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ABSTRACT

In many half-duplex cooperative systems, the direct formulation of
the problem of finding the jointly optimal power and channel re-
source allocation that maximizes a weighted sum of the achievable
rates can be difficult to solve. In this paper, we provide an efficient
algorithm to solve this problem for a class of systems with con-
vex achievable rate regions. For those systems, we show that the
weighted-sum-rate problem can be solved using a bisection-based
search in which a “target rate” problem is solved at each step. The
target rate problem involves maximizing one of the achievable rates
subject to target values for the other rates, and can be efficiently
solved in a number of cases. We show that the proposed technique
can be applied to orthogonal multiple access relay systems and that
joint optimization can result in significantly larger weighted sum
rates than optimization over the powers alone with a fixed channel
resource allocation.

Index Terms— joint power and resource allocation; cooperative
communication; convex optimization; quasi-convexity

1. INTRODUCTION

Cooperative communication systems seek to improve the quality of
service that can be offered to the nodes in a network by providing the
opportunity for the nodes to cooperate with each other, or with dedi-
cated relay nodes, in the transmission of their messages; e.g., [1–3].
A convenient framework for facilitating cooperation is that in which
the nodes operate in a half-duplex fashion (i.e., they do not simul-
taneously transmit and receive in the same band), and the messages
from each user are transmitted over orthogonal channels so as to en-
able per-user decoding at the destination. However, the extent of the
quality of service gains that can be obtained from such a framework
is dependent on the appropriate allocation of the resources provided
by the channel (e.g., time and bandwidth) to the messages from each
node (e.g., [4]), and the appropriate allocation of the power avail-
able at each node to its transmission and relaying tasks; e.g., [5].
The focus of this paper is on jointly optimal allocation of these radio
resources, and, as in [4, 5], the emphasis is on quasi-static environ-
ments that enable centralized design with full channel state informa-
tion.

We will consider joint radio resource allocation problems in
which the objective is to maximize a weighted sum of the rates that
are achievable using a given cooperation scheme. For some schemes,
when the channel resource allocation is fixed, the achievable rates
of each user can be written as a concave function of the allocated
powers, and hence the problem of optimizing the weighted sum rate
over the allocated powers can be efficiently solved; e.g., [5]. How-
ever, for most cooperation schemes, the achievable rate of each user

is not a jointly concave function of the powers and the channel re-
source allocation, and hence the problem of jointly optimizing the
radio resource allocation so as to maximize a weighted sum of the
rates can be difficult to solve. The direct formulation of that prob-
lem remains difficult to solve even for systems in which the maxi-
mum achievable rate of each user can be written as a quasi-convex
(cf. [6]) function of the channel resource allocation. However, for
such schemes the “target-rate” optimization problem, in which the
achievable rate of one node is maximized subject to the other nodes
being able to achieve given target rates, can be efficiently solved;
e.g., [7–9]. (Quasi-convexity also plays a role in a somewhat dif-
ferent relay system [10].) That said, maximizing a weighted sum of
the achievable rates often better matches the nature of the commu-
nicated traffic than the target-rate problem, and hence in those ap-
plications maximizing the weighted sum rate would be the preferred
formulation of the radio resource allocation problem. Unfortunately,
the sum of quasi-convex functions is not necessarily quasi-convex,
and hence the search for an efficient algorithm for maximizing the
weighted sum rate has continued.

In this paper, we develop an efficient algorithm for jointly opti-
mizing the weighted sum rate over the power and channel resource
allocation for a class of half-duplex cooperative systems with or-
thogonal transmission. In particular, we consider those systems for
which the target rate optimization problem can be efficiently solved.
As shown in [8], this class includes the orthogonal multiple access
relay channel; cf. [3]. (It also includes the half-duplex cooperation
scheme in [7, Sec. V].) For this class of systems, we show that if
the jointly optimized achievable rate region (without time-sharing
between system operating points) is convex, then the weighted-sum-
rate maximization problem can be efficiently solved by solving a se-
quence of target-rate problems in a bisection-based search. (A suffi-
cient condition for the jointly optimized achievable rate region to be
convex is that the achievable rate of each user is a concave function
of the allocated powers.) As we will demonstrate, joint optimization
can result in significantly larger weighted sum rates than optimiza-
tion over the powers alone for a fixed resource allocation.

