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Abstract. In this paper we propose a novel finite-horizon, discrete-time, time-varying filtering
method based on the robust semidefinite programming (SDP) technique. The proposed method
provides robust performance in the presence of norm-bounded parameter uncertainties in the system
model. The robust performance of the proposed method is achieved by minimizing an upper bound
on the worst-case variance of the estimation error for all admissible systems. Our method is recursive
and computationally efficient. In our simulations, the new method provides superior performance
to some of the existing robust filtering approaches. In particular, when applied to the problem of
target tracking, the new method has led to a significant improvement in tracking performance. Our
work shows that the robust SDP technique and the interior point algorithms can bring substantial
benefits to practically important engineering problems.
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1. Introduction. Consider the following classical discrete-time linear state-
space model:

{
xi+1 = Fixi +Giui, x0 given,

y
i

= Hixi + vi, i ≥ 0,
(1.1)

where Fi ∈ Rn×n, Gi ∈ Rn×m, and Hi ∈ Rp×n are known matrices which describe
the dynamic system, and xi describes the state of the system at time i, while ui and vi
denote the process and measurement noise terms, respectively. In many linear filtering
applications, we are faced with the problem of estimating the states of the dynamic
system (1.1) from the noisy measurements y

i
(see [6, 11, 8]). A popular solution

to this problem is given by the Kalman filter [6, 11, 8] which, under some standard
assumptions on the statistics of the noise sources and initial state, minimizes the mean
squared estimation error (MSE). The MSE is the trace of E{(xi − x̂i)(xi − x̂i)

T },
where E denotes the statistical expectation and x̂i denotes the estimate of xi at time
i. Moreover, the Kalman filter is recursive and computationally efficient. In its
“innovations form,” the Kalman filter is given by

x̂i+1 = Fix̂i +KK,i

(
y
i
−Hix̂i

)
, x̂0 = 0,(1.2)
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where the so-called Kalman gain matrix KK,i can be computed via the following
(analytic) recursion:

KK,i = FiPiH
T
i

(
Ri +HiPiH

T
i

)−1
,

Pi+1 = (Fi −KK,iHi)Pi (Fi −KK,iHi)
T
+ [Gi −KK,i ]

[
Qi 0
0 Ri

] [
GT

i

−KT
K,i

]
,

where Qi = E{uiu
T
i } and Ri = E{vivTi } are the noise covariance matrices. (The

statistical assumptions made here are stated in section 2.) The matrix Pi in the
recursion is the error covariance matrix E{(xi−x̂i)(xi−x̂i)

T }. However, one drawback
of the Kalman filter is that it requires precise knowledge of the system matrices Fi,
Gi, and Hi and noise covariances Qi and Ri, because even a small deviation from
the “nominal” values of these matrices can induce substantial performance loss in the
Kalman filter. As a result, the Kalman filter can be ineffective in practice especially
when we are faced with imprecise knowledge of the dynamic system mode or, in
other words, when the matrices Fi, Gi, and Hi are known only approximately. This
sensitivity of the Kalman filter has led researchers to tackle robust filtering problems,
in which the objective is to design estimators which provide acceptable performance
in the presence of uncertainties in the models of the dynamic system and the noise.

One approach to robust filtering is that of H∞ filtering (see [5] and references
therein). In that approach no statistical model of the disturbances ui and vi is em-
ployed; they are merely assumed to have finite energy. The idea is to obtain an estima-
tor which minimizes (or, in the suboptimal case, bounds) the maximum energy gain
from the disturbances to the estimation errors. This modelling paradigm also allows
us to incorporate unstructured uncertainties in the dynamic system model (1.1) (see,
for example, [4, 17]). An advantage of the H∞ approach is that the solution closely
resembles the Kalman filter and can be efficiently implemented. Therefore, in appli-
cations in which statistical knowledge of the disturbances and information regarding
the structure of the modelling uncertainties are difficult to acquire, H∞ filters are an
appropriate choice. Unfortunately, when the system model and the noise processes
are known quite accurately, the Kalman filter may actually perform substantially bet-
ter than the H∞ filter. This is because the uncertainty model for the H∞ filter is
unstructured, and hence the H∞ filter may be attempting to provide robustness to
disturbances and modelling errors which rarely, or never, occur, at the expense of
filter performance in the presence of more likely disturbances and modelling errors.
In many applications, including target tracking, we have some knowledge of the struc-
ture of the uncertainties in the system model and partial knowledge of disturbance
statistics. It is natural to expect that careful incorporation of this knowledge into the
estimator will lead to appreciable improvement in estimator performance. A major
challenge is to determine whether this can be done in a computationally efficient man-
ner. From recent work in the control field, it appears that determining filters which
provide optimal robustness to highly structured uncertainties can be computationally
expensive [1].

An alternative to the Kalman and H∞ filtering methods is to find a “robust
Kalman filter” which minimizes (an upper bound on) the variance of the estimation
error in the presence of a system model with norm-bounded structured parametric
uncertainty and bounded uncertainty in the noise statistics. Models of this type
are common in control theory (e.g., [7] and references therein) and are particularly
appropriate in the context of target tracking. Previous approaches to this problem,
with no uncertainty in the noise statistics, have been based on analytic recursions on
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some performance bounds [13, 15]. Note that robust H∞ designs which bound the
worst-case error energy gain in the presence of the same system model uncertainties
are also available [9, 16].

