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ABSTRACT

Wavelet Packet Division Multiplexing (WPDM) is a high-
capacity, flexible and robust orthogonal multiplexing tech-
nique in which wavelet packet basis functions are chosen
as the coding waveforms. Branch-Hopped WPDM (BH-
WPDM) is an extension of WPDM which incorporates
hopping strategies analogous to those of frequency-hopped
schemes. It is based on an efficient modular switched
transmultiplexer structure which provides the advantages of
hopping whilst retaining many of the desirable features of
WPDM. In previous work we have identified classes of slow
and fast BH-WPDM schemes and have evaluated a num-
ber of switching strategies. In the present paper we pro-
vide a method for re-designing the filters within the trans-
multiplexer modules to provide further robustness to narrow
frequency-selective fading channels under a given switching
strategy.
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frequency-selective fading.

1. INTRODUCTION

Wavelet Packet Division Multiplexing (WPDM) [1]
is an emerging orthogonal multiplexing technique in
which wavelet packet basis functions [2] are chosen as
the coding waveforms. In contrast to the conventional
time division (TDM), frequency division (FDM) and
code division (CDM) multiplexing schemes, the wave-
forms used to represent the data symbols of each user
overlap in both time and frequency. The fact that the
waveforms are of finite duration and overlap in time
and frequency provides a substantial increase in capac-
ity over TDM and FDM [1] and robustness to certain
adverse channel environments [1, 3], whilst their close
relationships with multi-rate filter banks (transmulti-
plexers) provide particularly simple transmitter and re-
ceiver structures [1].
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Orthogonal multiplexing schemes are sensitive to
the effects of frequency-selective channels. Whilst the
frequency overlapping of the WPDM waveforms pro-
vides some robustness to these effects, the commonly
used wavelet packet basis functions are still ‘localized’
in frequency, and hence are susceptible to the pertur-
bation of frequency-selective channels. In frequency-
hopped communication schemes, the susceptibility of
a narrow-band communication scheme to an unknown
frequency-selective channel is reduced by ‘hopping’
the carrier frequency between several frequencies in
a pattern which is known by the receiver. The Branch-
Hopped WPDM (BH-WPDM) scheme employs an ef-
ficient modular switched transmultiplexer structure to
achieve an analogous hopping effect for WPDM. In
previous work [4, 5] we evaluated a number of differ-
ent switching strategies for BH-WPDM and identified
hopping schemes with performance advantages which
are analogous to those of slow and (coherently com-
bined) fast frequency hopping. In this paper we pro-
vide a method for re-designing the filters within the
transmultiplexer modules to provide further robustness
to narrow frequency-selective fading channels under a
given switching strategy.

2. WAVELET PACKET DIVISION
MULTIPLEXING

We begin with a brief review of the WPDM
scheme [1]. (See [6] and references therein for some
related work.) To define the wavelet packet basis func-
tions, let g0 be a unit-energy real causal FIR filter of
length L which is orthogonal to its even translates;
i.e., ∑n g0�n�g0�n�2m� � δ�m�� where δ�m� is the Kro-
necker delta, and let g1 be the (conjugate) quadrature
mirror filter, g1�n� � ��1�ng0�L� 1� n�. If g0 satis-
fies some mild technical conditions [2], we can use
an iterative algorithm to find the function φ01�t� �p
2∑n g0�n�φ01�2t � nT0� for an arbitrary interval T0.



Subsequently, we can define the family of functions
φ�m, � � 0, 1 � m � 2� in the following (binary) tree-
structured manner:

φ��1�2m�1�t� �∑
n
g0�n�φ�m�t�nT��� (1a)

φ��1�2m�t� �∑
n
g1�n�φ�m�t�nT��� (1b)

where T� � 2�T0. For any given tree structure, the
functions at the terminals of the tree form a wavelet
packet [2]. They have a finite duration, �L� 1�T�,
and are self- and mutually-orthogonal at integer mul-
tiples of dyadic intervals, and hence they are a natural
choice for multiplexing applications. More precisely,
if T denotes the set of terminal index pairs, then for
���m���λ�μ� � T

hφ�m�t�nT���φλμ�t� kTλ�i� δ���λ�δ�m�μ�δ�n� k�� (2)

