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ABSTRACT

Grassmannian quantization codebooks play a central role in a num-
ber of limited feedback schemes for single and multi-user MIMO
communication systems. In practice, it is often desirable that these
codebooks possess additional properties that facilitate their imple-
mentation, beyond the provision of good quantization performance.
Although some good codebooks exist, their design tends to be a
rather intricate task. The goal of this paper is to suggest a flex-
ible approach to the design of Grassmannian codebooks based on
smooth optimization algorithms for the Grassmannian manifold and
the use of smooth penalty functions to obtain additional desirable
properties. As one example, rank-2 codebooks with a nested struc-
ture and elements from a discrete alphabet are designed. In some
numerical comparisons, codebooks designed using the proposed ap-
proach have better Fubini-Study distance properties than some ex-
isting codebooks, and provide tangible performance gains when ap-
plied to a simple MIMO downlink scenario with zero-forcing beam-
forming, PU2RC, and block diagonalization signalling. Further-
more, the proposed approach yields codebooks that attain desirable
additional properties without incurring a substantial degradation in
performance.

1. INTRODUCTION

One of the basic building blocks of conventional channel adaptation
schemes in single and multi-user MIMO communication systems
is a memoryless vector quantization scheme that is used to inform
the transmitter of information that is available to the receiver(s) by
feeding back indices of elements of a quantization codebook over a
channel of limited rate [1]. In the multi-user case, that quantization
scheme is typically partitioned, with one of the partitions being a
quantization codebook that captures the channel direction informa-
tion (CDI). The design of that codebook can be viewed as a lossy
source compression problem on the Grassmannian manifold, which
is the manifold on which subspaces are represented by a single ma-
trix whose orthonormal columns span the subspace. Unfortunately,
solving that source compression problem can be a rather intricate
task, even when the scenario is such that the codebook should be
uniformly distributed on the manifold. One reason for this is that
with the exception of a few special cases (e.g., [2]), the problem has
proven quite resistant to analysis of the structure of the optimal code-
book. Some numerical design methods have been proposed, includ-
ing a variant of the Lloyd algorithm [3] and an alternating projection
method [4], and these have been quite successful in the case where
the dimension of the subspaces is one. However, in the case of sub-
spaces of dimension two or more, there are fewer results available,
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especially in the case in which the Fubini-Study distance is chosen
as the metric on the manifold; see [5] for some examples.

In addition to pure quantization performance, practical consid-
erations suggest that codebooks ought to possess additional prop-
erties that facilitate their implementation [6]. For example, (i) in
the single-user case one might seek to constrain the elements of the
codewords to have constant modulus, so as to avoid power imbal-
ances at the transmitter; (ii) for reasons of storage and computational
cost, it may be desirable to have the elements of the codewords come
from a defined alphabet; and (iii) in applications in which there is the
option of multiple signalling modes, it is desirable for the codebook
to be nested, in the sense that structure is imposed on the codewords
of a codebook of subspaces of higher dimension (higher rank) so that
they generate codewords for codebooks of lower rank.

The desire to obtain codebooks that possess additional proper-
ties significantly complicates what is already quite a difficult design
problem. As a result, approaches to designing such codebooks tend
to be rather specialized. The goal of this paper is to suggest a flex-
ible approach to codebook design based on smooth optimization on
the Grassmannian manifold [7, 8] that is amenable to any of the
commonly-used distance metrics. In order to tackle the codebook
design constraints, we suggest the use of smooth penalty functions
that enable the use of the algorithms for unconstrained optimiza-
tion on the manifold. Numerical results for unconstrained subspace
codebooks show that in the case of Fubini-Study distance, the ob-
tained codebooks exhibit larger minimum distances than the known
packings [5]. In the case of constrained codebooks, the generated
codebooks attain the desired properties without incurring a substan-
tial degradation in distance properties. Some simple simulations of a
MIMO downlink with zero-forcing beamforming [9], PU2RC [10],
and block diagonalization [11] signalling show that the improved
distance properties of the designed codebooks yield tangible perfor-
mance gains.