In this paper we derive a new robust filtering algorithm using the recently de-
veloped robust semidefinite programming (SDP) technique [2]. The new method is
recursive in the sense that the subproblem solved at each step depends on the so-
lution at the previous step, and is computationally efficient since each subproblem
is a semidefinite program of a fixed size which can be efficiently solved using an in-
terior point algorithm. We demonstrate the performance of the novel algorithm in
a standard benchmark example and in a target-tracking example, and show that it
can provide superior performance to the existing approaches to this particular prob-
lem [13, 15], and to the Kalman and H∞ approaches. Our work shows that the robust
SDP technique and the interior point algorithms [12, 14] can bring substantial benefits
to a practically important engineering problem.

The paper is organized as follows. In section 2 the robust state estimator problem
is introduced. Then, in section 3, this problem is formulated as convex optimization
and solved in polynomial-time using the recent robust SDP technique. In section 4,
simulation results are presented and, in section 5, some concluding remarks are given.

Throughout this paper, for a square matrix X, the notation X ≥ 0 (resp., X ≤ 0)
means X is symmetric and positive semidefinite (resp., negative semidefinite).

2. Problem formulation. Consider the following time-varying, discrete-time,
uncertain linear state-space model:

{
xi+1 = [Fi +∆Fi]xi +Giui, x0,

y
i

= [Hi +∆Hi]xi + vi, i ≥ 0,
(2.1)

where Fi ∈ Rn×n, Gi ∈ Rn×m, and Hi ∈ Rp×n are known matrices which describe
the nominal system. The matrices ∆Fi and ∆Hi represent the parameter uncertain-
ties in the dynamic model. They are assumed to have the following structure:[

∆Fi

∆Hi

]
=

[
C1,i

C2,i

]
ZiEi with ZT

i Zi ≤ I,(2.2)

where C1,i ∈ Rn×r, C2,i ∈ Rp×r, and Ei ∈ Rt×n are known matrices. We re-
mark that the above model (2.2) of uncertainties has been used extensively in the
robust control literature (e.g., [7] and references therein). The process noise {ui},
the measurement noise {vi}, and the initial state x0 in (2.1) are all assumed to be
random. These random variables have known mean values, which we can take to be
zero without loss of generality, and partially known covariances, as follows:

E




 ui

vi
x0




 uj

vj
x0



T

 =


Qiδij 0 0
0 Riδij 0
0 0 Π0


 ,(2.3)

where δij denotes the Kronecker delta function that is equal to unity for i = j and zero
elsewhere, Qi = Q̄i + ∆Qi, and Ri = R̄i + ∆Ri. The matrices Q̄i ∈ Rm×m, R̄i ∈
Rp×p, and Π0 ∈ Rn×n are assumed to be known and describe the nominal second-
order statistics of the noise and the initial state. The matrices ∆Qi and ∆Ri represent
the uncertainties in the noise statistics and satisfy the following bounds:

−εI ≤ ∆Qi ≤ εI, −εI ≤ ∆Ri ≤ εI.(2.4)
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Notice that when there is no uncertainty in the system model (2.1), namely ε = 0 and
Ei = 0, then we recover the standard linear time-varying state-space model (1.1).

Let us use Θi = {∆Qi,∆Ri,Zi} to denote the uncertainty variable at stage i and
define the uncertainty region at stage i as

Ωi = { Θi : Θi satisfies (2.2) and (2.4) }.

The problem is to estimate the state-sequence {xi, i ≥ 0}, or some linear combination
of this sequence {si = Lixi, i ≥ 0}, where Li is a known matrix, from the corrupted
measurements. The goal of the robust filter is to provide a uniformly small estimation
error for any process and measurement noise satisfying (2.3) and (2.4) and for all
admissible modelling uncertainties satisfying (2.2). These a priori bounds on the
uncertainties represent the designer’s partial knowledge of the noise statistics and
system model. They are to be incorporated into the problem formulation to guarantee
robust performance.

To formulate the robust filtering problem, consider the following form of state
estimator:

x̂i+1 = Aix̂i +Ki(yi −Hix̂i), x̂0 = 0,(2.5)

where Ai, Ki are filtering matrices to be determined, and x̂i denotes the estimate
of the state xi. The above estimator is written in an innovation form that is similar
to the structure of the Kalman filter given in (1.2). Notice that we use the nominal
innovation (y

i
−Hix̂i), even though ∆Hi may be nonzero. This structure is used for

convenience, but it is general enough to generate all the full-order estimators, since
Ai and Ki are free parameters. The goal of a robust filtering algorithm is to choose
these free parameters to minimize (a function of) the estimation error covariance
E{(xi − x̂i)(xi − x̂i)

T }.
To express that goal precisely, we consider the following augmented system, which

represents the cascade of the system in (2.1) and the estimator in (2.5):

x̄i+1 =
[
F̄i + C̄iZiĒi

]
x̄i + Ḡiūi,(2.6)

where



x̄i =

[
xi

x̂i

]
, ūi =

[
ui

vi

]
,

F̄i =

[
Fi 0
KiHi Ai −KiHi

]
, Ḡi =

[
Gi 0
0 Ki

]
,

C̄i =

[
C1,i

KiC2,i

]
, Ēi = [Ei 0] .