In the WPDM scheme, the (binary) message data
at the ���m�th terminal, d�m�n�, are waveform coded by
pulse amplitude modulation (PAM) of the function at
that terminal. Hence the WPDM composite signal is

s�t� � ∑
���m��T

∑
n
d�m�n�φ�m�t�nT���

(Note that the terminals on different levels have dif-
ferent symbol rates, 1�T�.) Due to the orthogonality
relationship in Eq. (2) the data can be extracted from
the transmitted signal without inter-symbol interfer-
ence or crosstalk using a simple matched filter receiver
for each terminal. By exploiting the structure in Eq. (1)
we obtain an alternative transmitter structure using a
tree-structured multi-rate ‘synthesis’ filter bank and a
single PAM modulator (see Fig. 1)

s�t� �∑
k
σ01�k�φ01�t� kT0�� (3)

where

σ01�k� � ∑
���m��T

∑
n
f�m�k�2�n�d�m�n�� (4)

and f�m is the equivalent filter from the ���m�th ter-
minal to the root node, which can be found recur-
sively using Eq. (1) and f�m�k� � hφ�m�t��φ01�t�kT0�i.
The orthogonality property of the equivalent filters,
h f�m�k� 2�n�� fλμ�k� 2λi�i � δ��� λ�δ�m�μ�δ�n� i�,
for ���m���λ�μ� � T , confirms that an alternative re-
ceiver structure consisting of a single matched filter
and a tree-structured multi-rate ‘analysis’ filter bank

is available (see Fig. 1). By substituting Eq. (4) into
Eq. (3) we can view the WPDM scheme as a mem-
ber of a class of generalized orthogonal CDM schemes
in which the ‘codes’ are the equivalent filters f�m and
the ‘chip’ waveform is φ01. This generalized class
includes the conventional orthogonal CDM schemes
(i.e., Walsh-Hadamard schemes), but extends those
schemes to allow for real-valued orthogonal codes
which overlap in time, and orthogonal chip waveforms
which have a duration longer than the chip interval.

3. BRANCH-HOPPEDWPDM

The BH-WPDM scheme is based on a modular
switched transmultiplexer structure in which a two-
input two-output memoryless switching unit is at-
tached to the input of each ‘merge’ module at the trans-
mitter and to the output of each corresponding ‘split’
module at the receiver, as illustrated in Fig. 1. If we
toggle the state of each switch at the transmitter in a
pattern which is known at the receiver, we ‘hop’ the
branches of the tree-structured filter banks. ‘Long’ or
‘short’ intervals between switch state changes lead to
schemes with analogies to the slow and fast frequency-
hopped schemes, respectively. Of course, the BH-
WPDM hopping schemes require synchronization of
the switches, but that is no more arduous than the syn-
chronization of frequency-hopped schemes.

The BH-WPDM composite signal can be written
in a form analogous to Eq. (3) as (see Fig. 1)

s̃�t� �∑
k
σ̃01�k�φ01�t� kT0�� (5)

where σ̃01 is obtained from the ‘switched’ synthesis
filter bank,1

σ̃01�k� � ∑
���m��T

∑
n
f̃�m�k�n�d�m�n�� (6)

and f̃�m�k�n� is the equivalent filter from the ���m�th
terminal to the root node ‘seen’ by a unit sample
at instant n at the ���m�th terminal. If we define
xλμ�i� to be the state of the switch at the �λ�μ�th
node at the ith instant, with zero representing a ‘par-
allel’ connection and one representing a ‘cross’ con-
nection then f̃�m�k�n� can be found recursively as

1An alternative matrix-based notation for the filter banks in
Eqs (4) and (6) has also been developed [4].
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Fig. 1: A four-user BH-WPDM scheme. The dashed boxes represent ‘switching’ units which provide either a ‘parallel’ or a
‘cross’ connection at each instant. If the switches remain in the ‘parallel’ state we have a WPDM scheme.
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Fig. 2: An equivalent model for Fig. 1.

f̃��1�2m�1�k�n� �

∑
i

�
g0�i�2n��1� x�m�n���g1�i�2n�x�m�n�

�
f̃�m�k� i�� (7a)

f̃��1�2m�k�n� �

∑
i

�
g0�i�2n�x�m�n��g1�i�2n��1� x�m�n��

�
f̃�m�k� i�� (7b)

