · · · , xn(t)) be a given curve on M. Then its tangent field γ̇(t) =
∑n

i=1 ẋi(t)∂i, where ∂i = ∂
∂xi

. Since ∇∂j
∂i =

∑n
k=1 Γk

ij∂k, where Γk
ij : M→
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R are called the Christoffel symbols of the connection under the local co-

ordinates, the geodesic equation turns into

∇γ̇(t)γ̇(t) = ∇γ̇(t)

( n∑
i=1

ẋi(t)∂i

)

=
n∑

i=1

ẍi(t)∂i +
n∑

i,j=1

ẋj(t)ẋi(t)∇∂j
∂i

=
n∑

k=1

(
ẍk(t) +

n∑
i,j=1

Γk
ij(t)ẋi(t)ẋj(t)

)
∂k = 0. (B.23)

Therefore, the curve γ will be a geodesic if and only if

ẍk(t) + Γk
ijẋi(t)ẋj(t) = 0, k = 1, · · · , n, (B.24)

which is equivalent to the following system of first order ordinary differen-

tial equations:





ẋk(t) = −yk(t)

ẏk(t) =
∑n

i,j=1 Γk
ij(t)yi(t)yj(t), 1 ≤ k ≤ n.

(B.25)

By the fundamental theorem of ordinary differential equations (existence

and uniqueness theorem) we have that for a given p0 ∈ M and u0 ∈
TM(p0), there exists an ε > 0 and a neighborhood O(u0) of u0 in TM
such that for any u ∈ O(u0) we have a unique geodesic γ(t) defined for

|t| ≤ ε (ε is a sufficient small positive real number) which satisfies the

initial conditions γ(0) = p0, γ̇(0) = u0.

In the presence of a metric, geodesics are defined to be locally the shortest

path between points on the manifold [53]. In the presence of a connection,

geodesics are defined to be curves whose tangent vectors remain parallel if

they are transported along it. We are interested in the finding of explicit

formula for geodesic distance between any two points in the manifold M.
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Although the geodesic equation under local coordinates is obtained, it is

difficult to be solved due to the nonlinearity.

B.2.3 Lie group and Lie algebra

1. Matrix exponential:

eA = I + A +
A2

2!
+

A3

3!
+ · · ·+ An

n!
+ · · · (B.26)

If

eAeB = eC (B.27)

then

C = A + B +
1

2
[A,B] +

1

12
([A, [A,B]] + [B, [B,A]]) + · · · (B.28)

where A, B and C are n×n matrices and [A,B] = AB−BA is the commutator

bracket. The matrix exponential satisfies the following properties

– e0 = I.

– eAH
= (eA)H

– eGAG−1
= GeAG−1

– |eA| = eTrA

– (eA)−1 = e−A

• Group: A set G with the operation ·, denoted by (G, ·), is a group if

– Closure: ∀a, b ∈ G, a · b ∈ G

– Associativity: ∀a, b, c ∈ G, (a · b) · c = a · (b · c)

– Identity element: ∃e ∈ G, ∀a ∈ G, e · a = a · e = a
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– Inverse element: ∃b ∈ G, a · b = b · a = e if a ∈ G

2. Lie group: A set G is a Lie group if

– G is a differentiable manifold;

– G is a group;

– the map (g, h) 7→ gh−1 from the manifold G×G into G is differentiable.

3. matrix group: A matrix group is a group G consisting of invertible matrices

over some field F with operations of matrix multiplication and inversion. For

example, a linear algebra is a matrix group.

4. Lie algebra: Let F be a field (usually R or C). A Lie algebra over F is an

F -vector space g, together with a bilinear map, called the Lie bracket

g× g → g, (x, y) 7→ [x, y] (B.29)

which satisfies the following properties:

– alternating on g

[x, x] = 0 ∀x ∈ g; (B.30)

– the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ g (B.31)

For example, in linear algebra A, the Lie bracket is defined to be

[X,Y] = XY −YX (B.32)

for two elements X,Y ∈ A.
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5. Lie algebra of matrix group: The Lie algebra of a matrix group G is the

tangent space to G at the identity I, i.e., TIG = {γ̇(0) : γ(t) : (−ε, ε) →
G,γ(0) = I}. It is denoted by g = TIG.

6. dimension of matrix group: The dimension of a matrix group G means the

dimension of its Lie algebra.