Note that the state vector of the cascade, x̄i, contains both xi (the states of the model)
and the estimates x̂i, and hence the dimension of the state vector is doubled. The
Lyapunov equation that governs the evolution of the covariance matrix Σi = E{x̄ix̄

T
i }

can be written as

Σi+1 =
[
F̄i + C̄iZiĒi

]
Σi

[
F̄i + C̄iZiĒi

]T
+ ḠiWiḠ

T
i ,(2.7)
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where Wi = blockdiag (Qi,Ri). The error covariance Pi+1 can be obtained from

(2.7) by premultiplying [I − I] and postmultiplying [I − I]T ; i.e.,

Pi+1 = F̂iΣiF̂
T
i +GiQiG

T
i +KiRiK

T
i ,(2.8)

where

F̂i =
[
(Fi +C1,iZiEi −KiHi −KiC2,iZiEi) (KiHi −Ai)

]
.

Now the finite-horizon robust state estimator problem can be stated as follows.
PROBLEM. At each stage i, choose the filtering matrices {Aj}ij=0 and {Kj}ij=0

so as to minimize the worst-case weighted error covariance matrix DPi+1; i.e.,

min
Kj ,Aj
∀j≤i

max
Θj∈Ωj
∀j≤i

Tr (DPi+1),(2.9)

or equivalently,

min
Kj ,Aj
∀j≤i

max
Θj∈Ωj
∀j≤i

Tr
(
D [I − I]Σi+1 [I − I]T

)
,(2.10)

where Tr (·) denotes the trace of a matrix (·) and D ∈ Rn×n is a positive semidefinite
weighting matrix.

We have stated the robust state estimation problem in a rather general weighted
form which includes many special cases. If we wish to estimate {xi}, choosing D = I
will suffice, whereas to estimate {si = Lixi}, choosing D = LiL

T
i will suffice. We

can also weight the estimation accuracy of the states as desired, or add additional
terms to D, as long as it remains positive semidefinite. As we will observe later in
section 4, adding additional terms to D may improve the numerical stability of the
finite-horizon filtering solutions.

The above minimax formulation is intended to incorporate robustness into the
filter solution. In particular, Tr (DPi+1), as recursively defined by (2.8), depends on
all the uncertainties Θ0, . . . ,Θi as well as on the filtering matricesK0,A0, . . . ,Ki,Ai.
The maximum weighted trace of Pi+1,

max
Θj∈Ωj
∀j≤i

Tr (DPi+1),

represents the worst-case weighted error covariance when subject to the prescribed
uncertainties. Therefore, the goal of robust filter design is to select the filtering
matrices so that the worst-case weighted error covariance is minimized.

As given by (2.9) or (2.10), the robust filter design problem is nonlinear and
nonsmooth and hence is computationally difficult. Furthermore, the problem ap-
parently lacks convexity, which is essential in the development of computationally
efficient algorithms. A further difficulty with the formulation (2.9) or (2.10) is that it
is nonrecursive, in the sense that the problem dimension increases linearly in i. This
nonrecursive feature makes it necessary to solve from scratch for the filtering matrices
K0,A0, . . . ,Ki,Ai at each stage i, which is clearly undesirable and impractical.

In practice, we typically fix K0,A0, . . . ,Ki−1,Ai−1 at stage i and solve only for
Ki,Ai. However, such simplification only partially fixes the problem since the un-
certainties Θ0, . . . ,Θi still enter into the maximization of Tr (DPi+1), indicating that
the problem dimension still increases linearly with i. Our objective is to reformulate
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problem (2.9) in a recursive way such that at each stage i we have only to determine
Ki,Ai by solving a subproblem with a fixed dimension (i.e., independent of i).

To reformulate problem (2.9), we consider a sequence of matrices

{Γi+1(Ki,Ai) : i = 1, 2, . . .},
which are not dependent on the uncertainties {Θi : i = 1, 2, . . .}. These matrices will
serve as upper bounds for the covariance matrices {Σi+1 : i = 1, 2, . . .} which are
dependent on the uncertainty vectors {Θi : i = 1, 2, . . .}, as well as on Ki and Ai.
In particular, we will have

Γi+1(Ki,Ai) ≥ Σi+1 ∀Θi ∈ Ωi, i = 1, 2, . . . .(2.11)

There are, of course, many choices for an upper bound Γi+1(Ki,Ai) that will satisfy
(2.11). Our objective should be to choose the one which, together with some Ki and
Ai, will yield the minimum weighted error covariance DPi+1. By the relation

Pi+1 =
[
I −I ]

Σi+1

[
I −I ]T

,

we see that an upper bound on Σi+1 naturally leads to an upper bound on Pi+1.
Thus we can approximately minimize DPi+1 by minimizing the trace of the matrix

D
[
I −I ]

Γi+1(Ki,Ai)
[
I −I ]T

,

which is an upper bound of DPi+1. In particular, we choose Γi+1, Ki, and Ai to

minimize Tr
(
D

[
I −I ]

Γi+1

[
I −I ]T)

subject to Γi+1, Ki, Ai satisfying (2.11).
(2.12)

The optimization problem (2.12) involves the constraint (2.11), which involves all
of the uncertainty vectors {Θi : i = 1, 2, . . .} and {Ki,Ai : i = 1, 2, . . .}, thus making
the amount of computation increase with i. To resolve this issue of dimensionality
increase, we shall define the constraint recursively as follows. Specifically, let b > 0 be
a chosen scalar bound and let Σ̄0 = Σ0. For i ≥ 0, suppose Σ̄i, an upper bound on
Σi, has been computed and is already available. Consider the following minimization
problem in the matrix variables {Γi+1,Ki,Ai}:

minimize Tr
(
D

[
I −I ]

Γi+1

[
I −I ]T)

subject to Γi+1 ≥ [
F̄i + C̄iZiĒi

]
Σ̄i

[
F̄i + C̄iZiĒi

]T
+ ḠiWiḠ

T
i ∀Θi ∈ Ωi,

Tr (Γi+1) ≤ b.
(2.13)
We choose Σ̄i+1 to be the optimal value of Γi+1 in (2.13). Therefore our reformulation
of (2.9) can now be stated as the following.

