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ABSTRACT

In this paper we derive an analytic expression for the linear pre-
coder which minimizes the bit error rate (BER) for block trans-
mission systems with zero-forcing equalization and threshold de-
tection. The design is developed for the two standard schemes for
eliminating inter-block interference; viz, zero padding (ZP) and
cyclic prefix (CP). The CP minimum BER precoder has a structure
similar to that of the conventional water-filling discrete multitone
(DMT) modulation scheme, but the diagonal water-filling power
loading matrix is replaced by a full matrix consisting of a diagonal
minimum mean square error (MMSE) power loading matrix post-
multiplied by a Discrete Fourier Transform (DFT) matrix. The
ZP minimum BER precoder has a corresponding structure. Per-
formance evaluations indicate that the signal-to-noise ratio (SNR)
gain of the ZP and CP minimum BER precoders over conven-
tional water-filling DMT, MMSE, and orthogonal frequency di-
vision multiplexing (OFDM) schemes can be as much as several
decibels.

1. INTRODUCTION

In the transmission of digital data over dispersive media, chan-
nel induced inter-symbol interference (ISI) is a major performance
limiting factor. To mitigate such an effect, it is often helpful
to transmit information-bearing data in equal-size blocks. Ex-
amples of block based communication systems include multi-
carrier systems such as orthogonal frequency division multiplex-
ing (OFDM) [4] and discrete multitone (DMT) modulation [1].
Recently, a broad class of linear block-by-block transmission
schemes has been studied in detail [7, 8]. The block based lin-
ear transmitter which maximizes the achievable information rate
was derived in [7], and the transmitters which minimize the mean
square error of the equalized symbols for both zero-forcing and
minimum mean square error (MMSE) equalization were derived
in [8]. While the design of a transmitter based on the MMSE cri-
terion is mathematically tractable and results in a precoder that
performs reasonably well in practice, such a criterion does not
guarantee minimum bit error rate (BER). In this paper, we con-
sider the design of minimum BER linear precoders for systems
with zero-forcing equalization and threshold detection.

2. BLOCK TRANSMISSION

We employ the generalized block-by-block transceiver model de-
veloped in [8], and illustrated in Fig. 1. In this model, for each
block of M data symbolss[n], a block ofP symbolsu[n] =
F 0s[n] is transmitted across the channel. (The components of

these blocks are shown in Fig. 1.) At the receiver, the block of
M equalized data symbolŝs[n] is constructed from a block ofP
received symbols,r[n], using the equalizerG0, ŝ[n] = G0r[n].
If we choose the data block sizeM to be greater than the channel
order,L, and if we choose the transmitted block sizeP ≥ M +L,
then the inter-block interference (IBI) in̂s[n] is due only to the
previous transmitted block,s[n−1]. In that case, IBI can be elim-
inated by adopting zero padded (ZP) transmission, or by transmit-
ting a cyclic prefix (CP) which is removed at the receiver. (For
simplicity, we will focus on the case whereP = M + L.) In the
ZP case, the precoderF 0 has the form[ F0 ], whereF is M × M
and the equalizer matrixG0 = G is M × P , [7, 8]. In the CP

case,F 0 has the form
h

[0,IL]
IM
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F , whereF is M × M andG0

has the form[0,G], whereG is M × M , [8, 9]. The operation of
both these schemes can be expressed as,

ŝ = GHFs+Gv, (1)

wherev is a vector of samples of the additive noise at the receiver.
If ZP transmission is used,H is a P × M tall Toeplitz matrix,
and if CP transmission is used,H is anM × M circulant matrix.
Equation (1) forms the basis for the ensuing development of the
paper. We assume that the channel is known, and that the transmit-
ted symbols are equi-probable binary phase shift keying (BPSK)
symbols that are uncorrelated with each other; i.e.E{ssH} = I.
(An extension to quadrature phase shift keying [QPSK] appears
in [3].) We will also assume that the receiver noise is zero-mean,
white, and Gaussian, with covariance matrixE{vvH} = σ2

I.