7. Unitary group: Let Mn(C) be the set of n×n complex matrices. The unitary

group is defined as

U(n) = {B ∈Mn(C) : BHB = I} (B.33)

8. Lie algebra of a unitary group: The Lie algebra u(n) of U(n) is skew-

Hermitian, i.e., for any S ∈ u(n), SH = −S. The dimension of U(n) is n2 [8].

B.2.4 Fiber bundles

1. Submersion: Let M and N be differentiable manifolds. A smooth map φ :

M → N is a submersion at p ∈ M if its differential map φ∗ : TM(p) →
TN (φ(p)) at p is surjective (onto).

2. Riemannian submersion: Let (M, g) and (N , h) be two Riemannian mani-

folds. A map φ : M→N is a Riemannian submersion if:

– φ is a smooth submersion.

– the map φ∗ : UM(p) → TN (φ(p)) is an isometry, where UM(p) = VM(p)⊥

and VM(p) = ker(φ∗) such that TM(p) = UM(p)⊕ VM(p),

VM(p) is called the vertical subspace of TM(p) and UM(p) is called the hor-

izontal subsapce of TM(p). For example, let M and N be two Riemannian
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manifolds. Then the projection map pr1 : M×N →M is a Riemann submer-

sion.

3. Fiber bundle: Let E ,B,F be smooth manifolds and π : E → B be a smooth

map. Let J be an index set. The triple (π, E ,B) is a fiber bundle with fiber F ,

basis B, and total space E if:

– the map π is surjective submersion.

– there exists an open cover (Oj) (j ∈ J) of B (i.e., B ⊆ ∪j∈JOj), and

diffeomorphisms

hj : π−1(Oj) → Oj ×F (B.34)

such that hj(π
−1(x)) = {x} × F for x ∈ Oj ( this is called local triviality

of the bundle).

4. Principal G-bundle: Let E and B be smooth manifolds and G be a Lie group

acting on E such that (p̃, g) ∈ E × G is mapped to p̃g ∈ E , and p̃g 6= p̃ for

g 6= e (e is the identity element of G). Let π : E → B be a smooth surjective

submersion such that the set {p̃g : g ∈ G} coincide with the fibers, i.e.,

{p̃g : g ∈ G} = π−1(π(p̃)) ∀p̃ ∈ E (B.35)

Then π : E → B is said to be a principal G-bundle.

Remarks:

– for p ∈ B, π−1(p) has a Lie group structure but not canonical since there

is no preferred choice of an identity element;

– Around each p ∈ B there exists an open neighborhood O such that π−1(O)

and O ×G are diffeomorphic. This is called a trivialization;

– The vertical subbundle of E has null projection to TB.
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The principal G-bundle is illustrated in Figure B.3.

P

~ p~XH

p~XV

p~

B

p

G
X

H
p

Figure B.3: Principal G-bundle

5. Connections in principal G-bundles: Let π : E → B be a principal G-bundle

and let g be the Lie algebra of G. Let Rg : E → E is the right multiplication

defined by g, i.e., p 7→ p · g. A subset H ⊂ T E in E is called a connection if the

following holds

– The induced differential map satisfies (Rg)∗Hp = Hp·g for every p ∈ E and

g ∈ G (this is called G-invariant).

– For every p ∈ E , Hp ⊕ Vp = TE(p) (This is called direct decomposition).

6. Horizontal lift: A connection prescribes a manner for lifting curves from the

base manifold B into the total space of E so that the tangents to the curve are

horizontal. Specifically, suppose that γ(t) : [0, 1] → B is a smooth curve in B
through the point p = γ(0). Let p̃ ∈ Ep be a point in the fibre over p. A lift of
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γ through p̃ is a curve γ̃(t) in the total space E such that

γ̃(0) = p̃ (B.36)

and

π(γ̃(t)) = γ(t), t ∈ [0, 1] (B.37)

A lift is horizontal if, in addition, every tangent of the curve lies in the horizontal

subbundle of T E , i.e.,

˙̃γ(t) ∈ Hγ̃(t), t ∈ [0, 1]. (B.38)

Let π : E → M is a Riemannian submersion. If γ̃ is a geodesic of E such

that ˙̃γ(0) is horizontal, then ˙̃γ(t) is horizontal for all t, and the curve π ◦ γ̃

os a geodesic of M of same length as γ. The horizontal geodesics is shown in

Fig. B.4.

