EE3CL4:
Introduction to Linear Control Systems
Section 9: Design of Lead and Lag Compensators using Frequency Domain Techniques

Tim Davidson
McMaster University
Winter 2018
Outline

1. Frequency Domain Approach to Compensator Design
2. Lead Compensators
3. Lag Compensators
Frequency domain design

- Analyze closed loop using open loop transfer function
 \(L(s) = G_c(s)G(s)H(s) \).
- We would like closed loop to be stable:
 - Use Nyquist's stability criterion
- We might like to make sure that the closed loop remains stable even if there is an increase in the gain
 - Require a particular gain margin
- We might like to make sure that the closed loop remains stable even if there is additional phase lag
 - Require a particular phase margin
- We might like to make sure that the closed loop remains stable even if there is a combination of increased gain and additional phase lag
 - Require \(\min_{\omega} |L(j\omega) - (-1)| \) to be large enough
Frequency domain design

- We might like to control the damping ratio of the dominant pole pair
 - Use the fact that $\phi_{pm} = f(\zeta)$
- We might like to control the steady-state error constants
 - For step, ramp and parabolic inputs, these constants are related to the behaviour of $L(s)$ around zero; i.e., behaviour near DC
- We might like to influence the settling time
 - Roughly speaking, the settling time decreases with increasing bandwidth
- Once we have a general idea of the shape of the Nyquist diagram, is some of this information available in a more convenient form?
Frequency Domain Approach to Compensator Design

Lead Compensators
Lag Compensators

\[L(j\omega) = \frac{1}{j\omega(1 + j\omega)(1 + j\omega/5)} \]

- Gain margin \(\approx 15\) dB
- Phase margin \(\approx 43^\circ\)
Compensators and Bode diagram

- We have seen the importance of phase margin.
- If $G(s)$ does not have the desired margin, how should we choose $G_c(s)$ so that $L(s) = G_c(s)G(s)$ does?
- To begin, how does $G_c(s)$ affect the Bode diagram?
- Magnitude:

\[
20 \log_{10} \left(|G_c(j\omega)G(j\omega)| \right) = 20 \log_{10} \left(|G_c(j\omega)| \right) + 20 \log_{10} \left(|G(j\omega)| \right)
\]

- Phase:

\[
\angle G_c(j\omega)G(j\omega) = \angle G_c(j\omega) + \angle G(j\omega)
\]
Lead Compensators

- \(G_c(s) = \frac{K_c(s+z)}{s+p} \), with \(|z| < |p|\), alternatively,
- \(G_c(s) = \frac{K_c}{\alpha} \frac{1+s\alpha\tau}{1+s\tau} \), where \(p = 1/\tau \) and \(\alpha = p/z > 1 \)
- Bode diagram (in the figure, \(K_1 = K_c/\alpha \)):

\[\text{Bode diagram} \]
Lead Compensation

- What will lead compensation, do?
- Phase is positive: might be able to increase phase margin ϕ_{pm}
- Slope is positive: might be able to increase the cross-over frequency, ω_c, (and the bandwidth)
Lead Compensation

\[G_c(s) = \frac{K_c}{\alpha} \frac{1+sa\tau}{1+s\tau} \]

By making the denom. real, can show that
\[\angle G_c(j\omega) = \text{atan} \left(\frac{\omega\tau(\alpha-1)}{1+\alpha(\omega\tau)^2} \right) \]

Max. occurs when \(\omega = \omega_m = \frac{1}{\tau\sqrt{\alpha}} = \sqrt{zp} \)

Max. phase angle satisfies \(\tan(\phi_m) = \frac{\alpha-1}{2\sqrt{\alpha}} \)

Equivalently, \(\sin(\phi_m) = \frac{\alpha-1}{\alpha+1} \)

At \(\omega = \omega_m \), we have \(|G_c(j\omega_m)| = \frac{K_c}{\sqrt{\alpha}} \)
Bode Design Principles (lead)

- Set the loop gain so that desired steady-state error constants are obtained
- Insert the compensator to modify the transient properties:
 - Damping: through phase margin
 - Response time: through bandwidth
- Compensate for the attenuation of the lead network, if appropriate

To maximize impact of phase lead, want peak of phase near ω_c of the *compensated* open loop
Design Guidelines

1. For uncompensated (i.e., proportionally controlled) closed loop, set gain K_p so that steady-state error constants of the closed loop meet specifications.