REFORMULATION OF THE ROBUST FILTERING PROBLEM. Let Σ̄0 = Σ0. For each
i ≥ 0 compute, recursively, the matrix Σ̄i+1 and the robust filtering matrices Ai and
Ki as the minimizing solution of (2.13).

We remark that the second constraint in (2.13), Tr (Γi+1) ≤ b, is used to ensure
that the matrix Γi+1 is bounded. This is important because otherwise the optimal
solution of (2.13), Σ̄i+1, may become progressively ill-conditioned as i becomes large.
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An alternative way of preventing ill-conditioning is to impose the following structure
on Γi+1,

Γi+1 =

[
Γ̄+ Γ̂ Γ̄
Γ̄ Γ̄

]
for some symmetric matrices Γ̄, Γ̂,(2.14)

and to use the following constraint:

Tr (Γ̂) ≥ β Tr (Γ̄),(2.15)

where β > 0 is a constant. The above structure (2.14) for Γi+1 mimics the structure
of the joint covariance matrix of the state of a system and its optimal estimate in the
Kalman sense, and is maintained in [13]. The bound (2.15) is used to ensure that the

condition number of Γi+1 does not become unbounded when Γ̄ and Γ̂ become large.
Indeed, notice that

Γi+1 =

[
Γ̄+ Γ̂ Γ̄
Γ̄ Γ̄

]
=

[
I I
0 I

] [
Γ̂ 0
0 Γ̄

] [
I 0
I I

]
,

so we only need to bound the condition number for the matrix blockdiag{Γ̂, Γ̄}. By
the above factorization of Γi+1 and the fact that the right-hand side of the first
constraint in (2.13) is bounded from below by a positive definite matrix, we obtain

that blockdiag{Γ̂, Γ̄} is bounded from below by a positive definite matrix. Thus, the

smallest eigenvalue of the matrix blockdiag{Γ̂, Γ̄} is bounded away from zero. In the

meantime, the constraint (2.15) and the fact that we are minimizing Γ̂ implies that

the largest eigenvalue of the matrix blockdiag{Γ̂, Γ̄} is also bounded. This implies
the boundedness of the condition number of Γi+1 at optimal solution.

As a result of the above discussion, we have the following alternative formulation
(to (2.13)):

minimize Tr
(
D

[
I −I ]

Γi+1

[
I −I ]T)

subject to Γi+1 ≥ [
F̄i + C̄iZiĒi

]
Σ̄i

[
F̄i + C̄iZiĒi

]T
+ ḠiWiḠ

T
i ∀Θi ∈ Ωi,

Γi+1 satisfying (2.14) and (2.15).
(2.16)
In the remainder of this paper, we will focus on the first formulation (2.12), but the
second formulation (2.16) can also be treated in an analogous fashion.

We point out that the dimension of problem (2.13) is fixed rather than growing
linearly with i. Moreover, it will be shown that (2.13) is convex and can be reformu-
lated as a semidefinite program. The latter can be solved very efficiently via interior
point methods [14, 10, 12]. Before we explain how to solve (2.13), we need to show
that Σ̄i defined by (2.13) does provide an upper bound for Σi for all i ≥ 0. We have
the following theorem.

Theorem 2.1. Let Σ̄0 = Σ0. For i ≥ 1, let Σ̄i be defined as in (2.13). Then
there holds

Σ̄i ≥ Σi ∀Θj ∈ Ωj , j = 1, 2, . . . , i− 1.(2.17)

Proof. The theorem can be proved by mathematical induction. In particular, for
i = 0 we have Σ̄0 = Σ0. Suppose that (2.17) holds for i = k. Since Σ̄k+1 is the
optimal solution of (2.13), it follows from the constraint of (2.13) that

Σ̄k+1 ≥ [
F̄k + C̄kZkĒk

]
Σ̄k

[
F̄k + C̄kZkĒk

]T
+ ḠkWkḠ

T
k ∀Θk ∈ Ωk.(2.18)
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By the inductive hypothesis we have

Σ̄k ≥ Σk ∀Θj ∈ Ωj , j = 1, 2, . . . , (k − 1).

Combining this with (2.18), we obtain

Σ̄k+1 ≥ [
F̄k + C̄kZkĒk

]
Σk

[
F̄k + C̄kZkĒk

]T
+ ḠkWkḠ

T
k

= Σk+1 ∀Θj ∈ Ωj , j = 1, 2, . . . , k,

where the last step is due to (2.7) for the particular value of Θj which represents the
actual error in the model. This completes the induction proof.