2. SYSTEM MODEL

We will develop the main result of this paper for an abstract model
that is applicable in a number of different scenarios, and in Section 4
we will show how the derived algorithm can be applied to the orthog-
onal multiple access relay channel. For simplicity, the development
will focus on a two-user scenario, but an extension to multiple users
will appear in Section 4.

We consider a two-user multiple access system that employs
half-duplex relaying, either by the other user or by a dedicated re-
lay, and we will focus on systems in which the sub-channels on
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which each user’s message is transmitted are orthogonal to those
of the other user. This framework enables per-user decoding, yet
still allows for coherent combining at the receiver. We will focus
on the case in which the orthogonal subchannels are synthesized in
the time domain,1 with a fraction r of each time slot being allocated
to the transmission of the message from User 1, and the remaining
fraction r̂ = 1− r being allocated to the message from User 2.

In addition to a dependence on r, the achievable rate pairs of
such a system depend on the power allocated to each component
of the chosen relaying protocol. We will let p1 denote the vec-
tor that contains the operating power levels used in the transmis-
sion of the message of User 1, and p2 denote the corresponding
vector for User 2. We will collect these power levels in the vector
p = [pT

1 pT
2 ]T . We will consider a system in which the appropriate

power constraints can be written in the form
P

i λki[p]i � [p̄]k,
for some coefficients λki that may be affinely dependent on r, and
some bounds collected in p̄. Constraints on the average power and
the operating power levels can be captured in this way, as can the
nonnegativity of power. Therefore, we will consider a generic power
constraint of the form G(r)p � p̄, where the inequality is to be
interpreted element-wise.

We will consider a quasi-static channel environment with coher-
ent reception. For a given power allocation p and resource allocation
r, the achievable rate region is

R(r,p) =
˘
(R1, R2) | R1 � R̄1(r,p1) and R2 � R̄2(r,p2)

¯
,

(1)
where the functions R̄i(r,pi) take the form (e.g., [5, 8])

R̄1(r,p1) = rf1(p1), R̄2(r,p2) = r̂f2(p2), (2)

for some functions f1(·) and f2(·) that depend on the relaying strat-
egy. Using (1), the achievable rate region of the considered systems
can be written as

R(p̄) =
[

r∈[0,1]
{p|G(r)p�p̄}

R(r,p). (3)

For a number of systems with centralized power and channel re-
source allocation, the boundary of the achievable rate region in (3)
can be efficiently found by considering a set of target rate problems
parametrized by the target rate for User 2, R2,tar, [7,8]. Those prob-
lems take the form

max
p, r∈[0,1]

R̄1(r,p1) (4a)

s.t. R̄2(r,p2) � R2,tar, (4b)

G(r)p � p̄. (4c)

However, when operating point the system in practice, it may be
more appropriate to select some weights and maximize a single
weighted sum of the achievable rates.

3. WEIGHTED SUM RATE MAXIMIZATION PROBLEM

In the two-user case, the weighted-sum-rate maximization problem
can be formulated as follows: Given μ ∈ [0, 1],

max
p, r∈[0,1]

μR̄1(r,p1) + (1− μ)R̄2(r,p2) (5)

s.t. G(r)p � p̄.

1The principles of the proposed approach can also be applied to the fre-
quency domain case, but the technical details are somewhat different.

If the functions R̄i(r,pi) are concave functions of pi, and if the
maximization of the weighted sum rate is done over only the allo-
cated powers, then the problem in (5) is convex and the optimal so-
lution can be obtained efficiently; e.g., [5]. However, our goal is to
maximize over both the powers and the channel resource allocation.
For most systems that problem is neither convex nor quasi-convex,
and can be difficult to solve. In this section, we will develop an ef-
ficient algorithm for solving this problem for the class of systems
for which the jointly optimized rate region that is achievable without
time-sharing between system operating points is convex and the tar-
get rate optimization problem can be efficiently solved. As an aside,
we point out that a sufficient condition for the jointly optimized rate
region to be convex is that the functions R̄i(r,pi) are concave func-
tions of pi. Although we will not prove that statement formally here,
a related proof appears in Section 4.