~

B

E

π

p

p

Figure B.4: Horizontal geodesics

If P̃ ∈ E and γ is a geodesic of M with π(P̃) = γ(0), then there exists a unique

local horizontal lift γ̃ of γ such that γ̃(0) = P̃, and γ̃ is also a geodesic of E .

This is illustrated in Fig B.5.

If E is complete, so is M.
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Figure B.5: Illustration of horizontal lift
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Appendix C

Proof of Lemma 3.1

Proof: Let (A, †) denote a set A associated with a map † : A → A which has the

following properties

• For all X,Y ∈ A
(X + Y)† = X† + Y† (C.1)

(XY)† = Y†X† (C.2)

• For every λ ∈ C and every X ∈ A

(λX)† = λ∗X† (C.3)

• For all X ∈ A
(X†)† = X (C.4)

• For all X ∈ A
‖X†X‖ = ‖X‖‖X†‖ (C.5)

Let φ be a linear functional on A. We say that φ is a positive linear functional on A if

φ is such that φ(X) ≥ 0 for every A 3 X º 0 (i.e., X is nonnegative). We may endow
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A with an inner product 〈X,Y〉φ , φ(X†Y) (we use the subscript φ to indicate the

inner product is defined with the use of a given positive linear functional φ) so that

A is then a Hilbert space, which we denoted by H = (A, 〈·, ·, 〉φ). For every X ∈ A
if we can define an operator TX on H, then it can be shown that there exits a vector

X̃ ∈ H such that

φ(X) = 〈X̃, TXX̃〉φ (C.6)

holds for any X ∈ A. This is called the Gelfand-Naimark-Segal (GNS) Construc-

tion [27].

Let MM be the set of all the M ×M complex matrices. Then, it can be verified

that the matrix Hermitian H on MM acts the same rule as † on A. We define a

positive linear functional on MM , φ : MM → R by

φ(X) = TrX, X ∈MM (C.7)

The positivity of this functional follows from the fact that the trace of a nonnegative

matrix is nonnegative. Let HM = (MM , 〈·, ·, 〉φ) be the Hilbert space forme by

M × M complex matrices with the inner product defined by 〈X,Y〉φ , φ(XHY),

X,Y ∈MM . For every X ∈MM , we define an operator TX on HM by

TXX̃ = XX̃, X̃ ∈ HM (C.8)

i.e., the operator is of the left multiplication by X on HM . Then, by the GNS

construction, there is a vector X̃ ∈ HM such that

φ(X) = 〈X̃, TXX̃〉φ = 〈X̃,XX̃〉φ, ∀X ∈MM . (C.9)

Let M ⊂ MM be the manifold of all the positive definite Hermitian matrices.

Since for any P ∈ M and any X ∈ MM , we have PX ∈ MM . Thus, applying

Eq. (C.9) to PX we must have

φ(PX) = 〈X̃, TPXX̃〉φ = 〈X̃,PXX̃〉φ, ∀X ∈MM . (C.10)
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By the definition of φ, we have

TrPX = TrX̃X̃HPX, ∀X ∈MM (C.11)

holds. This is true if and only if P = X̃X̃HP. Since P is nonsingular we have

X̃X̃H = I.

For every X ∈MM and a P ∈M, we now define another operator on HM by

T ′
XX̃ = PTXX̃, X̃ ∈ HM (C.12)

where TX is the operator defined in Eq. (C.8).

Then, applying the GNS construction again, there exists a vector X̃′ ∈ HM such

that

φ(X) = 〈X̃′, T ′
XX̃′〉φ = 〈X̃′,PTXX̃′〉φ = 〈X̃′,PXX̃′〉φ, ∀X ∈MM . (C.13)

Since for fixed X ∈MM and P ∈M the Eq. (C.9) and Eq. (C.13) are the same,

we must have

〈X̃′,PXX̃′〉φ = 〈X̃,XX̃〉φ (C.14)

This holds if and only if X̃′(X̃′)HP = X̃X̃H = I. Thus, we have P = (X̃′(X̃′)H)−1.