In common with the existing approaches to the finite-horizon robust filtering
problem, we do not have a sufficient condition for the convergence of the estimator
Σ̄i as i tends to infinity. However, we now provide some necessary conditions. (These
conditions are analogous to those in [13].)

Theorem 2.2. Suppose the system (2.1)–(2.4) is time-invariant in the sense that
the data matrices Hi, C1,i, C2,i, Gi, Ei, R̄i, and Q̄i are fixed and independent of
i. Then the solution Σ̄i converges to some Σ̄ only if the set of uncertain systems
(2.1)–(2.2) is quadratically stable.

Proof. Let ui and vi be zero. By constraint (2.13) and the fact that Σ̄i → Σ̄, we
have

Σ̄ ≥ [
F̄+ C̄ZiĒ

]
Σ̄
[
F̄+ C̄ZiĒ

]T ∀Zi with ‖Zi‖ ≤ 1.

This shows that the augmented linear system (2.6) is quadratically stable. This
is because the above relation easily implies that the quadratic Lyapunov function
V (x̄, i) = −x̄T

i Σ̄x̄i ≥ 0 and that, for all admissible systems, V (x̄, i + 1) ≤ V (x̄, i)
if the process noise ūi = 0. By construction, xi is a component of x̄i; therefore the
quadratic stability of (2.6) (in this time-invariant case) implies the quadratic stability
of (2.1)–(2.2) for all admissible systems.

3. Robust SDP solution. In this section, we shall develop an SDP [14] formu-
lation for the robust state estimator problem (in particular, the problem (2.13)). This
will then allow for efficient numerical solutions via recent interior point methods. We
begin by noting that the finite-horizon robust state estimator problem (2.13) has a
constraint of the form

Γi+1 ≥ [
F̄i + C̄iZiĒi

]
Σ̄i

[
F̄i + C̄iZiĒi

]T
+ ḠiWiḠ

T
i ∀Θi = (∆Qi,∆Ri,Zi) ∈ Ωi,

(3.1)
which contains an uncertainty vector Θi = (∆Qi,∆Ri,Zi). Recall that Wi =
blockdiag(Q̄i +∆Qi, R̄i +∆Ri) and that by (2.4) we have

−εI ≤ ∆Qi ≤ εI, −εI ≤ ∆Ri ≤ εI.

Therefore, by choosing the upper bound for Wi, the constraint (3.1) holds for all
Θi = (∆Qi,∆Ri,Zi) ∈ Ωi if and only if the following holds:

Γi+1 ≥ [
F̄i + C̄iZiĒi

]
Σ̄i

[
F̄i + C̄iZiĒi

]T
+ ḠiW̄iḠ

T
i ∀Zi with ‖Zi‖ ≤ 1,

where

W̄i = blockdiag(Q̄i + εI, R̄i + εI).
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We rearrange the above inequality as follows:

Γi+1 −
[
F̄i + C̄iZiĒi Ḡi

] [ Σ̄i 0
0 W̄i

] [
F̄i + C̄iZiĒi Ḡi

]T ≥ 0

∀Zi with ‖Zi‖ ≤ 1.

Using the Schur complement, the above constraint is equivalent to


 Σ̄−1

i 0 (F̄i + C̄iZiĒi)
T

0 W̄−1
i ḠT

i

(F̄i + C̄iZiĒi) Ḡi Γi+1


 ≥ 0 ∀Zi with ‖Zi‖ ≤ 1.(3.2)

Note that both Σ̄i and W̄i are positive definite and hence invertible.
For each fixed Zi with ‖Zi‖ ≤ 1, the above constraint (3.2) is a so-called lin-

ear matrix inequality (LMI) in the matrix variables {Γi+1, Ai, Ki} which is convex.
(Recall that the matrix variables {Ai, Ki} are buried, linearly, in F̄i, Ḡi, and C̄i.)
Thus the feasible region described by the above constraint is the intersection of convex
regions described by an infinite number of linear matrix inequalities parameterized by
Zi. This implies that the feasible region of (2.13) is convex. It is now clear that the
original robust filtering problem (2.13) is equivalent to

minimize Tr
(
D

[
I −I ]

Γi+1

[
I −I ]T)

subject to {Γi+1, Ai, Ki} satisfying (3.2),

Tr (Γi+1) ≤ b.

(3.3)

The formulation (3.3) is given as an SDP, except that the data matrices are subject
to uncertainty Zi. Therefore it cannot be solved by standard SDP methods. The
constraints in (3.3) imply that the solution must remain feasible for all allowable per-
turbations. This is precisely the intent of a robust filter solution. An SDP problem for
which the data matrices are uncertain is called a robust SDP. In the next subsection,
we introduce a technique for converting a robust SDP into a standard SDP, which
can then be solved efficiently by the recent interior point methods.

3.1. The robust SDP. SDP is a convex optimization problem and can be solved
in polynomial time using efficient algorithms such as the primal-dual interior point
methods [14, 10, 12]. An SDP consists of minimizing a linear objective subject to an
LMI constraint,

minimize cTα

subject to B(α) = B0 +

q∑
k=1

αkBk ≥ 0,

where c ∈ Rq, α = (α1, α2, . . . , αq)
T , and the symmetric matrices Bk = BT

k ∈ Rl×l,
k = 0, . . . , q, are some given data matrices. In our case, these data matrices are
subject to uncertainty. We can incorporate some linear uncertainty into B(α) in the
following way. Let B(α,∆) be a symmetric matrix-valued function of two variables α
and ∆ of the form

B(α,∆) = B(α) +N∆M(α) +M(α)T∆TNT ,(3.4)
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where B(α) is defined in (3.1), N and M(α) are given matrices, ∆ is a perturbation
which is unknown but bounded. We define the robust feasible set by

A = {α ∈ Rq | B(α,∆) ≥ 0 for every ∆ with ‖∆‖ ≤ 1} .
The robust SDP is then defined as

minimize cTα
subject to α ∈ A.