2. SYSTEMMODEL

Consider a MU-MIMO downlink system with a base station with
Mt antennas communicating to K users, the kth of which has
Mrk

antennas. At each channel use, the transmitter sends Pk ≤
min{Mt, Mrk

} symbols to the kth user, whose received signal is

yk =

r

Es

M
HkVs + nk, (1)

whereHk ∈ C
Mrk

×Mt is the channel matrix from the transmitter to
the kth user, s contains the P =

P

k Pk transmitted symbols and is

normalized so that E[ssH ] = IP , V ∈ C
Mt×P is the transmitter’s

preprocessing matrix, and nk is the vector of additive noise samples
at the kth receiver.
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We consider a scenario in which the channel changes in a block
fading manner and the variations are on a time scale that makes
it viable for the receivers to feed back channel direction informa-
tion (CDI), and possibly an indication of the quality of the channel,
to the transmitter, and for the transmitter to adapt the preprocess-
ing matrix V, and possibly the the coding and modulation schemes
that produce s, to the information it receives. We will focus on
the design of a Grassmannian quantization codebook for the CDI,
F = {F1,F2, . . . ,FN}, in which the matrices Fi ∈ C

Mt×M rep-
resent the subspaces of dimension M ≤ Mt in C

Mt that their or-
thonormal columns span. As such, F is referred to as a rank-M
codebook. We will denote the corresponding Grassmannian mani-
fold by GMt,M . In order to focus on the key principles we will con-
sider the case in which we seek to design a codebook that provides
near-uniform quantization of the subspaces spanned byFi (e.g., [1]),
while also possessing additional properties; e.g., [6]. The suggested
approach can be extended to the case of non-uniform quantization,
but in the interests of space we will leave that implicit.

3. GRASSMANNIAN SUBSPACE PACKINGS

The starting point for our approach to the design of Grassmannian
codebooks is the problem of finding a codebook such that the mini-
mum distance between codeword pairs is maximized. That is find a
codebook F = {Fi}N

i=1 that solves

max
{Fi}, Fi∈GMt,M

min
i#=j

d(Fi,Fj), (2)

where d(Fi,Fj) is a measure of the distance between the subspaces
spanned by its arguments. Three aspects of this problem make it
difficult to solve. First, the constraint that the codewords Fi lie on
the manifold is non-convex. Second, the min operator is not differ-
entiable, and third, many distance metrics for the manifold are both
non-convex and non-differentiable. These aspects suggest that the
basic problem in (2) may be difficult to solve, even before we seek
to modify it to obtain codebooks with additional features.

Our strategy for constructing an effective technique for find-
ing good solutions to the codebook design problem in (2) is to use
algorithms developed for optimization of smooth functions on the
Grassmannian manifold [7, 8]. These algorithms are adaptations of
conventional algorithms for unconstrained optimization of smooth
functions to the manifold, and so in order to use them we need to
construct a smooth approximation of the objective.

In this paper, we will focus on the Fubini-Study and chordal
distances between subspaces as they are the most commonly used in
limited feedback systems. However, the suggested procedures can be
applied to any valid subspace distance or smoothed version thereof.
The Fubini-Study and chordal distances are, respectively,

dFS(Fi, Fj) = arccos
˛

˛det (FH
j Fi)

˛

˛,

dch(Fi, Fj) =
1√
2
‖FiF

H
i − FjF

H
j ‖F =

`

M − ‖FH
j Fi‖2

F

´1/2
.

If we define: d̃FS(Fi,Fj) =
˛

˛det (FH
j Fi)

˛

˛ and d̃ch(Fi,Fj) =

‖FH
j Fi‖2

F then the problem in (2) can be rewritten as:

min
{Fi},Fi∈GMt,M

max
i#=j

d̃(Fi,Fj). (3)

In the Fubini-Study case, d̃F S(Fi,Fj) is not smooth, and consistent
with our general approach we seek a smooth approximation. One
approximation that is well suited to the problem in (3) is:

ˆ̃dFS(Fi,Fj) = (1 + det (XHX)) log (1 + det(XHX)), (4)

whereX = FH
j Fi. For ease of notation we set

ˆ̃dch(·, ·) = d̃ch(·, ·).
There are number of ways in which the expression

maxi#=j
ˆ̃d(Fi,Fj) in (3) can be smoothly approximated. One

is to use the approximation max{a, b} ≈ log (ea + eb). (The
reverse approximation is similar to the “max-log” approximation
that is often used in soft decoding algorithms.) This approximation
was successfully used in [12] for the construction of Grassmannian
constellations for non-coherent MIMO communication and is also
applicable here. In this paper, we will take a different approach by

approximating maxi#=j
ˆ̃d(Fi,Fj) by:

J1

`

{Fi}
´

=
“

X

i#=j

ˆ̃d(Fi,Fj)
β

”1/β
, (5)

for some β ≥ 1. Thus, we approximate the∞–norm of the vector
of distances by its β–norm. A related idea was mentioned in [13].