with f̃01�k�n� � δ�k�n�. (If all the switches are in the
parallel state then f̃�m�k�n� � f�m�k�2�n� and we return
to the underlying WPDM scheme.) The equivalent fil-
ters retain the orthogonality property of those in the
WPDM scheme, h f̃�m�k�n�� f̃λμ�k� i�i � δ��� λ�δ�m�
μ�δ�n� i�, for ���m���λ�μ� �T , and hence the receiver
consists of a single matched filter and a ‘switched’
analysis filter bank. The properties of f̃�m�k�n� ensure
that (with white binary data) the BH-WPDM compos-
ite signal, s̃, has the same cyclic spectra as that of the
underlying WPDM scheme. Hence BH-WPDM re-
tains the capacity advantages ofWPDM.What the BH-
WPDM scheme does change is the way in which the
spectra of s̃ are allocated to the user at each terminal.
By substituting Eq. (6) into Eq. (5) the BH-WPDM
scheme can be viewed as a ‘code-hopped’ extension to
the class of generalized orthogonal CDM schemes dis-
cussed at the end of Section 2 in which the orthogonal
codes allocated to the data symbols at a given termi-
nal may vary from symbol to symbol, as illustrated in
Fig. 2.

4. SWITCHING STRATEGIES

Once the underlying tree structure of a BH-WPDM
scheme has been chosen, its performance depends on
the switching strategy and the filter g0. Central to the
analysis of the effects of the switching strategies at
each node are the following observations [5], obtained
by careful inspection of Eq. (7):

1. The equivalent filter f̃�m�k�n� depends on switch
states at all the nodes along the path from the
���m�th terminal to the �0�1� node. Those nodes
are �λ�μ�, where 0 � λ � �� 1, μ� d2λ��me,
and dwe denotes the least integer � w.

2. The number of states of the switch at the �λ�μ�th
node (along the above mentioned path) which
affect f̃�m�k�n� is the length of the equivalent
filter from the ���m�th terminal to the �λ �
1�d2λ�1��me�th node. The length of that filter
is Lλ�1� , where Lλ� � �2��λ�1��L�1��1.

Combining these two observations, we find that
f̃�m�k�n� depends on xλμ�i� for 0 � λ � �� 1, μ �

d2λ��me and i � �2��λ�1n�2��λ�1n� Lλ�1� � 1�. We
collect these states, in a particular arrangement, in the
vector x�m�n�. There are K��∑��1

λ�0L
λ�1
� � L���L�1

elements in x�m�n�, where L� � L0� . Therefore, there
are 2K� possible values of x�m�n�, each generating a
distinct equivalent filter. Distinct equivalent filters are,
in general, distinct in the sense that they are not shifted
versions of each other. The role of the switching strat-
egy is to carve out a subset of those 2K� distinct equiv-
alent filters and hop f̃�m�k�n� amongst (shifted versions
of) that set.

To capture that notion, let x�i�
�m denote the ith pos-

sible value of x�m�n�, and let h
�i�
�m�k� denote the (time-

invariant) equivalent filter f̃�m�k�0�whenx�m�0� �x
�i�
�m.



With those definitions, if x�m�n� � x
�i�
�m then

f̃�m�k�n� � h�i��m�k�2�n�� (8)

For a given switching strategy we assess the relative
frequency of the assignment in Eq. (8) by associating
a weight, W �i�

�m , with each x
�i�
�m (and hence with each

h�i��m�k�). For a given interval of interest N � of length N�

symbols, W �i�
�m � N�i�

�m�N�, where N
�i�
�m is the number of

instants in N � for which the switching strategy makes
the assignment x�m�n� � x

�i�
�m. We collect the filters

h�i��m�k� with non-zero weights in the set of distinctly
generated equivalent filters for the given switching
strategy, F�m �

n
h�i��m�k�

���W �i�
�m �� 0

o
� and letU�m � 2K�

denote the number of elements in that set.
In order to classify BH-WPDM schemes, we ob-

serve that if x�i�
�m contains only one state of each switch,

then h�i��m�k� � f�m��k� for some 1 � m� � 2�; i.e., the
filter h�i��m�k� is an equivalent filter from an underly-
ing WPDM scheme. Otherwise, h�i��m�k� depends on
both filters in the ‘merge’ unit at at least one node. If
the intervals between switch state changes are ‘long’,2
the only elements of F�m with substantial weights are
equivalent filters from an underlying WPDM scheme.
In that case, the scheme will be said to be a slow BH-
WPDM scheme. If the intervals between switch state
changes are ‘short’, the scheme will be said to be a
fast BH-WPDM scheme. In that case, the elements of
F�m with substantial weights will not be filters from
an underlying scheme, but will be filters which de-
pend on both filters in the ‘merge’ unit at at least one
node. Since g0 and g1 tend to be ‘low-pass’ and ‘high-
pass’, respectively, such filters tend to have a broader
frequency response (as a fraction of the bandwidth of
the whole multiplexing scheme) than the correspond-
ing WPDM filters.