(3.5)

The following lemma shows how such a robust SDP can be solved using a conventional
SDP. It is a simple corollary of a classical result on quadratic inequalities referred to
as the S-procedure, and its proof is detailed in [2].

Lemma 3.1. Let B = BT , N, and M be real matrices of appropriate size. We
have

B+N∆M+MT∆TNT ≥ 0(3.6)

for every ∆, ‖∆‖ ≤ 1, if and only if there exists a scalar ρ such that
[
B− ρNNT MT

M ρI

]
≥ 0.(3.7)

As a consequence, the robust SDP (3.5) can be formulated as the following standard
SDP in variables α and ρ:

minimize cTα

subject to

[
B(α)− ρNNT M(α)T

M(α) ρI

]
≥ 0.

(3.8)

We now return to the problem in (3.3) and factorize the LMI constraint matrix
(3.2) according to the structure in (3.4). In such a factorization, the decision variable
α in (3.4) will correspond to a concatenation of the elements of the matrix variables
Γi+1, Ai, and Ki in (3.2), and the perturbation ∆ in (3.4) will correspond to Zi in
(3.2). The factorization is given by

B(α) =


 Σ̄

−1
i 0 F̄T

i

0 W̄−1
i ḠT

i

F̄i Ḡi Γi+1


 ,(3.9)

where

F̄i =

[
Fi 0
KiHi Ai −KiHi

]
, Ḡi =

[
Gi 0
0 Ki

]
, W̄i =

[
Q̄i + εI 0
0 R̄i + εI

]
,

and

N∆M(α) +M(α)T∆TNT =


 0 0 (C̄iZiĒi)

T

0 0 0
C̄iZiĒi 0 0


(3.10)

with

C̄iZiĒi =

[
C1,iZiEi 0
KiC2,iZiEi 0

]
.
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The matrices N and M(α) are given by

M(α) =
[
0 0 CT

1,i CT
2,iK

T
i

]
,

N =



ET

i

0
0
0


 .

(3.11)

Now we are in a position to apply Lemma 3.1 to convert the robust SDP (3.3) into
the following standard SDP in the variables Γi+1, Ai, Ki, and ρ:

minimize Tr
(
D

[
I −I ]

Γi+1

[
I −I ]T)

subject to

[
B(α)− ρNNT M(α)T

M(α) ρI

]
≥ 0,

Tr (Γi+1) ≤ b,

(3.12)

where the variable α contains columns of the matrices Γi+1, Ki, and Ai, and the
matrices B(α), N, and M(α) are given by (3.9) and (3.11), respectively.

Note that, for each i, problem (3.12) is fixed in dimension (i.e., does not grow with
i). It is a standard SDP problem which has a unique solution and satisfies the usual
regularity condition, provided that the primal and dual of (3.12) are strictly feasible
and for every α, M(α) �= 0 and [ N MT (α) ]T is full column-rank. As such, the
problem can be solved very efficiently by an interior point method; in particular, by the
homogeneous self-dual method [10, 12]. In our computational experience, the number
of iterations required to solve each SDP is fixed (no more than 8), and therefore the
proposed technique can be regarded as a recursive filtering method.

To make a formal comparison of the computational complexity of our robust
filtering method with those of [15, 13], we need to recall the notations of our model
(2.1): n denotes the number of states, m denotes the number of inputs, and p denotes
the number of measured outputs. Xie’s method [15] is a “one-shot” method, and hence
the robust observer matrix is calculated only once. The cost of this computation
is O((n + p)3). However, Xie’s method [15] works only for time-invariant systems.
On the other hand, Theodor’s method [13] is iterative. The cost per iteration is
O((n + p)3 + n2m). Our method is also iterative. Using a general purpose interior
point SDP solver requires O((n + m + p)5/2(n2 + np)2) per filtering iteration. It is
interesting to examine the above costs as the number of states in the model, n, grows.
In that case, the total computational cost of Xie’s method [15] is O(n3), while the
cost per (filtering) iteration of Theodor’s method [13] and of our proposed method
are O(n3) and O(n6.5), respectively. It is also interesting to examine the above costs
as the number of measured outputs, p, grows. In that case, the total cost of Xie’s
method [15] is O(p3), while the cost per (filtering) iteration of Theodor’s method [13]
and of our method are O(p3) and O(p4.5), respectively. We believe it is possible to
reduce the complexity per iteration for our method by exploiting the sparsity structure
present in our problem. This is an interesting issue for future investigation.

We now make an observation regarding the scaling of the matrices C̄i and Ēi. In
particular, these two matrices can be scaled and replaced by C̄i/µ and µĒi, respec-
tively. Such a scaling does not change the formulation of (3.3), nor does it affect the
formulation of (3.12), because the latter is completely equivalent to the former. This
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shows that the solutions to our reformulated robust filtering problem are independent
of the scaling factor µ. This property is in contrast to the robust filter proposed
in [13], where the solutions are “highly sensitive” [13] to the choice of µ. The scale
invariance of our method with the choice of µ is a clear advantage.