3. BLOCK BIT ERROR RATE

We define the block bit error rate,Pe, of the system in Fig. 1 to
be the average bit error rate over all possible transmitted vectors,
Pe = E{Pe|s}, wherePe|s is the bit error rate for a given trans-
mitted vectors. For BPSK signalsPe can be expressed as

Pe =
1

M

2MX
j=1

Psj

MX
m=1

mPm|sj
, (2)

wheresj is the jth element in the set of all possible antipodal
vectors of length ofM , j ∈ [1, 2M ]; Pm|s is the probability of
havingm erroneously detected bits given thatsj is the transmitted
vector; andPsj is the probability thatsj is transmitted. It can be
shown [3] that

Pe =
1

2M
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Fig. 1. A discrete-time baseband equivalent model of the block-by-block transceiver model developed in [8].

whereerfc(z) = (2/
√

π)
R∞

z
exp(−z2) dz.

A key element of our design technique is the observation
that Pe is a convex function of[GGH ]mm when [GGH ]mm

is sufficiently small. To establish this fact, we defineφ(x) =
erfc

�
1√

2σ2x

�
, for x > 0. The second derivative ofφ(x) is

d2φ(x)

dx2
=
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2πσ2x5
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− 3

2

�
exp
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�
. (4)

If x < 1/(3σ2), thend2φ(x)/dx2 > 0, and hence for those small
values ofx, φ(x) is a convex function.

4. DESIGN OF THE MINIMUM BER PRECODER

We seek to design an optimum precoderF such that the mini-
mum BER is achieved subject to a bound on the transmitted power,
tr
�
E{F 0s(F 0s)

H}� = tr(F 0F
H
0 ). For ZP systems the total

transmitted power is simply the power used to transmit the data,
whereas for CP systems the total transmitted power is the sum of
the power used to transmit the data and the power used to transmit
the cyclic prefix. It is standard practice to define the transmitted
power as simply the power required to transmit the data in CP sys-
tems [1,5,9]. (The extra power used to transmit the cyclic prefix is
incorporated into some addition performance analysis in [3].) We
can, therefore, formulate the design problem for both ZP and CP
systems as follows:

min
F

Pe

subject to tr(FFH) ≤ p0,
(5)

wherep0 is the bound on the transmitted power. From Section 3,
Pe is a convex function of[GGH ]mm if [GGH ]mm ≤ 1/(3σ2),
∀m ∈ [1, M ]. We will show in Section 5 that this condition can
be interpreted as a sufficiently large signal-to-noise ratio. In the
region in whichPe is convex, we can apply Jensen’s inequality [2]
such that,

Pe ≥ 1
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Equality in (6) holds if and only if[GGH ]mm are equal,∀m ∈
[1, M ]. SincePe,LB in (7) defines a lower bound on the BER, an
optimum precoder can be obtained via the following two stages:

• Stage 1: Minimize the lower bound,Pe,LB, subject to the
constraint on transmitted power and the condition thatPe

remains convex.

• Stage 2: Show that a particular choice ofF from the solu-
tion set forStage 1achieves the minimized lower bound.

To performStage 1, we note thaterfc(·) is a monotonically
decreasing function. Thus, to minimizePe,LB in (7) we need only
minimize tr(GGH). The zero-forcing equalizer for the system
in (1) isG = (HF )†, where(·)† denotes the Moore-Penrose
pseudo inverse. In the ZP caseH has full column rank for allLth
order channels except the identically zero channel, and in the CP
caseH has full rank unless the channel has a zero exactly on the
DFT grid. (In practice, any such sub-channels would be ‘dropped’
using the procedure in Section 5.) Therefore, sinceF is square, we
can almost always writeG = F

−1
H

H(HH
H)−1. To complete

Stage 1we must solve

min
F

tr(F−1(HH
H)−1

F
−H) (8a)

subject to tr(FFH) ≤ p0 (8b)

[F−1(HH
H)−1

F
−H ]mm ≤ 1

3σ2
, ∀m ∈ [1, M ],

(8c)

Problem (8) is not convex inF and hence can be awkward to solve
directly. However, if we relax (8) by dropping (8c), then the prob-
lem can be made convex inR = FF

H . In fact, that convex
relaxation can be solved analytically, and the set of solutions is [8]

F rel =

r
p0

tr(Λ1/2)
WΛ1/4

U , (9)

where (HH
H)−1 = WΛWH is an eigen decomposition of

(HH
H)−1, andU is an arbitrary unitary matrix. To complete

Stage 1, we will use (9) and the following lemma to generate a
solution to (8).