2. Evaluate the phase margin, and the amount of phase lead required.

3. Add a little “safety margin” to the amount of phase lead.

4. From this, determine α using $\sin(\phi_m) = \frac{\alpha-1}{\alpha+1}$.

5. To maintain steady-state error const’s, set $K_c = K_p \alpha$.

6. Determine (or approximate) the frequency at which $K_p G(j\omega)$ has magnitude $-10 \log_{10}(\alpha)$.

7. If we set ω_m of the compensator to be this frequency, then $G_c(j\omega_m)G(j\omega_m) = 1$ (or ≈ 1). Hence, the compensator will provide its maximum phase contribution at the appropriate frequency.

8. Choose $\tau = 1/(\omega_m \sqrt{\alpha})$. Hence, $p = \omega_m \sqrt{\alpha}$.

9. Set $z = p/\alpha$.

10. Compensator: $G_c(s) = \frac{K_c(s+z)}{s+p}$.

Example

- Type 1 plant of order 2: \(G(s) = \frac{5}{s(s+2)} \)
- Design goals:
 - Steady-state error due to a ramp input less than 5% of velocity of ramp
 - Phase margin at least 45° (implies a damping ratio)
- Steady state error requirement implies \(K_v = 20 \).
- For prop. controlled Type 1 plant: \(K_v = \lim_{s \to 0} sK_p G(s) \).
 Hence \(K_p = 8 \).
- To find phase margin of prop. controlled loop we need to find \(\omega_c \), where \(|K_p G(j\omega_c)| = \left| \frac{40}{j\omega_c(j\omega_c+2)} \right| = 1 \)
- \(\omega_c \approx 6.2 \text{ rad/s} \)
- Evaluate \(\angle K_p G(j\omega) = -90° - \tan(\omega/2) \) at \(\omega = \omega_c \)
- Hence \(\phi_{pm, \text{prop}} = 18° \)
Example

- $\phi_{pm, \text{prop}} = 18^\circ$. Hence, need 27° of phase lead
- Let's go for a little more, say 30°
- So, want peak phase of lead comp. to be 30°
- Solving $\frac{\alpha - 1}{\alpha + 1} = \sin(30^\circ)$ yields $\alpha = 3$. Set $K_c = 3 \times 8$
- Since $10 \log_{10}(3) = 4.8$ dB we should choose ω_m to be where $20 \log_{10}(\left|\frac{40}{j\omega_m(j\omega_m + 2)}\right|) = -4.8$ dB
- Solving this equation yields $\omega_m = 8.4$ rad/s
- Therefore $z = \omega_m/\sqrt{\alpha} = 4.8$, $p = \alpha z = 14.4$
- $G_c(s) = \frac{24(s+4.8)}{s+14.4}$
- $G_c(s)G(s) = \frac{120(s+4.8)}{s(s+2)(s+14.4)}$, actual $\phi_{pm} = 43.6^\circ$
- Goal can be achieved by using a larger target for additional phase, e.g., $\alpha = 3.5$
Bode Diagram
Frequency Domain Approach to Compensator Design

Lead Compensators

Lag Compensators

Step Response
Ramp Response

Lead Compensators

Lag Compensators
Ramp Response, detail
Lag Compensators

- \(G_c(s) = \frac{K_c(s+z)}{s+p} \), with \(|p| < |z|\), alternatively,
- \(G_c(s) = \frac{K_c\alpha(1+s\tau)}{1+s\alpha\tau} \), where \(z = 1/\tau \) and \(\alpha = z/p > 1 \)
- Bode diagrams of lag compensators for two different \(\alpha \)s, in the case where \(K_c = 1/\alpha \)
What will lag compensation do?