However, our method also has a disadvantage in that it is sensitive to the choice
of b in the second constraint in (3.12), Tr (Γi+1) ≤ b. This constraint is used to ensure
that the matrix Γi+1 is bounded. This is important because otherwise the optimal
solution of (3.12), Σ̄i+1, may become progressively ill-conditioned as i becomes large.
This phenomenon has been observed in computer simulations. In general, large values
of b will allow the matrices {Σ̄i : i = 1, 2, . . .} to become rather ill-conditioned, while
small values of b may render the subproblem (3.12) infeasible. The same remark
applies to the alternative formulation (2.16), where a value of β > 0 needs to be
selected. Through computer experiments we found that both formulations led to
filters with similar behavior and performance.

4. Numerical examples. In this section, the performance of the proposed ro-
bust state-estimation method is illustrated via simulation results. Two numerical
examples are given here; the first one is the same problem as that used in [13, 15],
and the second one is a target-tracking problem.

4.1. Example 1. In this example the following discrete-time linear uncertain
state-space model is used:

xi+1 =

[
0 −0.5
1 1 + δ

]
xi +

[−6
1

]
ui, |δ| < 0.3,

yi = [−100 10 ]xi + vi,(4.1)

si = [ 1 0 ]xi,

where ui and vi are uncorrelated zero-mean white noise signals with variances Q̄ = 1
and R̄ = 1, respectively. The value of ε in (2.4) is set to zero, so that there is no
uncertainty in the knowledge of noise statistics. The uncertainty in (4.1) is described
by the matrices

C1 = [0 10]T , C2 = 0, E = [0 0.03]

and the scalar parameter z, |z| ≤ 1.
To determine the robust filter at each instant i, we use the Matlab toolbox

SeDuMi [12] to solve the robust SDP (3.12). This code requires no initialization since
it is based on the self-dual formulation of the SDP. Solving the SDP (3.12) at each
instant i with b = 900 and D = diag(1, 5) yields a robust state estimator [of the form
(2.5)] which converges to

A =

[−0.1711 −0.4624
1.4080 1.1786

]
and K =

[−0.0051
0.0047

]
.

Note that for stability reasons the estimator (as seen in D) weights the second compo-
nent of xi more heavily than the first component even though the goal is to estimate
the first component of xi. In our simulation studies, the proposed technique is com-
pared with the Kalman and H∞ filters and the robust filters of [13, 15]. For this
purpose, steady-state Kalman and H∞ filters are designed for the nominal system of
(4.1), i.e., δ = 0. We then apply these filters to system (4.1) with δ = 0, δ = 0.3,
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Table 1
Steady-state estimation error variances for different filters (results are averaged over 100 runs).

Filter δ = −0.3 δ = 0 δ = 0.3
Nominal Kalman filter 551.2 36.0 8352.8
Nominal H∞ filter 96.0 47.2 893.9
The robust filter of [13] 51.4 51.3 54.4
The robust filter of [15] 64.0 61.4 64.4
The robust filter of [3] 51.5 49.1 53.8
Proposed robust filter 46.2 45.6 51.9

Table 2
Steady-state estimation error variances for our method and the method of [3].

Filter δ = −0.09 δ = 0 δ = 0.09
The robust filter of [3] 37.75 38.19 41.47
Proposed robust filter 37.38 37.78 40.31

and δ = −0.3. The steady-state estimation error variances (i.e., E{(si − ŝi)
2} for

sufficiently large i) for the filters are displayed in Table 1. It is clear from the table
that the proposed robust filter performs far better than the nominal Kalman and H∞

filters in the presence of modelling error.
Both our method and the methods of [13, 15] require the tuning of a certain

parameter. In our case, we need to adjust the parameter b in order to prevent the
iterates from becoming ill-conditioned, and the diagonal elements of D in order to get
the best estimator. The methods of [13, 15] require the adjustment of the factor µ
in the scaling of Ci/µ and µEi. Our experiments suggest that our method works for
b ∈ [880, 5000], while the method of [13] converges for µ ∈ (0, 1.703] and diverges for
values outside this range. The best performance is achieved with µ = 1.703. (Note
that the authors of [13] reported their choice of µ = 2.2, but our own implementation
of their method showed that this value of µ leads to divergence instead.)

The filter performance for the robust filter of [15] stated in Table 1 is quoted from
[13]. We should point out that we could not reproduce the design of the robust filter
[13] using their design method. With our own (simple) MATLAB implementation of
their method, we could only produce a filter with µ = 1.703, whose error covariances
are 51.4, 51.3, and 54.4, rather than 46.6, 45.2, and 54.1 (as claimed in [13]) for
model errors of δ = −0.3, 0, and 0.3, respectively. From Table 1, we can see that
the performance of the robust filters [13, 15] are inferior to the filter designed by the
robust SDP method: the worst-case performance (for δ = −0.3, 0, 0.3) is 51.9 for
our proposed robust filter, and is 54.2 and 64.4, respectively, for the robust filters of
[13] and [15]. From this example, it appears that our robust filter design is slightly
superior.