Even though the problem

min
{Fi}, Fi∈GMt,M

J1

`

{Fi}
´

(6)

is smooth, it remains non-convex, due, in part, to the nature of the
manifold. As such, a straightforward descent method on the mani-
fold will yield, at best, a locally optimal solution. However, we have
found that the following approach typically yields good solutions.

The suggested approach to obtaining good solutions to (6), and
hence to (3) and the original problem in (2), is based on a sequential
approximation procedure on the Grassmannian manifold, in which
we first solve (6) for a small value of β, and then we use the out-
put of that optimization step as a starting point for an optimization
process with a larger value for β. This sequential procedure takes
advantage of the better conditioning of J1(·) for smaller values of β.
In particular, our basic procedure will be:
Basic Procedure

1. Set β = 2 and randomly select an initial codebook.

2. Starting from the codebook obtained in the previous iteration,
obtain a good solution to (6) using an algorithm for smooth
unconstrained optimization on the manifold [7, 8].

3. Evaluate the quality of the codebook against a known bound
(if any), and evaluate the progress of the algorithm in terms
of the rate of increase of the minimum distance.

4. Terminate if desired, else β ← β + 2 and return to step 2.

For certain distance metrics, including the chordal distance, the
Rankin bound (e.g., [4]) can be used as the bound in step 3. In-
deed, in cases where a bound is available, the basic procedure can be
refined by setting α to the value of the known bound and replacing
J1(·) in (5) by

J2

`

{Fi}
´

=
“

X

i#=j

` ˆ̃d(Fi, Fj) − α
´β

”1/β
. (7)

Our numerical experience suggests that doing so can reduce the
number of required iterations of the basic procedure. Actually, even
when non-trivial bounds are not known, such as in the Fubini-Study
case, the outcome of the basic procedure can sometimes be improved
by using J2(·) while adapting α based on the outcome of the previ-
ous iteration and keeping track of the best codebook found so far.

In order to assess the basic design procedure, in Table 1 we com-
pare the minimum Fubini-Study distances of codebooks designed
with the basic procedure against those of the corresponding code-
books in [5]. In each case, there is a tangible increase in the mini-
mum distance of the codebook. In the case of designs based on the
chordal distance, our results are essentially the same as those in [4].
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Table 1. Minimum Fubini-Study distances of codebooks.

N Mt × M Our codebook Codebook in [5]

4 4 × 2 1.5708 1.2451

8 4 × 2 1.3418 1.0414

16 4 × 2 1.2123 0.8654

64 4 × 2 0.9613 0.6059

16 6 × 2 1.4812 N/A

32 6 × 2 1.3636 N/A

64 6 × 2 1.2986 N/A

16 6 × 3 1.5261 1.1936

32 6 × 3 1.4187 1.0724

64 6 × 3 1.3514 0.9722

32 8 × 2 1.4738 1.3153

4. LINE PACKINGS WITH CONSTANTMODULUS

In scenarios in which at most one data stream is sent to each user,
the generic codebook design problem in (2) reduces to the line
packing problem of finding a codebook of vectors fi ∈ GMt,1,
that are maximally separated with respect to the distance metric
dline(fi, fj) = (1 − |fH

j fi|2)1/2. Following the derivations in the
previous section, that packing problem can be written in the form
in (3) with d̃line(fi, fj) = |fH

j fi|. By defining the tailored smooth
approximation

ˆ̃dline(fi, fj) =
`

1 + |fH
j fi|2

´

log
`

1 + |fH
j fi|2

´

, we
can obtain good solutions to the problem in (3) and hence good so-
lutions to the original problem in (2) by applying the basic design
procedure to a problem of the form in (7), where α can be initialized
to the value of the corresponding Rankin bound. That procedure
produces codebooks that exhibit essentially the same distance prop-
erties as the best of the existing codebooks; e.g., [4]. The goal of
this section is to leverage the basic procedure to obtain codebooks
with similar distance properties and the additional property that the
elements of the vectors of the codebook have constant modulus.