In previous work [4, 5] we have shown that in
a slowly varying frequency-selective channel, slow
and fast BH-WPDM schemes provide performance
averaging analogous to that of slow and fast fre-
quency hopping schemes, respectively. Slow BH-
WPDM schemes tend to provide performance averag-
ing amongst individual users, but they tend not to pro-

2By ‘long’ we mean that for the switch at the �λ�μ�th node
the intervals between switch state changes are long with respect to
Lλ�1

�max
, where �max is the maximum value of � over the terminals,

���m�, affected by the switch at the �λ�μ�th node.
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Fig. 3: Spectra of the equivalent filters for the four-user sys-
tem illustrated in Fig. 1 based on a standard Daubechies fil-
ter [2] of length four: (a) the WPDM scheme (no switch-
ing), with a snapshot of the notch channel used to produce
Fig. 4 (asterisks); (b) a fast BH-WPDM scheme in which
each switch is toggled at each instant.
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Fig. 4: Simulated overall BER against SNR for the schemes
in Fig. 3, with uncoded binary data, in a slowly and uni-
formly varying notch channel with additive white Gaussian
noise. A snapshot of the notch channel is given in Fig. 3(a).
Legend: WPDM and any slow BH-WPDM scheme (in-
distinguishable): solid; the fast BH-WPDM scheme: dot-
dashed.

vide an overall performance improvement. In contrast,
the broader spectra of the equivalent filters in the fast
schemes provide an overall performance improvement
in such channels. This effect is illustrated in Figs 3 and
4. (See [4, 5, 7] for further details.)

5. DESIGN OF BH-WPDM FILTERS

In the previous section, we made the (heuristic) ob-
servation that the spectral broadening of the equiva-
lent filters induced by the switching transients in a fast
BH-WPDM scheme leads to improved performance
in (unknown) slowly fading frequency-selective chan-
nels which are narrow with respect to the bandwidth of
the whole multiplexing scheme. (Related observations
have been made for spread spectrum communication



systems.) In this section we exploit that observation to
re-design the filter g0 in the transmultiplexer modules
for a given switching strategy, in order to gain further
improved performance in such channels. As a mea-
sure of the breadth of the spectrum of the equivalent
filter h�i��m�k� (as a fraction of the bandwidth of the mul-
tiplexing scheme as a whole) we define the (RMS) de-
viation from frequency flatness of the equivalent filter
h�i��m�k� to be

D�i�
�m �

�
1
π

Z π

0

����H�i�
�m�e

jω�
���2�1�2 dω

�1�2
� (9)

where H�i�
�m�e

jω� is the Discrete-Time Fourier Trans-
form of h�i��m�k�. The deviation from frequency flatness
is simple to compute and small values of D�i�

�m can be
an effective guide towards ‘good’ switching strategies
for narrow frequency-selective channels. For example,
for the WPDM scheme in Fig. 3(a) the deviations are
1�10 and 2�22 (two of each), and for the BH-WPDM
scheme in Fig. 3(b), the deviations are 0�30 and 0�35
(again two of each). The performance advantage of the
BH-WPDMscheme predicted by its smaller deviations
is clearly achieved in the scenario of Fig. 4.

The derivation of our design method proceeds by
reiterating the observation that for a given switching
strategy, a filter g0 for which all distinct equivalent fil-
ters h�i��m�k� in each set F�m have small values of D

�i�
�m

ought to lead to ‘good’ performance in slowly fading
narrow frequency-selective channels. In order to sim-
plify the exposition, we will restrict our attention to
BH-WPDM schemes in which all the terminals are at
the same level, and to switching strategies for which
each distinct equivalent filter has the same weight.3 An
initial design problem can be phrased as follows: For
the given switching strategy, find a filter g0 which min-
imizes a particularD�i0�

�0m0 subject toD
�i�
�m for all the other

equivalent filters being no greater than �1� εD�D
�i0�
�0m0 ,

for a small positive εD, and to g0 being of unit energy
and self-orthogonal at even translations. Note that we
have implicitly decoupled the design of g0 from that of
φ01�t� so that no ‘regularity’ constraints [2] on g0 are
required. This decoupling is known as the ‘splitting
trick’ in the wavelet literature [2].