Recently our approach has been further extended by Fu, de Souza, and Luo [3],
who introduced multiple scaling factors in the SDP formulation and showed perfor-
mance improvement when compared to the single-scaling-factor case. It should be
pointed out that the single-scaling-factor case of [3] corresponds to the algorithm
considered in this paper, except that we have an additional boundedness constraint
Tr (Γi+1) ≤ b in our SDP subproblem (3.12). We simulated the single-scaling-factor
case of [3] in Table 1 for comparison. From the simulation results, our method is
slightly superior to the method of [3] in the single-scaling-factor case. This is due
to the differences in the way the ill-conditioning of the bound on the covariance ma-
trix is handled. The simulation results stated in [3] are for C1 = [0 3]T (instead of
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Fig. 1. Trajectories of the target-tracking model with uncertainty δ = −0.05 (left), δ = 0
(middle), δ = 0.05 (right).

C1 = [0 10]T ), which means that the simulated cases in [3] have only 30% of the
uncertainty considered in Table 1. We also compared our method with the method
of [3] for the case C1 = [0 3]T , and the simulation results show that our method is
still slightly superior to the method of [3] (Table 2).

4.2. A tracking example. In this example a target-tracking case is considered.
The discrete-time state-space model is given by

xi+1 =

[
0.95 −0.1 + δ
0.05 0.95

]
xi +

[
1
1

]
ui, |δ| < 0.05,

yi = [ 1 0 ]xi + vi,(4.2)

si = [ 1 0 ]xi,

where ui and vi are uncorrelated zero-mean white noise signals with variances Q̄ = 1
and R̄ = 1, respectively. The value of ε in (2.4) is set to zero, so that there is no
uncertainty in the knowledge of noise statistics. The uncertainty in (4.2) is described
by the matrices

C1 = [0.05 0]T , C2 = 0, E = [0 1]

and the uncertainty parameter z, |z| ≤ 1.

In this model, the state vector xi represents the position of a target in a two-
dimensional coordinate system, and the observation yi is a noise-corrupted version of
the first coordinate. The target is making a counter-clockwise turn starting from the
position x0 = [500, 500]T . The unknown parameter δ describes the uncertainty in the
turning rate of the trajectory. Three possible trajectories from this model are shown
in Figure 1.

Solving the SDP (3.12) for each value of i, with b = 1100 and D = diag(1, 7),
yields a robust state estimator (of the form (2.5)) which converges to

A =

[
0.9500 −0.1016
0.0500 0.9644

]
and K =

[
0.7560
0.0130

]
.
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Table 3
Steady-state estimation error variances for different filters for the tracking problem (results are

averaged over 100 runs).

Filter δ = −0.05 δ = 0 δ = 0.05
Nominal Kalman filter 6425.2 1.4 11404.0
The robust filter of [13] 199.7 53.6 703.5
The robust filter of [15] 1309.6 666.9 549.2
Proposed robust filter 187.9 52.8 693.4

We have compared our method with the methods of [13, 15], as well as the nominal
Kalman filter. The result is shown in Table 3.

From the simulation results, it appears that the filter designed by our method
is superior to the filters obtained via the methods of [13] and [15]. In designing the
filters by the methods of [13, 15], we have adjusted their corresponding adjustable
parameters (e.g., the parameter µ in the scaling of Ci/µ and µEi) and picked the
filters which generate the best performance guarantees. The method of [15] requires
that an additional parameter, denoted ε in [15], be tuned. We tuned this parameter
to a value of 10 in our implementation. Note that, in the presence of uncertainty, the
nominal Kalman filter performs far worse than the robust filters, as expected.

We have also compared our robust filter design to the robust filters of [13, 15]
in higher-dimensional cases. We found that the relative steady-state performance
of these filters is similar to that in the above examples. From the computational
standpoint, our method is quite efficient, as the SDP solved at each instant has a fixed
dimension, and the interior point method used to solve it is fast. However, our method
does incur a greater per-sample computational cost than methods based on analytic
recursions, such as the Kalman filter and the robust Kalman filter in [13]. (The
robust filter in [15] is a “one-shot” filter which does not vary with i.) For example, on
a 200MHz Pentium Pro workstation, using a general purpose SDP solver [12] under
the Matlab environment, the per-sample computation time of our method in the
above examples was around 1s, whereas that of the method in [13] was around 5ms.
(Recall, however, that the performance of the method in [13] is “highly sensitive”
to the parameter which must be tuned.) In future work, it will be useful to design
special purpose interior point algorithms which exploit the matrix structure of the
SDP in (3.12) to reduce the per-sample computational complexity of our new method.
Such a reduction of computational complexity is essential if one is to implement the
proposed robust filtering algorithm on a DSP (digital signal processing) chip for a
real-time filtering application.

5. Conclusions. In this paper, we have proposed a new state estimator for linear
uncertain systems. The method is robust to norm-bounded parameter uncertainties
on the system model as well as to bounded uncertainties on the noise statistics. In
the new technique, the estimation problem was formulated as a convex optimization
problem, which is then solved using the recent primal-dual self-dual interior point
method. This requires at most 8 iterations (or matrix inversions) and therefore can
be regarded as a recursive filtering method. The formulation guarantees the existence
of robust solutions via a semidefinite program and, under some conditions, the solution
to that semidefinite program is unique. The proposed technique compared favorably
with the well-known Kalman and H∞ filters and the “robust” filters of [13, 15]. When
applied to the problem of target tracking, the new method has led to a significant
improvement in tracking performance.
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