Let P̃ = ((X̃′)H)−1. Then we have

P = P̃P̃H (C.15)

Therefore, we conclude that P = P̃P̃H is a necessary and sufficient condition for

the representative of P ∈ M in the Hilbert space HM as P̃. We note that P̃ is not

unique. ¤
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Proof of Lemma 3.2

Proof: Let P ∈ M such that P = P̃P̃H , where P̃ ∈ H̃. First, we show that the

tangent space TH̃ at P̃ ∈ H̃ can be decomposed as TH̃(P̃) = UH̃(P̃) ⊕ VH̃(P̃) such

that UH̃(P̃) ⊥ VH̃(P̃).

Let G = {G : GHG = I} be the unitary group acting on H by right multiplication

such that P̃G 6= P̃ for P̃ ∈ H if G 6= I. It is well-known that [8] the Lie algebra of

G is g = TG(I) = {S : SH = −S} (i.e.,the tangent space of G at its identity element

I) and erS ∈ G for any r ∈ R and S ∈ g.

Let (−ε, ε) ⊂ R be a small open interval in R. For any r ∈ (−ε, ε), let Ã(r) = P̃erS.

Then we have Ã(r)(Ã(r))H = P̃P̃H ∈ M and Ã(0) = P̃. Therefore, the mapping

Ã(r) : (−ε, ε) → H̃ defines a parameterized curve Ã(r) on H̃, which is through P̃ at

r = 0. It is easy to verify that the tangent vector at P̃ is d
dr

A(r)r=0 = P̃S ∈ TH̃(P̃).

Now, let Γ̃(r) : (−ε, ε) → H̃ be another different curve on H̃ through P̃ at r = 0.

We denote the tangent vector of this curve at P̃ by ˙̃P = d
dr

Γ̃(r)|r=0 ∈ TH̃(P̃).
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Let P̃S and ˙̃P be orthogonal. Then, we have that

〈P̃S, ˙̃P〉TH(P̃) =
1

2
Tr((P̃S)H ˙̃P + ˙̃PH(P̃S))

=
1

2
Tr(( ˙̃PHP̃− P̃H ˙̃P)S) since SH = −S

= 0 orthogonality (D.1)

holds for any S ∈ g if and only if

P̃H ˙̃P = ˙̃PHP̃ (D.2)

From Eq. (D.2), we have

˙̃P = (P̃H)−1 ˙̃P
H

P̃ = KP̃, (D.3)

where K = (P̃H)−1 ˙̃P
H

. Then, we can see

KH = ˙̃P(P̃)−1 = [(P̃H)−1 ˙̃P
H

P̃](P̃)−1 = (P̃H)−1 ˙̃P
H

= K (D.4)

Conversely, let ˙̃P = KP̃ and KH = K. Then we have

P̃H ˙̃P = P̃HKP̃ = (KP̃)HP̃ = ˙̃P
H

P̃ (D.5)

which is exactly the Eq. (D.2). Since each ˙̃P is the tangent vector of a curve of type

Γ̃(r) at r = 0 and the curve is different from the type of Ã(r), the Eq. (D.2) is a

necessary and sufficient condition that

UH̃(P̃) = {KP̃ : K = KH} (D.6)

Let

VH̃(P̃) = {P̃S : S ∈ g} (D.7)

Then, we have

TH̃(P̃) = UH̃(P̃)⊕ TH̃(P̃) (D.8)
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with UH̃(P̃) ⊥ VH̃(P̃). We call UH̃(P̃) the horizontal subspace and VH̃(P̃) the vertical

subspace of TH̃(P̃) at P̃, respectively.

Now, we show the isometric between TM(P) and UH̃(P̃). In other words, we need

to show that

〈Ã, B̃〉TH̃(P̃) = gP(A,B) (D.9)

holds.

Let Γ(r) : (−ε, ε) → M be a curve on M such that Γ(r) = Γ̃(r)Γ̃(r)H and

Γ(0) = P with P = P̃P̃H . Then, the tangent vector at P is

Ṗ =
d

dr
Γ(r)|r=0 =

d

dr
(Γ̃(r)Γ̃(r)H)|r=0 = ˙̃PP̃H + P̃ ˙̃P

H

(D.10)