For the line packing case, the constant modulus constraint is
that the #th element of each vector fi has modulus 1/

√
Mt; i.e.,

˛

˛[fk]"
˛

˛ = 1/
√

Mt. However, our basic design procedure is based
on unconstrained optimization on the manifold. In order to use that
procedure we define the smooth penalty term

Pcm
`

{fi}
´

=
“

X

k,"

`˛

˛[fk]"
˛

˛

2 − 1

Mt

´β
”1/β

, (8)

and apply the basic procedure with the cost function

J3

`

{fi}
´

= w1J2

`

{fi}
´

+ w2Pcm
`

{fi}
´

(9)

for appropriately chosen weights w1 and w2. The basic procedure
can also be augmented by a sequential scheme in which w2 is in-
creased at each step and the solution from the previous step is used
to initialize the smooth unconstrained optimization on the manifold.
Our numerical experience with this technique, not formally reported
here, has shown that for codebooks of the order of those in Table 1,
the suggested procedure yields (essentially) constant modulus code-
books with approximately the same minimum distance as the uncon-
strained codebooks in [4], and does so with only minimal tuning of
the weights.

5. LINE PACKINGS WITH DEFINED ALPHABET

In this section, we will build on the previous design by adding the
condition that the elements of the codewords come from a defined
(constant modulus) alphabet. In the case of simple alphabets, such
as 4-PSK, this greatly reduces both the storage requirements of the
codebook and the computational costs imposed on the receiver.

The restriction to a defined alphabet A offers the possibility to
design codebooks based on exhaustively evaluating each admissible
codebook. However, there are |A|MtN admissible codebooks and
even for modestly sized codebooks the computational cost of this
approach exceeds the computational resources that one could rea-
sonably apply to the problem. The goal in this section is to use the
approach of the previous section to generate partial codebooks with
good properties. These partial codebooks are then completed by ex-
haustive search, but that exhaustive search is typically over a much
smaller dimension.

To describe the principles of the approach, let A be scaled so
that each element has modulus 1/

√
Mt. The procedure is based on

a notion of a satisfactory codebook. One way in which this can be as-
sessed is to compare the achieved minimum distance of the finite al-
phabet codebook to the largest quantized distance that is smaller than
the Rankin bound. A satisfactory codebook would achieve a large
fraction of this bound. The procedure is as follows: First, we fix the
first element of the codebook to be a randomly generated vector with
elements fromA. Then we relax the finite alphabet constraint on the
remaining N − 1 codewords and use the procedure in the previous
section to design a good codebook of sizeN with constant modulus
elements. The elements of the codewords in that codebook are then
quantized to the nearest point in the alphabet.1 The quantized code-
book is then analyzed to determine whether there are any codewords
that induce distances that are deemed to be unsatisfactory. Those N̄
codewords are removed and an exhaustive search over N̄ codewords
of the defined alphabet is performed to replace them. Typically, for
codebooks of practical sizes, N̄ * N and hence this exhaustive
search of reduced dimension is often viable. In cases in which N̄ is
deemed to be too large, the basic relaxation–quantization approach
can be applied to the design of the N̄ replacement codewords. This
procedure is dependent on the number of codewords N̄ that are re-
moved after the initial design. Typically, this would be a reasonably
small number, but if the replacement procedure does not yield a sat-
isfactory codebook, one can repeat the partitioning procedure, elim-
inating more codewords, and then perform a replacement procedure.

In our numerical experiments, the above procedure produced
quantized codebooks of practical sizes with excellent distance prop-
erties. In Table 2 we have presented the minimum distance of code-
books designed for the QPSK alphabet and we have compared this
to the Rankin bound. In all cases the designed codebooks achieve a
known upper bound on the minimum distance for a defined alpha-
bet codebook (e.g., the largest quantized distance below the Rankin
bound), and hence can be considered to be optimal.

6. SUBSPACE PACKINGS WITH NESTED STRUCTURE
AND DEFINED ALPHABET

In this section, we extend the ideas used in the previous sections to
generate nested codebooks with defined alphabet; i.e., defined al-
phabet codebooks that are required to contain codebooks of lower
rank. For simplicity we will focus on the case of codebooks of

1This simple rounding procedure can be replaced by a more sophisticated
randomized rounding procedure, but we will not do that here.
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Table 2. Line packings with QPSK alphabet

N Mt Our Packings Rankin Bound

8 4 0.86603 0.92582

16 4 0.86603 0.89443

32 4 0.70711 0.87988

8 6 0.94281 0.9759

16 6 0.94281 0.94281

32 6 0.88192 0.92748

16 8 0.93541 0.96609

32 8 0.93541 0.95038

rank M = 2. In that case we seek a codebook F = {Fi}N
i=1 in

which each Fi = [fi, f̌i], where {fi}N
i=1 forms a codebook of rank

M = 1.
In the spirit of the previous approaches, the design procedure

will involve a relaxation of the defined alphabet constraint, smooth
optimization over the manifold, followed by rounding to the defined
alphabet, and subsequent evaluation and iteration. The design pro-
cedure will be done using two main steps. The first step is to find
a rank-1 codebook {fi}N

i=1 using the procedures presented in Sec-
tion 5. The elements of the rank-2 codebook must have orthonormal
columns and should exhibit large chordal distances, and we capture
these properties in the smooth objective:

J4

`

{Fi}
´

= w1J2

`

{Fi}
´

+w2Pcm
`

{f̌i}
´

+w3

`

X

i

|fH
i f̌i|β

´1/β
.