We begin our development by reformulating the problem in (5)
in a hierarchical form with inner and outer optimization problems.
Let us define R2,max(r) to be the maximum achievable rate of User 2
when User 1 is allocated the fraction r of the channel resources.2 The
outer problem can then be written as

max
R2∈[0,R2,max(0)]

μR̄1(R2) + (1− μ)R2, (6)

where, with a mild abuse of notation, R̄1(R2) denotes the maxi-
mum achievable rate for User 1 for a given rate of User 2. The
jointly optimized achievable rate region is the component of the hy-
pograph (cf. [6]) of the function R̄1(R2) that lies in the non-negative
orthant, and since we are interested in those systems for which the
jointly optimized achievable rate region is convex, then R̄1(R2) is a
concave function. Therefore, the objective in (6) is concave in R2.

Although the objective in (6) is concave, we do not have
a closed-form expression for R̄1(R2), and hence conventional
derivative-based algorithms cannot be applied. However, for a given
value of R2, say R2,tar, R̄1(R2,tar) is the optimal value of the tar-
get rate problem in (4); the inner problem. Therefore, (6) can be
solved using a simple bisection-based search over R2 in which (4)
is invoked to compute R̄1(R2) at the specified values of R2. One
such algorithm is provided in Table 1. In a given outer loop of that
algorithm, the size of the interval containing the optimal value of
R2 is reduced by a factor of 2 or 4, depending on the value of �∗ in
Step 4. Therefore, in order to obtain an interval of length ε, at most˚
log2(R2,max(0)/ε)

ˇ
outer loops are required. Since this depends

only logarithmically on ε−1, and since each outer loop invokes only
two or three instances of the inner problem (4), when the target rate
problem in (4) can be efficiently solved, the algorithm in Table 1
efficiently solves the weighted sum rate problem in (6).

In the following section, we will show that for the orthogonal
multiple access relay channel, the algorithm in Table 1 can provide
significant improvements in the weighted sum rate. Before we do so,
however, we will provide an explicit algorithm for efficiently solving
the target-rate problem in (4) for the class of systems in which the
rates R̄i(r,pi) in (2) are concave functions of pi and the function

ψ(r) =

8><
>:

maxp R̄1(r,p1)

s.t. (4b), (4c) if R2,tar ∈ [0, R2,max(r)]

0 otherwise

(7)

is quasi-convex (cf. [6]) in r. (Examples of such systems appear
in [7–9].) For such systems, (4) can be efficiently solved using a

2The value of R2,max(r) can be found by allocating all the power to the
transmission of the message of User 2.
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Table 1. A simple algorithm for solving (6) for W ∗ =
maxR2 W (R2), where W (R2) = μR̄1(R2) + (1− μ)R2

Set m0 = 0, m4 = R2,max(0), and m2 = (m0 + m4)/2. Calculate†

R̄1(m0), R̄1(m2) and R̄1(m4) and use those values to calculate W (m0),
W (m2) and W (m4). Given an arbitrary tolerance ε

1. Set m1 = (m0 + m2)/2 and m3 = (m2 + m4)/2

2. Calculate† R̄1(m1) and R̄1(m3)

3. Calculate W (m1) and W (m3)

4. Find �∗ = arg max�∈{0,1,...,4} W (m�).

5. Replace m0 by mmax{�∗−1,0} , replace m4 by mmin{�∗+1,4} ,
and save W (m0) and W (m4). If �∗ �∈ {0, 4} set m2 = m�∗

and save W (m2), else set m2 = (m0 + m4)/2 and calculate†

W (m2).

6. If m4 −m0 ≥ ε return to 1), else set W ∗ = W (m�∗ ).

† For the class of systems considered at the end of Section 3, the algorithm
in Table 2 can be used.