Lemma 1 ( [3]). Given anM ×M positive semidefinite matrixS
with eigen decompositionV ΓV H ,

tr(S) = Mτ ⇐⇒ [DH
V

H
SV D]mm = τ, ∀m ∈ [1, M ],

whereD is the normalizedM × M DFT matrix.

Using Lemma 1, we have that: If
�
tr(Λ1/2)

�2
/p0 >

M/(3σ2), the feasible set for the constraint in (8c) is empty, and
hence there is no solution for (8). On the other hand, if�

tr(Λ1/2)
�2

p0
≤ M

3σ2
, (10)



then there is at least one solution to (8). In particular, one precoder
F which minimizesPe,LB and hence solvesStage 1is

F opt =

r
p0

tr(Λ1/2)
WΛ1/4

D. (11)

(If M is a power of 2, the normalized Hadamard matrix can be
used in place ofD in Lemma 1 and (11), if so desired.)

To complete Stage 2 and hence determine a minimum
BER precoder, we simply observe thatF opt in (11) makes all
[GGH ]mm equal [3]. Hence,F opt not only minimizes the lower
bound on the BER, it actually achieves that minimized lower
bound. Therefore,F opt is a precoder which minimizes the BER.

The relaxed design problem consisting of (8a) and (8b) can
be interpreted as the minimization of the mean square error of the
data estimates, subject to zero-forcing equalization and a transmit-
ted power constraint; i.e.,FMMSE = F rel. The solution set for this
problem [c.f., (9)] is parameterized by a unitary matrix. All uni-
tary matrices produces the same (minimized) MSE, but the BER
is dependent on the choice of the unitary matrix. In other words,
the minimum BER (MBER) precoder is a special MMSE precoder
with a carefully chosen degree of freedom, but MMSE precoders
do not necessarily provide minimum BER.

5. SUB-CHANNEL DROPPING SCHEME

If we define the signal to noise ratio (SNR) as the ratio of the
transmitted power per block to the receiver noise power per block,
ρ , p0/(Pσ2), the condition in (10) for the existence of solutions
to (8) can be expressed as

ρ ≥ 3
�
tr(Λ1/2)

�2
PM

, ρc, (12)

which indicates that our MBER precoder is valid at moderate-to-
high SNRs. This condition can be ensured by either increasing the
transmitted power or by dropping the sub-channels corresponding
to the largest values inΛ. Dropping sub-channels corresponds
to avoiding transmission on the low-gain sub-channels, and re-
allocating transmission power among the surviving ones. The ben-
efit of sub-channel dropping is that a minimum BER precoder can
be guaranteed without violating the transmission power budget.
However, the block size becomes smaller, and therefore the trans-
mission rate is lower (if the bit loading is uniform). The design of
an MBER precoder with sub-channel dropping is as follows:

• Suppose thatΛ is ordered in descending order and letM̄ =
M , Λ̄ = Λ .

• First determine the new block sizēM :

While ρ < 3
�
tr(Λ̄

1/2
)
�2

/(PM̄), setM̄ = M̄ − 1, and
set the largest element in̄Λ to zero.

• Then calculate the MBER precoderFMBER-DROP after drop-
ping sub-channels:

Form F̄ DROP by removing the firstM − M̄ columns
from the matrix

q
p0

tr(Λ̄1/2)
W Λ̄

1/4
. ThenFMBER-DROP =

F̄ DROPD̄, whereD̄ is a normalizedM̄ × M̄ DFT matrix.

The resulting optimal precoderFMBER-DROP is of size ofM × M̄
(i.e., a tall matrix), implying that of theM sub-channels,M −
M̄ + 1 sub-channels are dropped.

6. MBER PRECODERS FOR CP SYSTEMS

From the derivation in Section 4, the ZP-MBER and CP-MBER
precoders have the same general formula [c.f., (11)], but the ma-
tricesW andΛ are different due to the different channel matrices
for ZP and CP schemes [c.f., (1)]. Since the channel matrix for CP
is circulant, it can be diagonalized by DFT and IDFT matrices, and
therefore the MBER precoder for CP systems can be re-written as

F CP-MBER = αcpD
H(∆−1

H ∆−H
H )1/4

D, (13)

where αcp =
r

p0

tr
�
(∆−1

H
∆−H

H
)1/2
� , and ∆H is a diago-

nal matrix of sub-channel gains withmth diagonal element
H(ej2π(m−1)/M ) =

P
n h[n]e−j2π(m−1)n/M , m ∈ [1, M ].

