EnERGY STORAGE
(constant)

- Applyanvvoltage to two parallel conducting plates and wait a while

- What do we have?
- no wrrent flowing
- positive charge on top plate
- negatwie charge on bottom plate
\Rightarrow electric field across the gap.
- Now remove/diconnect the source
- nowhere for charge to flow
- electric field remains
- energy stored in potential of charges.
- How to use this?

Interesting idea! Let's try to model it so that we can use it.
Idealized setup

- infinite plates
- perfect conductors
- perfect insulator
- perfectly uniform dielectric

In that case, charge stored \propto voltage applied
Actually,

$$
\begin{array}{ll}
q=C V & \\
c=\frac{\varepsilon A}{d} & \begin{array}{l}
\varepsilon=\text { permitivity } \\
A= \\
\\
\end{array}=\text { area. } \\
& =\text { separation }
\end{array}
$$

Circuit Model

$$
v(t) \frac{\psi i(t)}{T} c(t) \quad q(t)=c(t) v(t)
$$

what about current?

$$
i(t)=\frac{d q(t)}{d t}=\frac{d}{d t}[c(t) v(t)]
$$

If capacitance is constant,

$$
i(t)=c \frac{d v(t)}{d t}
$$

So what is $v(t)$? Assume $\left.v(t)\right|_{t=t_{0}}$ is known.

$$
v(t)=v\left(t_{0}\right)+\frac{1}{c} \int_{t_{0}}^{t} i(x) d x
$$

Sometimes and assume $v(-\infty)=0$

$$
v(t)=\frac{1}{c} \int_{-\infty}^{t} i(x) d x
$$

The idea was to store energy How much did we store?

$$
E(t)=\int_{-\infty}^{t} p(x) d x
$$

where $\rho(t)$ is power.

$$
\begin{aligned}
p(t) & =v(t) i(t)=C_{v}(t) \frac{d v(t)}{d t} \\
\Rightarrow \quad E(t) & =\int_{-\infty}^{t} C v(x) \frac{d v(x)}{d x} d x \\
& =C \int_{v(-\infty)}^{v(t)} v(x) d v(x) \\
& \left.=\frac{1}{2} C v(x)^{2}\right]_{v(-\infty}^{v(t)}
\end{aligned}
$$

If we assume $v(-\infty)=0$,

$$
E(t)=\frac{1}{2} c V(t)^{2}
$$

* Sometimes desirable + engmeeried
* Sometimes undesirable + to be engnieered away

Properties

$$
i(t)=c \frac{d V_{c}(t)}{d t}
$$

* what if $v(t)$ is constant?
- current $=0$, no matter how big $v(t)$ is.
\Rightarrow open circuit
- have you seen this idea in use?
* What if $v(t)$ changes rapidly?
- |it)| is large, even if $v(t)$ is small
\rightarrow short circuit

$$
* \quad v(t)=\frac{1}{c} \int_{-\infty}^{t} i(x) d x
$$

what does this tell us about $v(t)$?
Continuous