Table 2. A simple method for finding R̄1(R2,tar) for the class of
systems considered at the end of Section 3

By inspection R̄1(R2,max(0)) = 0 and R̄1(0) = ψ(1). For R2,tar ∈
(0, R2,max(0)), set t0 = 0, t4 = 1, and t2 = 1/2. Observe that ψ(0) = 0
and ψ(1) = 0 and compute ψ(t2) using (7). Given a tolerance ε,

1. Set t1 = (t0 + t2)/2 and t3 = (t2 + t4)/2.

2. Compute ψ(t1) and ψ(t3) using (7).

3. Find k∗ = arg maxk∈{0,1,...,4} ψ(tk).

4. Replace t0 by tmax{k∗−1,0}, replace t4 by tmin{k∗+1,4}, and save
ψ(t0) and ψ(t4). If k∗ �∈ {0, 4} set t2 = tk∗ and save ψ(t2), else
set t2 = (t0 + t4)/2 and compute ψ(t2) using (7).

5. If t4 − t0 ≥ ε return to 1), else the optimal value of r is r∗ = tk∗

and R̄1(R2,tar) = ψ(r∗).

simple bisection-based search over r in which the convex optimiza-
tion problem over p on the right hand side of (7) is solved at each
step (if r is such that R2,tar ∈ [0, R2,max(r)]). An algorithm that
employs the search pattern used in Table 1 is provided in Table 2.

4. APPLICATION TO OMAR SYSTEMS

In this section, we show that for orthogonal multiple access relay
(OMAR) systems, the joint optimization of the weighted sum rate
over the power and channel resource allocations can be efficiently
solved using the algorithm developed in Section 3. The orthogonal
multiple access relay system consists of a number of users (Nodes i,
i ∈ {1, 2, . . . N}) that independently transmit their messages over
orthogonal sub-channels to a common destination (Node 0) with the
help of a relay node (Node R); cf. Fig. 1. As summarized in [5,8], the
achievable rate of User i, under the regenerative decode-and-forward
(RDF), non-regenerative decode-and-forward (NDF), amplify-and-
forward (AF), and compress-and-forward (CF) relaying strategies,
can be written, respecitvely, as:

R̄i,RDF =
ri

2
min

˘
log(1 + γiRPi),

log(1 + γi0Pi + γR0PRi)
¯
, (8a)

R̄i,NDF =
ri

2
min

˘
log(1 + γiRPi),

log(1 + γi0Pi) + log(1 + γR0PRi)
¯
, (8b)

Node 1

Node 2

Destination Node

Relay Node

Fig. 1. A multiple access relay channel with two source nodes.

R̄i,AF =
ri

2
log

„
1 + γi0Pi +

γiRγR0PiPRi

(1 + γiRPi + γR0PRi)

«
,

(8c)

R̄i,CF =
ri

2
log

“
1 + γi0Pi

+
γiRγR0(γi0Pi + 1)PiPRi

γR0(γi0Pi + 1)PRi + Pi(γi0 + γiR) + 1

«
, (8d)

where Pi is the power level at which User i transmits, PRi and ri

are the relay power level and the fraction of the time allocated to the
transmission of the message of User i, respectively, and γij is the
squared magnitude of the (effective) channel gain between Nodes i
and j; i.e., the ratio of the power gain of the channel and the noise
variance at Node j. The weighted sum rate problem for this system
is: Given a relaying strategy for each node, and given values μi such
that

P
i
μi = 1, maximize

P
i
μiR̄i over ri, Pi and PRi subject to

the average power constraints riPi � 2P̄i and
P

i
riPRi � 2P̄R,

where R̄i is the appropriate expression from (8). (In this problem the
vector pi in Section 2 contains Pi and PRi.) For the RDF and NDF
strategies the rate functions in (8) are concave in the powers [5], and,
it can be shown using [8] that for the AF and CF strategies the rate
functions in (8) are concave in the powers if γi0P̄i �

1
2
. Further-

more, it was shown in [8] that for the RDF and NDF strategies the
problem in (4) is quasi-concave in PRi and ri, and that for the AF
and CF strategies the problem in (4) is quasi-concave in PRi and ri

if γi0P̄i �
1
2
.