Similarly, the set of MMSE precoders for CP systems can be ex-
tracted from (9) as

F CP-MMSE = D
H∆MMSEU , (14)

where∆MMSE = αcp(∆−1
H ∆−H

H )1/4 is the MMSE power loading
matrix, andU is an arbitrary unitary matrix. Therefore, the CP-
MBER precoder can be written as

F CP-MBER = D
H∆MMSED, (15)

which indicates that the CP-MBER precoder is related to standard
DMT in that the diagonal power loading matrix in standard DMT
is replaced by a full matrix which consists of a diagonal MMSE
power loading matrix post-multiplied by a DFT matrix.

7. SIMULATION RESULTS

We now evaluate the BER performance of various ZP and CP pre-
coders. The transmitted power is normalized (i.e.,p0 = 1) and
the third-order FIR channel has zeros at0.7, 0.5 exp(j2π0.256),
and0.3 exp(j2π0.141). The block sizes areM = 32 andP =
M + L = 35. BER curves for various ZP and CP precoders are
presented in Fig. 2. In Fig. 2(a) we compare the BER performance
of ZP precoders designed using the MBER, MMSE [8], and max-
imum SNR [8] criteria, and a zero-padded OFDM [6] precoder.
In Fig. 2(b) we compare the BER performance of CP transmis-
sion schemes designed using the MBER, MMSE and water-filling
DMT [1,5] criteria, and a conventional OFDM scheme. In both the
ZP and CP cases we show the performance of the MMSE precoder
where the unitary matrix degree of freedom is the identity. To en-
sure a fair comparison between water-filling DMT and the MBER
precoders, Figs 2(b) and (c) also contain BER curves for MBER
precoders with the same block size as the water-filling DMT sys-
tem. (Performance comparisons for the sub-channel dropping
scheme in Section 5 are available in [3].) Figs 2(a) and (b) demon-
strate the optimality of the MBER designs at moderate-to-high
SNRs [c.f., (12)], and Fig. 2(c) shows the (small) performance ad-
vantage of ZP-MBER precoding over CP-MBER precoding. (The
advantage is actually slightly larger than shown, as we have ig-
nored the power used to transmit the cyclic prefix in our definition
of SNR; see [3] for more details.) However, ZP-MBER precod-
ing requires the calculation of the eigen-vectors of(HH

H)−1

for each different channel, whereas for the CP precoder the eigen-
vectors of(HH

H)−1 are merely the columns of an IDFT ma-
trix, irrespective of the actual channel coefficients. Furthermore,
equalization of the CP-MBER scheme can be implemented more
efficiently than that of the ZP-MBER scheme.
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Fig. 2. BER curves for ZP and CP precoders.

8. CONCLUSION

In this paper, the linear precoder which minimizes the bit error
rate (BER) was derived for block transmission systems in which
zero-forcing equalization and threshold detection are applied. An-
alytic solutions for the optimal precoder were derived for two
standard schemes of eliminating inter-block interference (namely,
zero-padded and cyclic-prefix schemes), and a flexible scheme for
dropping channels to ensure the validity of the analytic solution
was proposed. It was found that the CP transmission scheme with
the MBER precoding can be regarded as variation on standard
DMT in which MMSE power loading replaces water-filling power
loading, and the diagonal power loading matrix is post-multiplied
by a DFT matrix. Performance evaluations indicate that the SNR
gain of the MBER design over some conventional designs may be
as much as several decibels. Thus, the MBER design proposed in
this paper is an attractive alternative for realizing linear precoders
for block-by-block data transmission with zero-forcing equaliza-
tion.

The optimal design obtained in this paper is for a single-user
system with zero-forcing equalization, white data symbols from
a simple constellation, and a known channel. Continuing work
in this area includes extensions to multiuser systems, other equal-
ization techniques (such as MMSE, decision feedback, or maxi-
mum likelihood detection), colored data from higher-order con-
stellations, and uncertain channel models.
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