Different curves through P will have different tangent vectors Ṗ, which altogether

form the tangent space TM(P) of M at P. Since Ṗ ∈ TM(P) and ˙̃P ∈ UH̃(P̃), we

have, from Eq. (D.10), for any two tangent vectors A,B ∈ TM(P), there exist Ã, B̃ ∈
UH̃(P̃) such that A = ÃP̃H + P̃ÃH and B = B̃P̃H + P̃B̃H . Now, UH̃(P̃) ⊆ TH̃(P̃),

thus we can write the inner product between Ã and B̃ as

〈Ã, B̃〉TH̃(P̃) =
1

2
Tr(ÃHB̃ + B̃HÃ)

=
1

2
Tr(ÃHKP̃ + P̃HKÃ) by Eq. (D.3)

=
1

2
Tr((ÃP̃H + P̃ÃH)K) =

1

2
TrAK (D.11)

and

B = B̃P̃H + P̃B̃H

= KP̃P̃
H

+ P̃P̃
H
K by Eq. (D.3)

= KP + PK (D.12)

By comparing Eq. (D.11) with Eq. (3.45), we can see that 〈Ã, B̃〉TH̃(P̃) = gP(A,B).

Therefore, UH̃(P̃) and TM(P) are isometric. ¤
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Appendix E

Proof of Theorem 3.5

Proof. For the classical proof, please see [17]. Here we give a new proof by using

the method we developed in this thesis.

Let HH be formed by all the M ×M Hermitian matrices with the inner product

induced by restriction of the inner product endowed to the Hilbert space HM and is

a Hilbert space in its owe right. In other words, we can endow HH with an inner

product 〈X,Y〉HH
= TrXY so that HH is a Hilbert space, denoted by (HH , 〈·, ·〉HH

).

Let

H̃ = {X̃ : X̃ = log P,P ∈M} (E.1)

Obviously, we have H̃ ⊂ HH . For any P̃ ∈ H̃, we may let TH̃(P̃) = THH
(P̃) with the

inner product induced by the inner product endowed to the Hilbert space HH .

Let Γ(r) : (−ε, ε) →M be a curve onM such that Γ(0) = P. Let Γ̃(r) : (−ε, ε) →
H̃ be a curve on H̃ such that Γ̃(0) = P̃ and P̃ = log P. We assume that

Γ̃(r) = log Γ(r) (E.2)

i.e.,

Γ(r) = eΓ̃(r) (E.3)
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when r ∈ (−ε, ε). Taking derivative on both sides we have

Γ̇(r) = ˙̃Γ(r)Γ(r) (E.4)

Denoting by Ṗ = d
dr

Γ(r)|r=0 and ˙̃P = d
dr

Γ̃(r)|r=0 we have

Ṗ = ˙̃PP (E.5)

Therefore, for A,B ∈ TM(P) we have

A = ÃP (E.6)

and

B = B̃P (E.7)

where Ã, B̃ ∈ TH̃(P̃). Thus,

Ã = AP−1 (E.8)

and

B̃ = BP−1 (E.9)

Therefore, we have

〈Ã, B̃〉 = TrÃB̃ = TrAP−1BP−1 (E.10)

which is exactly the same as Eq. (3.103). Therefore, we have show that TM(P) and

TH̃(P̃) are isometric. Since for any P̃, TH̃(P̃) and THH
(P̃) have the same metric, the

shortest curve connecting two points in H̃ must be a straight line HH . This implies

that dR3(P1,P2) = ‖ log P1 − log P2‖2.

On the other hand, let W = ΩΩH and PW = ΩHPΩ. Then, we have AW =

ΩHAΩ and BW = ΩHBΩ, where AW ,BW ∈ TH̃(P̃W ) and A,B ∈ TH̃(P). Therefore,
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we have

gPW
(AW ,BW ) = TrAWPW

−1BWPW
−1

= Tr(ΩHAΩ)(ΩHPΩ)−1(ΩHBΩ)(ΩHPΩ)−1

= ΩHAP−1BP−1Ω)−1

= TrAP−1BP−1 = gP(A,B) (E.11)

This means that the Riemannian metric is weighting invariant. Thus, it implies that

the Riemannian distances are weighting invariant, i.e., dR3(P1W ,P2W ) = dR3(P1,P2).

As a result of this, we have dR3(P1,P2) = dR3(I,P1
−1/2P2P1

−1/2).

Therefore, we have

dR3(P1,P2) =

√
Tr

(
log P1 − log P2

)2

=

√
Tr

(
log I− log P

−1/2
1 P2P

−1/2
1

)2

=

√
Tr

(
log P

−1/2
1 P2P

−1/2
1

)2

=

√√√√
n∑

i=1

log2 λi(P
−1
1 P2), (E.12)

where λi are the eigenvalues of P−1
1 P2. ¤
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