Now, we show that the jointly optimized rate region for the
OMAR system is convex, by showing that any rate vector that can be
achieved by time sharing between different operating points can also
be achieved by a single operating point. Consider an N -user OMAR
system that employs time sharing between M operating points with
ratios αm. At operating point m, User i is allocated a relay power
level P

(m)
Ri and a fraction r

(m)
i of the time. Since the users’ trans-

missions do not interfere (they are orthogonal), the users transmit
at their maximum allowable power under the average power con-
straint, namely, P

(m)
i = 2P̄i/r

(m)
i . When averaged over the M

operating points, the average time allocated to User i is ri,avg =PM

m=1 αmr
(m)
i , the average relay power level allocated to User i

is PRi,avg = 1
ri,avg

PM

m=1 αmr
(m)
i P

(m)
Ri , and the average transmit-

ting power of User i is Pi,avg = 1
ri,avg

PM

m=1 αmr
(m)
i P

(m)
i . Now,

consider a system with a single operating point at which User i is
allocated a fraction ri,avg of the time and a relay power level of
PRi,avg, and employs a transmission power Pi,avg . It is straightfor-
ward to show that the corresponding time-average powers satisfy the
bounds P̄i and P̄R, respectively. The achievable rate of User i at the
new operating point is R̄i = ri,avgfi(Pi,avg, PRi,avg), where fi(·)
is dependent on the relaying scheme and is implicit in (8). Since
fi(·) was shown to be a concave function of the powers [5], using
Jensen’s Inequality

R̄i = ri,avgfi

“ MX
m=1

αmr
(m)
i

ri,avg
P

(m)
i ,

MX
m=1

αmr
(m)
i

ri,avg
P

(m)
Ri

”
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Fig. 2. Jointly optimized weighted sum rate (with μ = 3/4) and
the weighted sum rate optimized over power only with fixed channel
resource allocation (r = 1/2 or 3/4).

�

MX
m=1

αmr
(m)
i fi(P

(m)
i , P

(m)
Ri ), (9)

and hence for each of the users we can achieve a rate that is at least
as high as that achieved by time sharing between the M operat-
ing points. Therefore, the jointly optimized achievable rate region
is convex. As mentioned above, the target rate problem is quasi-
convex [8], and hence the convexity of the achievable rate region
implies that the efficient algorithms in Tables 1 and 2 can be applied.

Now that we have an efficient algorithm, it is of interest to ex-
amine the extent of the increase in the the weighted sum rate that can
be obtained by joint optimization of the power and channel resource
allocations over that obtained by power allocation alone for a fixed
resource allocation; cf. [5]. In Figs 2 and 3 we compare the jointly
optimized weighted sum rate of a two-user system with μ = 3/4
to the weighted sum rate obtained by power allocation alone for the
four relaying strategies in (8). (In this example, each user is assigned
the same relaying strategy.) For the power allocation only case, we
consider equal resource allocation, r = 1/2 and a resource alloca-
tion that is matched to the weighting, r = 3/4. We have plotted the
weighted sum rate against the relay’s power budget, P̄R (in decibels).
In the scenario that we have considered, the bounds on the users’ av-
erage powers were P̄1 = P̄2 = 2, and the effective power gains of
the channels were γ1R = 1.2, γ2R = 0.8, γ10 = 0.3, γ20 = 0.6,
and γR0 = 0.4. Fig. 2 provides the results for the regenerative and
non-regenerative decode-and-forward strategies, and Fig. 3 provides
the results for the amplify-and-forward and compress-and-forward
strategies. From both figures, it can be seen that joint optimization
over the power and channel resource allocations can provide a sig-
nificant gain in the weighted sum rate. In particular, for large relay
powers the gain over the equal resource allocation case is at least
20%.

5. CONCLUSION

In this paper, we have provided an efficient algorithm for jointly op-
timizing the power and channel resource allocations of a class of
half-duplex cooperative systems so as to maximize the weighted sum
rate. The algorithm was based on a decomposition of the weighted-
sum-rate optimization problem into inner and outer problems, and on
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Fig. 3. Jointly optimized weighted sum rate (with μ = 3/4) and
the weighted sum rate optimized over power only with fixed channel
resource allocation (r = 1/2 or 3/4).

observations regarding the convexity of the jointly-optimized achiev-
able rate region and the complexity of solving a target-rate optimiza-
tion problem. The algorithms was applied to the orthogonal multi-
ple access relay system, and numerical results showed that signif-
icant improvement in the weighted sum rates that can be obtained
by joint optimization over those obtained by power allocation alone
with fixed resource allocation.
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