3Many periodic switching strategies satisfy the second crite-
rion [7]. The extension of this work to more general schemes is
straightforward but notationally cumbersome.

Careful inspection of Eq. (9) reveals that if g0�n� �
δ�n� then D�i�

�m � 0 for all ���m� � T and 1 � i �U�m.
Therefore, such a solution, which corresponds to a
(scrambled) TDM scheme, is a global optimum for this
problem. However, TDM schemes tend be sensitive
to time-selective effects such as impulsive noise [3],
so we impose a constraint on the time localization of
the equivalent filters. By analogy with Eq. (9) we de-
fine the (RMS) deviation from ideal time spread for the
equivalent filter h�i��m�k� to be

τ�i��m �

�
L��1

∑
k�0

��
h�i��m�k�

�2
�1�L�

�2�1�2
�

We constrain the deviation from ideal time spread of
all the equivalent filters h�i��m�k� to be of the same order
as that obtained by the BH-WPDM scheme with the
given switching strategy and with g0 being the stan-
dard Daubechies filter [2] of the desired length. This
will ensure that the robustness of the designed BH-
WPDM scheme to time selective effects is of the same
order as that of the BH-WPDM scheme with the same
switching strategy and the Daubechies filter.

The design problem can now be formally stated:
For a given switching strategy and a given filter
length L, select a particular ��0�m0� � T , and i0, 1 �
i0 �U�0m0 , and find a filter g0�n�, 0� n� L�1, which
achieves the minimum of

min
g0�n�

D�i0�
�0m0

subject to

L�1

∑
n�2k

g0�n�g0�n�2k� � δ�k�� 0� k� d�L�1��2e� (10)

D�i�
�m � �1� εD�D

�i0�
�0m0 � ���m� � T � 1� i�U�m�

τ�i�
�m � �1� ετ�τ�� ���m� � T � 1� i�U�m�

where εD and ετ are small positive constants, τ� is
the maximal τ�i��m for the BH-WPDM scheme with the
same switching strategy and the standard Daubechies
filter [2] of length L. Note that Lmust be even in order
to satisfy Eq. (10) [2]. Based on our heuristic obser-
vation, we would expect such an optimized scheme to
perform better than a scheme employing the standard
Daubechies filter of that length in a slowly fading nar-
row frequency-selective environment. In the following
example we demonstrate that significant performance



gains are indeed achievable in this manner.

Example 1 Consider the four-user BH-WPDM
scheme illustrated in Fig. 1, and two switching
strategies: the WPDM scheme (with no switching)
and the fast scheme in which each switch is tog-
gled at each instant. An optimal g0 of length four
was found for each scheme by solving the design
problem with εD � ετ � 0�1, using a standard Se-
quential Quadratic Programming technique. This
resulted in D�i0�

�0�m0 � 0�81 for the WPDM scheme and
D�i0�

�0�m0 � 0�17 for the fast scheme. For comparison,
the deviations for the schemes based on the standard
Daubechies filter of length 4 are 1.10 and 2.22 (two
of each) for the WPDM scheme, and 0.30 and 0.35
(two of each) for the fast scheme. The spectra of the
equivalent filters for the optimized fast scheme are
plotted in Fig. 5, and are clearly flatter in frequency
than those for the fast scheme with the Daubechies
filter. Using the deviations and the preceding dis-
cussion, we predict that each optimized scheme
will perform better than the corresponding scheme
based on the Daubechies filter in a slowly fading
narrow frequency-selective channel. Furthermore, we
predict that the optimized fast scheme will perform
better than the optimized WPDM scheme. Simulated
BER curves for transmission through the slowly and
uniformly varying notch channel used to produce
Fig. 4, a snapshot of which was provided in Fig. 3,
are plotted in Fig. 6. These figures demonstrate that
a significant improvement in BER performance is
indeed achievable. For example, at 20dB SNR, the
BER performance gain of the the optimized fast
scheme over the Daubechies filter based fast scheme
is around 50%. (Equivalently, the SNR gain of the
optimized fast scheme is more than 2dB at an SNR
of around 20dB.) Finally, note that the prediction that
the optimized fast scheme would perform better than
the optimized WPDM scheme is confirmed. This
demonstrates an intrinsic advantage of an optimized
hopped scheme over an optimized static scheme.
Numerical experiments in a number of other scenarios
confirm the trends illustrated in this example [7]. �
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timized schemes (solid) and the Daubechies filter based
schemes (dashed) in Ex. 1. (a)WPDM; (b) fast BH-WPDM.
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