- Since zero and pole are typically close to the origin, phase lag aspect is not really used.
- What is useful is the attenuation above $\omega = 1/\tau$: gain is $-20 \log_{10}(\alpha)$, with little phase lag.
- Can reduce cross-over frequency, ω_c, without adding much phase lag.
- Tends to reduce bandwidth.
Qualitative example

- Uncompensated system has small phase margin
- Phase lag of compensator does not play a large role
- Attenuation of compensator does:
 \(\omega_c \) reduced by about a factor of a bit more than 3
- Increased phase margin is due to the natural phase characteristic of the plant
Bode Design Principles (lag)

For lag compensators:

- Set the loop gain so that desired steady-state error constants are obtained
- Insert the compensator to modify the phase margin:
 - Do this by reducing the cross-over frequency
 - Observe the impact on response time

Basic principle: Set attenuation to reduce ω_c far enough so that uncompensated open loop has desired phase margin
Design Guidelines

1. For uncompensated (i.e., proportionally controlled) closed loop, set gain K_p so that steady-state error constants of the closed loop meet specifications.

2. Evaluate the phase margin, analytically, or using a Bode diagram. If that is insufficient...

3. Determine ω_c', the frequency at which the uncompensated open loop, $K_p G(j \omega)$, has a phase margin equal to the desired phase margin plus $5\degree$.

4. Design a lag comp. so that the gain of the compensated open loop, $G_c(j \omega) G(j \omega)$, at $\omega = \omega_c'$ is $0 \, \text{dB}$
 - Choose $K_c = K_p / \alpha$ so that steady-state error const’s are maintained
 - Place zero of the comp. around $\omega_c'/10$ so that at ω_c' we get almost all the attenuation available from the comp.
 - Choose α so that $20 \log_{10}(\alpha) = 20 \log_{10}(|K_p G(j \omega_c')|)$. With that choice and $K_c = K_p / \alpha$, $|G_c(j \omega_c') G(j \omega_c')| \approx 1$
 - Place the pole at $p = z / \alpha$
 - Compensator: $G_c(s) = \frac{K_c(s + z)}{s + p}$
Example, same set up as lead design

- Type 1 plant of order 2: $G(s) = \frac{5}{s(s+2)}$

Design goals:
- Steady-state error due to a ramp input less than 5% of velocity of ramp
- Phase margin at least 45° (implies a damping ratio)

- Steady state error requirement implies $K_v = 20$.
- For prop. controlled Type 1 plant: $K_v = \lim_{s \to 0} sK_p G(s)$. Hence $K_p = 8$.
- To find phase margin of prop. controlled loop we need to find ω_c, where $|K_p G(j\omega_c)| = \left| \frac{40}{j\omega_c(j\omega_c+2)} \right| = 1$
- $\omega_c \approx 6.2$ rad/s
- Evaluate $\angle K_p G(j\omega) = -90^\circ - \tan(\omega/2)$ at $\omega = \omega_c$
- Hence $\phi_{pm, prop} = 18^\circ$
Since want phase margin to be 45°, we set ω'_c such that
\[\angle G(j\omega'_c) = -180^\circ + 45^\circ + 5^\circ = -130^\circ. \quad \Rightarrow \quad \omega'_c \approx 1.5 \]

To make the open loop gain at this frequency equal to 0 dB, the required attenuation is 20 dB. Actual curves are around 2 dB lower than the straight line approximation shown.

Hence $\alpha = 10$. Set $K_c = K_p/\alpha = 0.8$

Zero set to be one decade below ω'_c; $z = 0.15$

Pole is $z/\alpha = 0.015$.

Hence $G_c(s) = \frac{0.8(s+0.15)}{s+0.015}$
Example: Comp’d open loop

- Compensated open loop: $G_c(s)G(s) = \frac{4(s+0.15)}{s(s+2)(s+0.015)}$

- Numerical evaluation:
 - new $\omega_c = 1.58$
 - new phase margin $= 46.8^\circ$
 - By design, K_v remains 20
Frequency Domain Approach to Compensator Design

Lead Compensators

Lag Compensators

Step Response

- Input
- Output, P
- Output, Lead
- Output, Lag

Graph showing step responses of different compensator types.
Ramp Response
Ramp Response, detail