(10)
The first term in (10) captures the quantization performance of the
rank-2 codebook, the second term penalizes codeword elements that
deviate from the modulus 1/

√
Mt and the final term encourages or-

thogonality between the columns ofFi. As in the basic procedure, a
sequence of relaxed problems of the form max{Fi} J4

`

{Fi}
´

will
be solved for increasing values of β. As in the previous section,
when the solution to the final relaxed problem is rounded to the de-
fined alphabet, there may be codewords that induce distances that
are deemed unsatisfactory, or may result in rank-2 codewords that
are not orthogonal. These can be removed from the codebook and
replaced by codewords obtained via exhaustive search, or through
another iteration of the relaxation approach starting from the first
step again. However, in both cases the size of the new problem is
the number of codewords to be replaced, which is typically much
smaller than N .

We have summarized some of the distance results for precoders
designed using this technique in Table 3. In this case, the distance
metric in the optimization of the rank-2 codebook is the chordal dis-
tance. This table shows that in spite of the nesting and finite alphabet
constraints, our approach can find codebooks that come reasonably
close to the Rankin bound at both ranks.

7. SIMULATION RESULTS

We now provide a preliminary evaluation of the performance of
codebooks obtained using the suggested approach in some sim-
ulations of the MIMO downlink with zero-forcing beamforming
(ZFBF) [9], PU2RC [10], and block diagonalization [11] signalling
under a simple i.i.d. Rayleigh fading channel model. First, we con-
sider the ZFBF case for a system withMt = 4 transmitter antennas,

Table 3. Nested codebooks with QPSK alphabet

N Mt × M Rankin bnd Rank-1 Rankin bnd Rank-2 ach’d
for Rank-1 ach’d dist. for Rank-2 chord. dist.

8 4×2 0.92582 0.86603 1.069 1

16 4×2 0.89443 0.86603 1.0328 1

8 6×2 0.9759 0.94281 1.2344 1.0541

16 6×2 0.94281 0.94281 1.1926 1

8 8×2 1 1 1.3093 1.1456

16 8×2 0.96609 0.93541 1.2649 1.0897
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Fig. 1. CDF of the sum rate for a ZFBF system.

4 receivers and rank-1 codebooks of size N = 16, and 64. In Fig-
ure 1 we have plotted the cumulative distribution (cdf) of the sum of
the rates that can be achieved using ZFBF and Gaussian signalling
at an average SNR of 15 dB. We consider codebooks designed using
our basic procedure with the Fubini-Study distance, Love’s code-
books [5] and the average performance of a set of codebooks gener-
ated randomly using the uniform distribution on the manifold. Fig-
ure 1 demonstrates that the improved Fubini-Study distance prop-
erties of our codebooks (see Table 1) generate improved sum rate
statistics. In Figure 2 we plot the corresponding results for PU2RC
signalling. In that case, the tangible performance advantages of our
codebooks extend over a broader range of rates. Figure 3 exam-
ines the performance of defined alphabet codebooks of sizeN = 16
and 32 withA being the QPSK constellation in the PU2RC scheme.
Our defined alphabet codebooks provide performance that is close
to that of the unconstrained codebooks and better than the average
performance of randomly generated codebooks (with unconstrained
coefficients).

Finally, we consider a system with Mt = 4 transmit anten-
nas, 2 users, and rank-2 codebooks of size N = 16. The CDF of
the sum rate at an SNR of 15 dB is plotted in Figure 4 for Love’s
codebook [5], an unconstrained codebook and a nested codebook
with QPSK alphabet designed using the approach suggested in Sec-
tion 6, and the average of a set of randomly generated unconstrained
codebooks. Although our unconstrained codebook does provide
marginally better performance than the codebook in [5], the inter-
esting feature of Figure 4 is the excellent performance of the nested
defined alphabet codebook.
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Fig. 2. CDF of the sum rate for a PU2RC system.
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